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Spontaneous symmetry breaking in correlated wave functions
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We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an
uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave
function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case
of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the
spawning of Néel order and dimerization in spin systems, and the stabilization of charge and orbital order in
itinerant electronic systems.
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I. INTRODUCTION

Exact ground-state wave functions are known only for
a limited number of many-body Hamiltonians (with exact
solutions for the entire spectrum being even rarer) [1]. Vari-
ational states provide, alternatively, educated guesses for the
ground state and for low-energy excitations. As they are not re-
lated to particular weak-coupling approximations, variational
approaches allow one to investigate nonperturbative effects.
Nevertheless, they rely on an initial guess and may therefore
sometimes be biased. Well-known examples of variational
states are given by the Bardeen-Cooper-Schrieffer (BCS) [2]
and Laughlin [3] wave functions, describing, respectively,
conventional superconductivity and the fractional quantum
Hall effect. Variational states have also been widely used ever
since Gutzwiller’s seminal work on the Hubbard model [4]
in the context of correlated electronic and bosonic systems.
A few benchmarking studies with other available many-body
computational methods have been performed recently in the
framework of the fermionic Hubbard model [5,6].

Within the variational approach, it is easy to describe
quantum phase transitions. Usually, this is achieved by
considering Hartree-Fock states, which contain a suitable order
parameter whose finite value indicates the stabilization of a
symmetry-broken phase. One simple example is given by the
half-filled Hubbard model on the honeycomb lattice, where
antiferromagnetic order develops when the ratio between
the on-site Coulomb interaction U and the nearest-neighbor
hopping t exceeds a critical value [7]. Most importantly, within
the Hartree-Fock approach, the presence of long-range order
is obtained from an initial guess of the ordered pattern that
is included in the wave function, thus implying an explicit
symmetry breaking.

In this paper, we want to assess the possibility that
symmetry-broken phases can be obtained by using symmetry-
invariant wave functions, which implies that long-range order
is obtained as a true spontaneous symmetry-breaking phe-
nomenon. Even though no explicit bias is included in the wave
functions, one must keep in mind that this approach cannot
provide a completely unbiased way of obtaining any possible
pattern for spin and/or charge order. We will show examples
in which relatively simple orders emerge in symmetric states,
while it remains a very hard task to devise a scheme in
which a given wave function may describe many different

spin and/or charge patterns that can be selected by tuning a
few (variational) parameters.

In the context of spontaneous symmetry breaking, a well-
known example is given by the Liang, Doucot, and Anderson
(LDA) wave function, which was proposed to investigate
quantum magnetism in the Heisenberg model on a square
lattice [8]. The LDA state is written in terms of bosonic
degrees of freedom (e.g., singlets that cover the entire lattice),
and it embodies a possible representation of the resonating-
valence-bond (RVB) states [9]. The LDA wave function is
fully characterized by the weight factor h(r) for a singlet of
length r . To evaluate any expectation value over the LDA
wave function, one must devise a stochastic sampling, based
upon the Monte Carlo technique. Indeed, given the exponential
increase of the dimension of Hilbert space, an exact treatment
can be afforded only on very small clusters. Even though the
LDA wave function does not break spin and lattice symmetries,
it may describe magnetically ordered phases. This is the case
when h(r) decays slowly with r [e.g., h(r) ∝ 1/rp, with
p < 3.4 on the square lattice]; by contrast, if h(r) decays
rapidly with r (e.g., p > 3.4), then the LDA wave function
is magnetically disordered [8,10]. The great limitation of this
wave function is that efficient Monte Carlo calculations can be
afforded only in the presence of the Marshall sign rule [11].
In the absence of this rule, such as for triangular and kagome
lattices, calculations suffer from a severe sign problem and
only small cluster sizes can be afforded [12]. Therefore, its
properties are well established in only a few cases.

