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Quantum correlations in metals that grow in time and space
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We show that the correlations of electrons with a fixed energy in metals have very anomalous time and space
dependencies. Due to soft modes that exist in any Fermi liquid, combined with the incomplete screening of the
Coulomb interaction at finite frequencies, the correlations in two-dimensional systems grow as the square of a
time scale. In the presence of disorder, the spatial correlations grow as a distance squared. Similar, but in general
weaker, effects are present in three-dimensional systems and in the absence of quenched disorder. We propose
ways to experimentally measure these anomalous correlations.
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I. INTRODUCTION

Equilibrium time-correlation functions are an essential con-
cept in statistical mechanics [1]. They describe the spontaneous
fluctuations of a system in equilibrium, and together with the
partition function they provide a complete description of the
equilibrium state. Via the fluctuation-dissipation theorem they
also describe the linear response of the system to external
fields, and they are directly measurable by means of scattering
experiments. For instance, the number or charge-density
correlation function provides the scattering cross section for
electron, light, or neutron scattering, and the spin-density
correlation function the one for magnetic neutron scattering.

An old, and seemingly plausible, assumption is that
microscopic correlations decay on time scales much faster
than macroscopic observation times, i.e., that there is a
separation of time scales. In this paper we study a class of
quantum correlation functions for which this is not true,
and which actually grow as functions of both space and
time. Our considerations are exact in the sense that they deal
with long-wavelength and low-frequency effects that can be
controlled by means of renormalization-group arguments
applied to an effective field theory [2,3].

We first put the above statements in a historical context.
Various concepts that were developed in the early days of
statistical mechanics depend on the separation-of-time-scales
assumption, for instance, the notion that the BBGKY hierarchy
of classical kinetic equations can be truncated [4], or the
Kadanoff-Baym scheme of deriving and solving quantum
kinetic equations and its generalizations [5,6]. The notion
of a separation of time scales is also important in signal
processing, where the microscopic time scale associated
with the generation of the radiation is typically much faster
than the observational time scale [7,8]. For time-correlation
functions it implies that they decay exponentially for large
times. Equivalently, their Laplace transform is an analytic
function of the complex frequency z at z = 0. The discovery
of the nonexponential decay known as long-time tails (LTTs)
[9–11], and the related breakdown of a virial expansion for
transport coefficients [12,13], thus came as a considerable
surprise [14], since it showed that the assumption is in
general not true. Rather, many time-correlation functions
decay only algebraically, i.e., they have no intrinsic time
scale. This scale invariance is reminiscent of the behavior

of correlation functions at critical points; however, it occurs
in entire phases and therefore is referred to as “generic
scale invariance” [15–17]. The underlying physical reason
is either conservation laws, or Goldstone modes that lead to
a slow decay of some long-wavelength fluctuations and, via
mode-mode-coupling effects, affect the decay of other degrees
of freedom. An example is the shear stress in a classical fluid,
which is not conserved, yet its time-correlation function decays
algebraically as 1/td/2 for long times t in a d-dimensional
fluid since it couples to the transverse momentum, which is
conserved. As a result, the Green-Kubo expressions for various
transport coefficients diverge in dimensions d � 2, and the
hydrodynamic equations become nonlocal in time and space;
for a review see Ref. [17].

In classical systems in equilibrium, LTT effects, while
qualitatively very important, are rather small quantitatively and
become pronounced only at times so large that the correlation
function is already very small overall. In nonequilibrium
classical systems the effects are much more important [18,19].
In equilibrium quantum systems the corresponding effects can
also be much larger, especially in systems with quenched
disorder, where the quantum LTTs are often referred to
as “weak-localization effects” [17,20]. Still, the correlation
functions considered to date decay as functions of time, albeit
more slowly than a separation-of-time-scales argument would
suggest. In this paper we show that in a quantum system as
simple as interacting electrons with no quenched disorder,
i.e., the simplest model of a metal, there are correlations that
actually grow with time, and in some cases also with distance.
This surprising result is a consequence of generic soft, or
slowly decaying, excitations in a Fermi liquid in conjunction
with the incomplete screening of the Coulomb interaction at
nonzero frequencies. It is a dramatic illustration of the fact that
the impossibility of separating microscopic and macroscopic
time scales, which is present in classical kinetics, holds a
fortiori in quantum systems.