Here, we consider an alternative approach and assess the
possibility of having spontaneous symmetry breaking in a
different family of quantum states, which are constructed
from fermionic degrees of freedom, suitable to describe
both itinerant (i.e., Hubbard) and localized (i.e., Heisenberg)
systems. In the latter case, these fermionic wave functions
give rise to alternative representations of RVB states [9].
Moreover, dealing with fermions has the notable advantage
that Monte Carlo calculations can be easily performed on
large clusters and any lattice geometry. The simplest of this
class of variational states is the well-known Gutzwiller wave
function that was introduced to deal with correlated electron
systems [4]:

|�g〉 = Pg|�〉, (1)
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where |�〉 is a noninteracting fermionic state that is obtained
by filling N given orbitals labeled by some index γ (so that
|�〉 is an N -electron state):

|�〉 =
N∏

γ=1

φ†
γ |0〉. (2)

In practice, |�〉 can be obtained as an eigenstate (usually the
ground state) of a noninteracting Hamiltonian, containing, for
example, hopping and pairing terms (in the presence of pairing
between up and down electrons, one can always perform
a particle-hole transformation to have a Hamiltonian that
commutes with the particle number, thus defining “orbitals”).
Finally, Pg is the so-called Gutzwiller factor, which depends
upon the variational parameter g:

Pg = exp

(
−g

∑
i

ni,↑ni,↓

)
, (3)

where ni,σ is the electron density per spin σ on the site i.
The role of this term is to reduce the amplitudes of electron
configurations with doubly occupied sites, thus tuning the level
of electron correlation: g = 0 corresponds to noninteracting
particles, while g = ∞ totally projects out configurations with
doubly occupied sites, hence corresponding to the strongest
possible electron-electron interaction. We would like to remind
the reader that, also for fermionic wave functions such as the
one given in Eq. (1), a Monte Carlo sampling is necessary to
evaluate any expectation value for large system sizes. Indeed,
in the presence of any correlation term, such as the Gutzwiller
factor, analytical calculations are not possible in lattices of
generic dimensionality.

In the following, N and L denote the number of electrons
and lattice sites, respectively; n = N/L is the electron density.
By restricting to fully symmetric |�〉, the correlated wave
function (1) may describe metallic or superconducting phases
for generic densities n; insulating phases are possible only
at half-filling n = 1 and in the presence of a full Gutzwiller
projector g = ∞ [13,14]:

P∞ =
∏

i

(1 − ni,↑ni,↓). (4)

This is because the Gutzwiller term only correlates electrons
on the same site: once charge excitations (holon-doublon
couples) are created, the holon and the doublon are free to
move around without any further penalization, thus leading to
nonzero conductivity.

When g = ∞ and n = 1, charge degrees of freedom are
completely frozen (i.e., there is exactly one electron on each
site) and an insulator is obtained. Nevertheless, the fully
projected state

|�〉 = P∞|�〉 (5)

still contains nontrivial spin degrees of freedom, so that it can
be used to study Heisenberg models [15].

A generalization of the Gutzwiller wave function (1) can be
obtained by including density-density correlations at different
sites, and it is given by the Jastrow-Slater state:

|�J 〉 = J |�〉, (6)

where the Jastrow term includes correlations on different sites:

J = exp

⎛
⎝−1

2

∑
i,j

vi,j ninj

⎞
⎠; (7)

here vi,j is a pseudopotential for density fluctuations (the
on-site term vi,i corresponds to the Gutzwiller parameter
g) and ni = ∑

σ ni,σ is the total density on site i. While
long-range density-density correlations are crucial to describe
a pure Mott insulator [16], here we will consider very simple
Jastrow factors including only on-site and nearest-neighbor
terms. In fact, already with this simple form, it is possible to
describe situations in which symmetry-broken phases appear.
Of course, long-range terms would be necessary also when
considering more complicated charge/spin patterns.

The generalization to multiorbital models is also straight-
forward: one should add orbital degrees of freedom in
the noninteracting state |�〉 (i.e., consider a noninteracting
Hamiltonian with more than one orbital per site) and introduce
a Jastrow factor that couples density fluctuations on different
sites and orbitals:

J = exp

⎛
⎝−1

2

∑
i,j,α,β

v
α,β

i,j nα
i n

β

j

⎞
⎠, (8)

where v
α,β

i,j is a pseudopotential for density fluctuations

(vα,α
i,i = g, while v

α,β

i,i with α �= β is the interorbital Gutzwiller
parameter) and nα

i = ∑
σ nα

i,σ is the charge density on the
orbital α at site i.

We will show that different kinds of spontaneous symmetry-
breaking phenomena are possible within Jastrow-Slater wave
functions, i.e., when using Eq. (6): more precisely, even when
both the noninteracting state |�〉 and the Jastrow factor J
preserve all the lattice and spin symmetries, clear signatures
of order can be obtained. For example, in the case of a
discrete symmetry breaking, e.g., charge order, clear evidence
of ergodicity breaking is detected when using single-particle
moves in the Monte Carlo calculations. The use of fully
symmetric wave functions allows us to describe quantum phase
transitions by varying one parameter inside the variational
wave function; for example, charge-density order is obtained in
a system of itinerant electrons for a sufficiently strong nearest-
neighbor Jastrow pseudopotential (e.g., the one-dimensional
lattice with n = 1/2 filling and the triangular lattice with
n = 2/3 filling). These results can be understood thanks to a
simple mapping from quantum averages to a classical problem
of interacting particles. Then, the presence of a quantum
phase transition when changing the variational state is directly
connected to the existence of a classical phase transition in the
related classical model.

In addition, we will also report the presence of antiferro-
magnetic long-range order in spin models, i.e., when using
Eq. (5), similarly to what has been shown by using the LDA
wave function. In this case, although the magnetization is ex-
actly zero for all finite sizes (the quantum state is a spin singlet),
magnetic order can be obtained in two dimensions whenever
a suitable parametrization is considered. Furthermore, we will
show that, within this class of fermionic states, the correct
behavior is obtained in one dimension, namely spontaneous
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breaking of SU(2) symmetry does not occur, in agreement
with the Mermin-Wagner theorem [17] and in contrast to
bosonic states [18]. Instead, in one dimension, fermionic states
may describe both gapless and dimerized (gapped) states, in
agreement with the Lieb-Schultz-Mattis theorem [19].

The paper is organized as follows: In Sec. II, we show the
results for the appearance of charge order for itinerant electrons
in one spatial dimension and in the triangular lattice, as well
as the emergence of orbital order in a two-band model on the
square lattice; we will also see that the emergence of charge
order can be understood by mapping the wave function into
the classical counterpart. In Sec. III, we present the results for
magnetization and dimerization by applying the fully projected
wave function where the classical mapping is no longer
available; we first show that the wave functions reproduce the
correct behaviors in one-dimensional spin models, and then
we examine how magnetic order appears in two-dimensional
spin models. Finally, in Sec. IV we draw our conclusions.

II. CHARGE-DENSITY AND ORBITAL ORDER

A. The classical mapping

Certainly, charge order can be obtained when using a
Jastrow factor or a Slater determinant that breaks translational
invariance [20–22]. However, this is an expected outcome,
which will not be treated here; instead, as discussed above,
we are interested in the more subtle case in which charge (or
orbital) order may be settled in a perfectly symmetry-invariant
variational state.

The variational calculation with the wave function (6)
can be shown to correspond to a classical problem at finite
temperature [23–25]. This correspondence is very useful for
showing that quantum phase transitions are possible within this
class of variational states. To prove the mapping, let us consider
a basis set |x〉 in which particles have definite positions in the
lattice. For all operators θ that are diagonal in this basis, the
quantum average

〈θ〉 = 〈�|θ |�〉
〈�|�〉 (9)

can be written in terms of the classical distribution:

〈θ〉 =
∑

x

P (x)〈x|θ |x〉, (10)

where P (x) is given by

P (x) = |〈x|�〉|2

〈�|�〉 . (11)

Since P (x) � 0, there is a precise correspondence between the
wave function and an effective classical potential Vcl(x):

P (x) ≡ 1

Z e−βclVcl(x), (12)

where Tcl = 1/βcl represents an effective classical tempera-
ture. The explicit form of the potential Vcl(x) depends upon the
choice of the Jastrow factor and the form of the noninteracting
state |�〉:

βclVcl(x) =
∑
i,j

vi,j ni(x)nj (x) − 2 ln det�(x), (13)

where ni(x) is the electron density at site i for the configuration
|x〉, i.e., ni |x〉 = ni(x)|x〉, and �(x) = 〈x|�〉 is the amplitude
of the noninteracting state over the configuration |x〉 [23,24].
The first term of Eq. (13) is a two-body potential, which
describes a classical model of oppositely charged particles
(holons and doublons) mutually interacting through a given
potential. In the presence of the second term in Eq. (13),
Vcl(x) is no longer a two-body potential. However, when
density fluctuations are suppressed (by the Gutzwiller factor),
the quadratic term gives the most relevant contribution, hence
the mapping onto a classical model of interacting particles still
holds with βclVcl(x) 
 ∑

i,j veff
i,j ni(x)nj (x).

In the following, in order to detect charge-density order, we
compute the density-density structure factor (that is a diagonal
operator in the |x〉 basis):

N (q) = 1

L

∑
i,j

〈ninj 〉eiq(ri−rj ). (14)

When order is present with a given periodicity Q, then
N (Q)/L is finite in the thermodynamic limit. Similarly,
orbital order can be detected by considering, for example, the
density-density correlations of the same orbital on different
sites:

Nα(q) = 1

L

∑
i,j

〈
nα

i nα
j

〉
eiq(ri−rj ). (15)

B. Charge-density order in one dimension

Let us start by considering a one-dimensional system at
quarter filling, i.e., n = 1/2. We analyze the properties of the
Jastrow-Slater wave function in which the noninteracting state
is given by filling the lowest-energy levels of free fermions
having ε(k) = −2 cos k:

|�〉 =
∏

k<kF ,σ

c
†
k,σ |0〉, (16)

where kF = π/4 for quarter filling. To have a unique state,
we consider chains with L = 8l + 4 sites, with l integer, and
periodic boundary conditions. In addition, we take a simple
Jastrow term that only contains on-site and nearest-neighbor
pseudopotentials:

J = exp

(
−g

∑
i

ni,↑ni,↓ − v1

∑
i

nini+1

)
, (17)

where we fix g = 10 and vary v1. Both the noninteracting
state |�〉 and the Jastrow term J are clearly invariant under
translation and inversion symmetries. Nevertheless, the cor-
related wave function |�J 〉 may describe two distinct phases
for n = 1/2: for small values of v1, the density is uniform
in the lattice (the quantum state is metallic), while for large
values of v1 there is a 1-0-1-0 density order (corresponding to
a charge-density-wave insulator). We would like to mention
that the variational wave function defined by Eqs. (16)
and (17) is suitable for the extended Hubbard Hamiltonian
that includes both on-site and nearest-neighbor interactions
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FIG. 1. (a) Size scaling of N (Q)/L at Q = π for the one-
dimensional case at quarter filling n = 1/2. The variational wave
function is given by Eqs. (16) and (17) with g = 10 and different
values of v1. (b) Densities of the two sublattices A and B for the
one-dimensional system at quarter filling n = 1/2 as a function of
the Jastrow parameter v1 (with g = 10) for L = 244 sites.

[26–31]:

H = − t
∑
i,σ

c
†
i,σ ci+1,σ + H.c. + U

∑
i

ni,↑ni,↓

+ V
∑

i

nini+1. (18)

The existence of a phase transition when changing v1 can be
understood from the classical mapping. When v1 is large, the
first term on the right-hand side of Eq. (13) dominates and
drives the system into an ordered phase (this is expected from
the classical model with nearest-neighbor interactions at low
enough temperatures); by contrast, when v1 is small, the first
term on the right-hand side of Eq. (13) does not give rise to
charge-density order (i.e., the classical temperature is large).
Notice that by this reasoning, we assume that the contribution
from the Slater determinant, i.e., the second term on the right-
hand side of Eq. (13), is not able to produce any transition, as
expected for the chosen noninteracting part of Eq. (16).