II. PHASE-SPACE CORRELATION FUNCTIONS

In quantum statistical mechanics it is useful to consider
correlation functions that depend on one or more imaginary-
time variables τ ∈ [0,1/T ], with T being the temperature,
or on the corresponding imaginary Matsubara frequencies,
iωn = 2iπT (n + 1/2) for fermions, and i�n = 2iπT n for
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bosons (n integer). Functions defined for imaginary Matsubara
frequencies can be analytically continued to all complex
frequencies, and the underlying real-time dependence can
be obtained by an inverse Laplace transform. The observ-
ables in a fermion systems can be expressed in terms of
expectation values of products of field operators ψ̂†(x,τ )
and ψ̂(x,τ ) that depend on the position x in addition to τ .
Spin is not essential for our purposes, and we suppress it
for now. Let us consider binary products of ψ̂† and ψ̂ , and
an imaginary-time Wigner operator Ŵ (X,x; T ,τ ) = ψ̂†(X +
x/2,T + τ/2) ψ̂(X − x,T − τ/2). In a field-theoretic for-
mulation, ψ̂†(x,τ ) and ψ̂(x,τ ) correspond one-to-one to
fermionic (i.e., Grassmann-valued) fields ψ̄(x,τ ) and ψ(x,τ )
[21], in terms of which we define a Wigner field

W (X,x; T,τ ) = ψ̄(X + x/2,T + τ/2)ψ(X − x/2,T − τ/2)

(1)

in analogy to the operator Ŵ . In common applications of
real-time Wigner operators or fields, X and T correspond to
the “average” or “macroscopic” (presumed to be slow) length
and time scale, and x and τ to the “relative” or “microscopic”
(assumed to be fast) scales. The definition of the Wigner field
reflects the assumption that it is possible and useful to separate
these two scales [5,7]. In terms of it, the fluctuating particle
number density is given by n(X,T ) = W (X,T ; x = 0,τ =
0), and the equilibrium single-particle Green function by
G(x,τ ) = 〈W (X,T ; x,τ )〉, where 〈· · · 〉 denotes an average
taken with the action governing the fermion system. If the
average is taken in a nonequilibrium state, 〈W 〉 also depends
on X andT . In a real-time formalism, with macroscopic time T

and microscopic time t , 〈W (X,x; T ,t)〉 = −i G<(X,x; T ,t) is
the Green function G< defined in Ref. [5]. Its Fourier transform
with respect to the microscopic variables g<(X,T ; p,ω) is
often interpreted as the density of particles with momentum p
and energy ω at the space-time point (X,T ) [5,22]. Switching
back to imaginary time and frequency, this identifies

ρ(X,iωn) = T

∫ 1/T

0
dT dτ eiωnτ W (X,T ,x = 0,τ )

=
∑

σ

ψ̄n,σ (X) ψn,σ (X) (2)

as the density of particles with energy ωn at point X , i.e., a
spatial energy distribution. Restoring spin, the spatial Fourier
transform of ρ reads

ρ(k,iωn) =
∫

d X e−ik·X ρ(X,iωn)

=
∑
p,σ

ψ̄n,σ ( p + k/2) ψn,σ ( p − k/2), (3)

where ψ̄n( p) = √
T/V

∫
dx e−ipx ψ̄(x,τ ) and ψn( p) =√

T/V
∫

dx eipx ψ(x,τ ), with px = p · x − ωnτ ,
∫

dx =∫
dx

∫ 1/T

0 dτ , and V the system volume. ρ depends on a
macroscopic wave vector k, but a microscopic frequency ωn.
This is in contrast to the number density n, which depends
on two macroscopic variables. To verify the physical interpre-
tation of ρ we note that its expectation value determines the

density of states N (ω) via

N (ω) = −1

π

1

V
Im〈ρ(k = 0,iωn → ω + i0)〉. (4a)

The zeroth frequency moment gives the particle number N .
With η = 0+ the usual convergence factor [23] and nF(ω) the
fermion distribution function we have

N = T
∑

n

eiωnη〈ρ(k = 0,iωn)〉 = V

∫
dω nF(ω) N (ω),

(4b)
and the first frequency moment gives the energy E carried by
the particles [24],

E = T
∑

n

eiωnηiωn〈ρ(k = 0,iωn)〉

= V

∫
dω nF(ω) ω N(ω). (4c)