At quarter filling, the density-density structure factor (14)
computed over the correlated wave function shows a peak at
Q = π , which behaves differently for small and large values
of the parameter v1. In Fig. 1(a), we report the size scaling
of N (Q)/L at Q = π for different values of v1. Here, a
drastic change can be seen when varying v1: for v1 � 5 there
is no charge-density order, i.e., N (Q)/L goes to zero in the
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FIG. 2. Monte Carlo evolution of the charge density on one
sublattice for the one-dimensional system and n = 1/2 for L = 244
sites. Three different values of the Jastrow pseudopotential v1 are
shown for the wave function described by Eqs. (16) and (17). v1 = 7.0
(a), v1 = 4.0 (b), and v1 = 2.0 (c).

thermodynamic limit, while for v1 � 5 there is a clear evidence
of order, N (Q)/L being finite. For v1 
 5, considerable size
effects are present, as expected close to a phase transition. The
averaged values of the densities in the two sublattices A and
B, nA (B) = 2/L

∑
i∈A (B) ni , as a function of v1, are reported

in Fig. 1(b).
It is important to notice that a breaking of the ergodicity

(when using single-electron updates in the Monte Carlo
sampling) is manifest when v1 � 5: while for small values
of v1 ergodicity is clearly obtained, for large v1 ergodicity
is broken and the simulation remains trapped into one of
the possible degenerate (global) minima, with specific charge
patterns. In Fig. 2, we report the evolution of the averaged
charge density on one sublattice, as a function of Monte Carlo
updating, for three values of v1. While for v1 = 2 [see Fig. 2(c)]
the charge density is perfectly uniform, with relatively small
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fluctuations around n = 1/2, for v1 = 4 [see Fig. 2(b)] the
evolution starts to have large oscillations between 0 and 1
(here, the two degenerate minima are already developed, but
the barriers between them can be easily overcome); eventually,
for v1 = 7 [see Fig. 2(a)], ergodicity is broken and the charge
density remains stuck in one minimum, since single-electron
moves do not allow the system to tunnel easily to the other
minimum. We mention that the large Gutzwiller factor used in
the calculation prevents the density from being larger than 1
on each site, as is clear from Fig. 2.

C. Charge-density order in the triangular lattice

Charge-density order can be easily obtained also in two
spatial dimensions. As an example, we consider the case of a
triangular lattice with n = 2/3 [20]. We take, similarly to the
one-dimensional case, a Slater part in which the lowest-energy
levels of a free-fermion Hamiltonian are filled, e.g., ε(k) =
−2[cos kx + cos(kx/2 + √

3ky/2) + cos(kx/2 − √
3ky/2)]:

|�〉 =
∏

k<kF ,σ

c
†
k,σ |0〉. (19)

Then, we consider a Jastrow term that contains on-site and
nearest-neighbor terms:

J = exp

⎛
⎝−g

∑
i

ni,↑ni,↓ − v1

∑
〈i,j〉

ninj

⎞
⎠, (20)

where 〈· · · 〉 indicates the nearest-neighbor bonds of the lattice;
both g and v1 are variational parameters that are varied. As
for the one-dimensional case discussed before, the variational
wave function defined by Eqs. (19) and (20) is suitable for
the extended Hubbard model with both on-site U and nearest-
neighbor V interactions. In this case, we can describe three
different phases: the first one, with small g and v1, has uniform
densities (corresponding to a metal), the second one, with small
g and large v1, develops a charge-density order in which a site
with two electrons is surrounded by empty sites [denoted by
2-0-0 order; this notation indicates the number of electrons in
a triangle; see Fig. 3(a)], and the third one, with large g and
small v1, has another kind of charge-density order in which
one empty site is surrounded by singly occupied sites [denoted
by 1−1−0 order; see Fig. 3(b)]. As before, this scenario can
be understood from the classical mapping of Eq. (13) [32].