III. THE ORDER-PARAMETER SUSCEPTIBILITY OF A
FERMI LIQUID

A. Definitions and results

Let us now consider the four-fermion correlation function
Cρρ(X − Y ; iωn,iωm) = 〈δρ(X,iωn) δρ(Y ,iωm)〉, with δρ =
ρ − 〈ρ〉. This is motivated by two considerations. First,
Cρρ provides information about the correlations of energy
levels in the Fermi system: It is the second moment of the
energy density distribution. Second, the quantity ν(k,iωn) =
ρ(k,iωn) − ρ(k, − iωn) can be interpreted, in a technically
precise sense, as an order parameter (OP) for the Fermi
liquid [2]. Cνν(k; iωn,iωm) = 〈δν(k,iωn) δν(−k,iωm)〉 is thus
the (longitudinal) OP susceptibility in an ordered phase. We
will come back to this interpretation below. Writing Cρρ in
imaginary-time space, and using time-translational invariance,
one sees that it consists of two distinct contributions. One piece
(which one would call “disconnected” in a diagrammatic rep-
resentation) is proportional to δnm, and a second, “connected”
one, is proportional to T [25]. We focus on the connected
piece by putting ωm = −ωn and eliminate the trivial factor of
temperature by defining

C(k,iωn) = 1

V T
〈δρ(k,iωn) δρ(−k, − iωn)〉, (5)

which has a well-defined zero-temperature limit [26]. Since
C depends on a microscopic time scale, the separation-
of-time-scales assumption would suggest that the analytic
continuation C(k,iωn → z) is an analytic function of the
complex frequency z at z = 0, corresponding to exponential
decay in imaginary or real frequency space. From ordinary
LTT physics one might expect that a coupling between the fast
and slow degrees of freedom will lead instead to a nonanalytic
function of the form zα , which would lead to a LTT of the form
1/tα+1. We find that neither of these expectations is correct in
general: In a Fermi liquid with a Coulomb interaction in d = 2
the real-time dependence of the correlation function C is

C(k → 0,t) ∝ κ2 ln(κ/|k|) t2 (d = 2), (6a)

where κ is the screening wave number. That is, C increases
with time as t2, i.e., the correlations get stronger with
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increasing time. This behavior is cut off by a nonzero wave
number k or, equivalently, by a finite linear system size L; it
is valid for times t � √

Lκ/vFκ (and t much larger than the
microscopic time scale, see Sec. IV below), with vF the Fermi
velocity. In d = 3 the behavior is a LTT with α = 0,

C(k → 0,t) ∝ 1/v3
F t (d = 3), (6b)

which is valid for t � L/vF. For asymptotically large times C

decays exponentially, with the rate of decay going to zero as
the wave number approaches zero or the system size goes to
infinity.

Also of interest are the spatial correlations. For iωn →
0, i.e., for particles close to the Fermi surface, the spatial
correlations decay only algebraically,

C(x,iωn → 0) ∝
{√

κ
/
v3

F

√
r (d = 2),

κ
/
v3

F r2 (d = 3),
(7)

for distances r = |x| 	 1/κ .
These results hold for clean systems. In the presence of

quenched disorder the effects are even stronger. The time
dependence in d = 2 is the same as in the clean case and
given by Eq. (6a), but in d = 3 the correlation function does
not decay with time for t � L2/D,

C(k → 0,t) ∝ 1/D2 |k| (d = 3), (8)

where D is the diffusion coefficient that characterizes the dif-
fusive electron dynamics. The spatial correlations for particles
near the Fermi surface grow quadratically with distance and
remain constant in d = 2 and d = 3, respectively,

C(x,iωn → 0) ∝
{

(1/D3) r2 (d = 2),
1/D3 (d = 3).

(9)

These expressions are again valid for distances large compared
to the microscopic length. Note that for particles at the Fermi
surface (iωn = 0) the spatial correlations at large distances
in d = 3 get cut off only by the system size. In d = 2 they
grow as the square of the distance for distances less than the
localization length or the system size, whichever is smaller.
See Sec. IV for a discussion of how to interpret this behavior.