Let us start by considering g = 0 and varying the nearest-
neighbor parameter v1. In this way, we can have a transition
between a phase with uniform densities and another phase

(a) (b)

FIG. 3. Cartoon picture of the 2-0-0 (a) and 1-1-0 (b) phases that
can be stabilized in the triangular lattice at n = 2/3 filling, when
considering the wave function of Eqs. (19) and (20).
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FIG. 4. (a) Size scaling of the density-density structure factor
N (Q)/L of Eq. (14) at Q = (4π/3,0) for the triangular lattice and
filling n = 2/3. The variational wave function is given by Eqs. (19)
and (20), with g = 0 and different values of v1. (b) Densities of the
three sublattices A, B, and C as a function of the Jastrow parameter
v1, for the same wave function of the upper panel, on a cluster with
L = 324 sites.

with 2-0-0 order. In fact, the size scaling of the density-density
correlation function (14) for Q = (4π/3,0) [or the symmetry-
related one Q = (2π/3,2π/

√
3)] shows clear evidence of

order in the thermodynamic limit for v1 � 0.4; see Fig. 4(a).
Correspondingly, the local densities on the three sublattices
acquire different values when v1 � 0.4; see Fig. 4(b).

A richer scenario appears when the Gutzwiller factor g is
finite. Indeed, the effect of g is to suppress doubly occupied
sites and, therefore, it acts against the 2-0-0 phase, favoring
instead the 1-1-0 order. In Fig. 5, we report the densities on the
three sublattices for the case in which g = 5 and v1 is varied
from 0 to 2.4. The effect of the on-site Jastrow term is clear: on
the one hand, it enlarges the stability of the uniform phase, up
to v1 
 1.2; on the other hand, it creates an intermediate phase
in which two sites have ni ≈ 1 and another one has ni ≈ 0
(the spatial pattern is such that the empty site is surrounded
by occupied sites). Then, for a large enough nearest-neighbor
Jastrow parameter, i.e., v1 � 2, the 2-0-0 state is obtained
again.

D. Orbital order in a two-band model

Let us now turn to a two-band model and show that a simple
choice of the Jastrow factor (8) may give rise to orbital order.
We focus our attention on the two-dimensional square lattice at
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FIG. 5. Densities of the three sublattices A, B, and C for the
triangular lattice at n = 2/3 as a function of the Jastrow parameter
v1 for the variational wave function given by Eqs. (19) and (20) with
g = 5; the cluster has L = 324 sites.

half-filling, n = 2 (i.e., two electrons per site, each site having
two orbitals). The Slater part is constructed from two bands
having different width, e.g., ε1(k) = −2(cos kx + cos ky) and
ε2(k) = −(cos kx + cos ky), by filling the lowest-energy states:

|�〉 =
∏

k<kF ,α,σ

c
†
k,α,σ |0〉, (21)

where α = 1, 2 indicates the two bands.
The Jastrow factor contains both on-site intra- and interor-

bital terms and the nearest-neighbor intraorbital term:

J = exp

⎛
⎝−1

2

∑
i,α,β

gα,βnα
i n

β

i −
∑

〈i,j〉,α
v

α,α
1 nα

i nα
j

⎞
⎠, (22)

where 〈· · · 〉 indicates the nearest-neighbor bonds of the lattice.
In the following, we will fix g1,1 = g2,2 = 2 and g1,2 = g2,1 =
1 and vary v

1,1
1 = v

2,2
1 . The wave function defined by Eqs. (21)

and (22) is suitable to describe the phases of a two-band
Hubbard model with both intraband (U ) and interband (U ′)
interactions for U < U ′ and even for U = U ′ within the
paramagnetic sector [33]:

H = −
∑

α

tα
∑

〈i,j〉,σ
c
†
i,α,σ cj,α,σ + H.c.

+ U
∑
i,α

ni,α,↑ni,α,↓ + U ′ ∑
i

ni,1ni,2. (23)

As a function of v
α,α
1 , the wave function describes a

transition from a state with uniform densities on each orbital
to a state with orbital order, in which the two electrons per
site reside on the same orbital (with opposite spin), two
neighboring sites having different orbitals occupied; see Fig. 6.
This symmetry-broken state can be achieved for a sufficiently
large value of v

α,α
1 . In Fig. 7, we show the size scaling of the

orbital-resolved density-density structure factor of Eq. (15) for
α = 1 and Q = (π,π ). For v

α,α
1 � 0.4, the size scaling clearly

indicates that the wave function has no orbital order, while
for v

α,α
1 � 0.5, Nα(Q)/L is finite in the thermodynamic limit,

implying orbital order.
We finally mention that, as shown in Ref. [33], orbital order

can also be favored by the presence of an on-site intraband

FIG. 6. Cartoon picture of the orbital-ordered phase that can be
stabilized in the square lattice at n = 2 filling, when considering the
wave function of Eqs. (21) and (22). The two orbitals are shown as
different layers.

pairing; however, here we preferred to consider the simple
Slater determinant of Eq. (21) and demonstrate that orbital
order can be achieved by the Jastrow term (22) only.

III. MAGNETIC AND DIMER ORDERING

A. General concepts and magnetic order

Let us first focus on the possibility of having magnetic
long-range order in the fully projected wave function (5).
Of course, magnetic order is certainly present whenever the
noninteracting state |�〉 is obtained from an uncorrelated
Hamiltonian that explicitly contains a magnetic order parame-
ter, thus breaking the spin SU(2) symmetry [34–36]. This is a
trivial case that will not be considered here. Instead, we focus
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FIG. 7. Size scaling of the density-density structure factor
Nα(Q)/L of Eq. (15) with α = 1 for the two-band model on the
square lattice at filling n = 2. The variational wave function is given
by Eqs. (21) and (22), with g1,1 = g2,2 = 2 and g1,2 = g2,1 = 1. The
values of v

α,α
1 = 0.5, 0.6, and 0.8 are shown in (a), while v

α,α
1 = 0.2

and 0.4 are shown in (b).
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on the more interesting case in which |�〉 has no magnetic
order.

Indeed, for certain choices of |�〉, the Gutzwiller projector
of Eq. (4) may generate long-range order. The fully projected
wave function may be written in term of a linear superposition
of singlet coverings of the lattice [9], the difference with
respect to the bosonic LDA state residing upon the actual
values of the amplitudes of various singlet coverings. Since, in
general, there is not a one-to-one relation between bosonic and
fermionic representations of the RVB states [36], it is not a
priori obvious that fermionic states may describe magnetically
ordered states, as the LDA wave function does.

To have a transparent RVB representation, we use the
following parametrization of the noninteracting state [37,38]:

|�〉 = exp

⎛
⎝∑

i,j

fi,j c
†
i,↑c

†
j,↓

⎞
⎠|0〉, (24)

which can be obtained as the ground state of a BCS Hamilto-
nian, containing both pairing and hopping (without performing
particle-hole transformations). Here, c†i,σ creates an electron on
site i with spin σ . Then, since Eq. (24) does not conserve the
number of particles, the correlated state |�〉 of Eq. (5) must
involve a further projection PN on the subspace with N = L

particles.
In Eq. (24), fi,j is the pair amplitude, which is taken to be

symmetric to form singlets in the (i,j ) bond:

fi,j = fj,i ; (25)

in this way, |�〉 is a total singlet and does not break spin SU(2)
symmetry. Moreover, we consider pairing functions that have
all the lattice symmetries. Therefore, as for the LDA wave
function, the pairing amplitude f (r) only depends upon the
bond length r [bonds with the same r may have different f (r)
whenever they are not related by point-group symmetries]. The
Fourier transform of f (r) is denoted by f (k).

In contrast to charge or orbital order, which are mainly
driven by the Jastrow factor (7), the appearance of magnetic
order cannot be easily explained through a classical mapping,
e.g., Eqs. (12) and (13). Instead, it is mainly due to two
circumstances: (i) the presence of the full Gutzwiller projector
that enforces no double occupation, and (ii) the presence of
long-range singlets that create a strong entanglement among
spins at very large distances.