B. Derivations

We now explain the origin and derivation of these surprising
results. We first consider clean systems. The correlation
function C, Eq. (5), can be calculated in various ways. In the
framework of the effective field theory developed in Ref. [2]
the leading contribution is given by the one-loop diagram
shown in Fig. 1(a). The advantage of this framework is that
the renormalization-group analysis of the effective theory
guarantees that the result is the leading behavior; higher-loop
diagrams will change the prefactor, but not the functional form
of the result [3]. Alternatively, the same result can be obtained
from many-body perturbation theory [27] via the diagram
shown in Fig. 1(b); however, there is no such guarantee within
that formalism. A simplified analytical expression for either
diagram, which has the correct scaling behavior, at T → 0 is

C(k,iωn) ∝
∫ �

k

dp pd−1
∫ ∞

ωn

dω
1

(ω + vFp)4
[U (p,ω)]2.

(10a)

FIG. 1. Diagrammatic representation of the correlation function
C(k,iωn) for clean systems within (a) the effective field theory
of Ref. [2], and (b) many-body perturbation theory. In (b), solid
and double-dashed lines denote electronic Green functions and
dynamically screened Coulomb potentials, respectively. Notice that
no frequency is transferred at the external vertices (heavy dots); this
reflects the fact that this is not a contribution to the usual density
correlation function. The frequency conservation at the internal
vertices is as usual.

Here � is an ultraviolet momentum cutoff, and U (p,ω) is the
dynamically screened Coulomb interaction. For ω 	 vFp in
d = 2,3 the latter has the structure

U (p,ω) ≈ κd−1

pd−1 + κd−1(vFp)2/ω2
, (10b)

where κ is the screening wave number. It shows the plasma
frequency ωP ∝ p3−d and the incomplete screening at fixed
nonzero frequency U (p → 0,ω) ∝ 1/pd−1. The factor of
1/(ω + vFp)4 represents the soft fermionic modes. In the
effective field theory it results from the fact that the interacting
part of the relevant propagator [the solid lines in Fig. 1(a)]
scales as 1/(ω + vFp)2, that is, a simple ballistic propagator
squared, see Eq. (S15c) in the Supplemental Material [3].
Within many-body perturbation theory, each of the triangular
fermion loops in Fig. 1(b) scales as 1/(ω + vFp)2. The
strongly singular behavior discussed in Sec. III A results from a
combination of these fermionic soft modes and the incomplete
screening of the Coulomb interactions at nonzero frequencies.
A short-range interaction still leads to singularities, but they are
weaker than in the Coulomb case; the corresponding behavior
is obtained by replacing U (p,ω) in Eq. (10a) by a constant.
The limit on the time regime where Eq. (6a) is valid results
from the most singular behavior of C in d = 2 being restricted
to frequencies ωn larger than the plasma frequency. Note that,
in d = 2, the latter can be made arbitrarily small by going to
small wave numbers (or to large system sizes at k = 0).

For disordered systems, an appropriate effective field theory
is the generalized nonlinear sigma model that has been
studied extensively in the context of metal-insulator transitions
[28–30]. The relevant one-loop diagram is still given by
Fig. 1(a), but the nature of the propagators is diffusive rather
than ballistic, see Eq. (S13b) in the Supplemental Material
[3]. Within the framework of many-body perturbation theory
the diagram shown in Fig. 1(b) needs to be dressed with
diffusion poles in elaborate ways. The net result is that the
factor 1/(ω + vFp)4 in Eq. (10a) gets replaced by a diffusion
pole to the fourth power:

C(k,iωn) ∝
∫ �

k

dp pd−1
∫ ∞

ωn

dω
1

(ω + Dp2)4
[U (p,ω)]2,

(11a)
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and the dynamically screened Coulomb potential gets modified
to reflect the diffusive nature of the electron dynamics:

U (p,ω) ≈ κd−1

pd−1 + κd−1Dp2/(ω + Dp2)
. (11b)

Here D is the diffusion coefficient.
Performing the integrals in Eqs. (10) and (11) yields the

results listed in Sec. III A.

IV. DISCUSSION

To discuss our results, we start with some remarks concern-
ing the proper interpretation of Eq. (9). Consider a finite system
of linear size L. The correlation function C in Eq. (9) then
depends on two real-space positions, x and y. If L is increased
by a factor of b, and x and y are scaled proportionally, so the
distance r = |x − y| also increases by a factor of b, then C

increases by a factor of b2 in d = 2. This is the meaning of the
r2 dependence in Eq. (9). On the other hand, if one increases
r while keeping L fixed, then C decreases. For a discussion
of this point in a nonequilibrium context, see Chap. 7.5 in
Ref. [19]. Analogous considerations apply in the time domain.

In the time domain it is important to put the range of validity
of Eqs. (6) in an appropriate context. The relevant microscopic
time scale in a Fermi liquid is the inverse Fermi energy, which
is on the order of 10−16 s in a good metal. For a macroscopic
system with a linear size on the order of 1 cm, Eq. (6a) is
valid for times at least four orders of magnitude larger than
the microscopic scale, and Eq. (6b) is valid for times that are
longer by yet another factor of 104.

We suggest two ways to experimentally observe the effects
discussed here: The first one is a direct measurement of
the energy-density distribution, i.e., the spatial density of
particles whose energy is in a certain interval. As discussed in
conjunction with Eqs. (4) and (5), the correlation function C is
the second moment of this distribution. We can think of no way
to measure this distribution in a condensed-matter system, but
it may be possible in a cold-atom system. The second one is
in principle possible in a condensed-matter system. As can be
seen from Eq. (4a), the density ρ defined in Eq. (2) determines
the local density of states. The correlation function C thus
contains information about the density-of-states fluctuations
in the system. A two-tip tunneling experiment that measures
the local density of states at points a fixed distance apart,
repeated for different distances and covering the whole
sample, would in principle be able to probe the long-range
correlations we predict.

We finally add some remarks to put this remarkable
behavior in context.

(1) As mentioned after Eq. (4c), the correlation function C

can be interpreted as an OP susceptibility for the Fermi liquid.
An interesting analogy in this context is the corresponding OP
susceptibility in a classical Heisenberg ferromagnet. Due to
a coupling between the longitudinal and transverse magneti-
zation fluctuations the longitudinal magnetic susceptibility χL

(i.e., the OP susceptibility) for 2 < d < 4 diverges everywhere
in the ordered phase as 1/k4−d [31,32]. This results from a
one-loop contribution to χL that is a wave-number convolution
of two Goldstone modes, each of which scales as an inverse
wave number squared. Diagrammatically this contribution has

the same form as Fig. 1(a). To see the origin of the stronger
effects discussed here, consider the spatial variation of χL as a
function of the distance. Setting all wave-number components
except for kx equal to zero, we have

χL(x ≈ L) =
∫

1/L

dkx eikxL χL(kx) ∝ L3−d . (12)

That is, the correlations grow with the system size for 2 < d <

3. The discussion at the beginning of the current section again
applies. Our results for the Fermi-liquid OP susceptibility C

are in direct analogy to this result if one makes the following
adjustments: (i) For the time or frequency dependence, replace
the only nonzero wave-number component kx by the frequency
and put k = 0. (ii) Realize that the relevant propagator in the
quantum field theory [2] scales as a soft mode squared, see
Eq. (10a) and Eq. (S15c) in the Supplemental Material [3]. In
the many-body calculation, this is apparent from the triangular
fermion loops in Fig. 1(b), each of which scales as a ballistic
propagator squared. (iii) Take into account the incomplete
screening of the Coulomb interaction, which enhances the
effect compared to the naive expectation that the quantum
result should correspond to the classical one in an effective
dimension deff = d + 1 (the relevant dynamical exponent is
that of the fermionic soft modes, z = 1).

(2) The temporal and spatial dependencies of the correlation
function C are quite different: The underlying correlation
is a function of two points in space, but four points in
time; translational invariance implies that one and three of
these, respectively, are independent. The time dependence
of the function C results from having integrated over two
of the three independent time arguments, which is justified
by the physical interpretation of the function C. A related point
is that we study the behavior of C for both frequency arguments
approaching the Fermi surface, ωn = −ωm → 0, rather than
for large frequency differences. The spatial dependence of C,
on the other hand, has the same structure as in usual two-point
correlation functions. An important result is that the spatial
correlations become more and more long ranged as the Fermi
surface is approached.

(3) In the classical-magnet analog the strong fluctuations
eventually lead to an instability of the ordered phase at the fer-
romagnetic transition. In the present case, this suggests the pos-
sibility of a transition from a Fermi liquid to a non-Fermi liquid
with a vanishing density of states at the Fermi surface [33].

(4) Studies of the distribution of the local density of states
in disordered metals [34,35] have calculated a different corre-
lation function, viz., the disorder average of the disconnected
piece of the correlation function Cνν defined after Eq. (4c). The
effects considered were thus entirely determined by disorder
fluctuations and vanish in the clean limit. In contrast, the effects
considered here are caused by the electron-electron interaction,
and some of them are further enhanced by disorder.
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