Here, we consider one-dimensional chains and the two-
dimensional square lattice. Similarly to what has been demon-
strated within the bosonic representation of the RVB state,
we expect that magnetic order may appear whenever the fully
projected state has the Marshall signs and the pairing amplitude
decays sufficiently slowly, i.e., f (r) ∝ 1/rα with a small α.

Explicitly, we consider a specific parametrization of the
pairing amplitude:

f (k) = �(k)

ε(k) +
√

ε2(k) + �2(k)
, (26)

which results from considering |�〉 as the ground state of the
BCS Hamiltonian:

HBCS =
∑
k,σ

ε(k)c†k,σ ck,σ +
∑

k

�(k)c†k,↑c
†
−k,↓ + H.c., (27)

where c
†
k,σ (ck,σ ) creates (destroys) an electron with momen-

tum k and spin σ (along the z axis); �(k) = �(−k) is the
singlet pairing amplitude. The BCS spectrum is given by

E(k) = ±
√

ε2(k) + �2(k). (28)

A gapless (gapped) BCS spectrum E(k) corresponds to a
power-law (exponential) decay of the pairing function f (r).
Since for the bosonic LDA wave function the existence of
magnetic order is related to a sufficiently slow decay of the
pairing function, we expect that a gapped BCS spectrum does
not give rise to magnetic order.

To fulfill the Marshall sign rule, it is sufficient to take [36]

ε(k + Q) = −ε(k), (29)

�(k + Q) = −�(k), (30)

with Q = π in one dimension and Q = (π,π ) for the square
lattice. Given the definition of the pairing function (26), we
have

f (k + Q) = − 1

f (k)
. (31)

In the following, we will investigate the possibility of
having long-range magnetic order with the constraint of
Eq. (31) by varying the exponent α of the power-law decay
f (r) ∝ 1/rα . Magnetic order can be detected by evaluating
the spin-spin structure factor:

S(q) = 1

L

∑
i,j

〈Si · Sj 〉eiq(ri−rj ); (32)

magnetic order with a given pitch vector Q is present
whenever the moment (squared) m2 = S(Q)/L is finite in the
thermodynamic limit.

B. RVB wave functions in one dimension

In one spatial dimension (and short-range interactions),
antiferromagnetic order is forbidden by the Mermin-Wagner
theorem both in the ground state and at finite temperature [17].
Nevertheless, variational wave functions may possess long-
range order, as a matter of principle. This is, e.g., the case for
bosonic RVB states, as shown in Ref. [18].

In the following, we consider the parametrization (26) with

ε(k) = −2 cos k, (33)

�(k) =
{+|ε(k)|p for ε(k) < 0,

−|ε(k)|p for ε(k) > 0,
(34)

which allows us to easily control the exponent of the power-law
decay of f (r). This ansatz obeys the Marshall sign rule, as
clearly seen from Eqs. (29) and (30). We emphasize that this
parametrization contains the case of a free Fermi sea (where
all states below kF are occupied while the others are empty)
that can be obtained by taking p = 1:

f (k) =
{

1 for |k| < kF ,

0 for |k| > kF .
(35)

Within the parametrization given by Eqs. (33) and (34), we
have that the long-range behavior for f (r) is given by f (r) ∝
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FIG. 8. Results for the wave function described by Eqs. (33) and (34) for the one-dimensional lattice. (a) Real-space behavior of the
absolute value of the pairing amplitude f (r) as a function of the distance r (for opposite sublattices). (b) Size scaling of the spin-spin structure
factor S(Q)/L for Q = π ; the exact (at leading order) size scaling for the Heisenberg model is also reported for comparison [39]. (c) Size
scaling of the energy per site E/L; the exact (up to order 1/L2) size scaling for the Heisenberg model is also reported for comparison [41]. (d)
Energy per site E/L vs the parameter p of Eq. (34) for L = 102; the exact value of the Heisenberg model for the thermodynamic limit is also
reported for comparison.

1/rα , with α = 1 for p � 1, α = 2 − p for 1 � p � 2, and
α = 0 for p � 2 [the latter case implying that f (r) approaches
a constant for large r]. In Fig. 8(a), we report the results of
the pairing amplitude for different values of p. The spin-spin
structure factor shows a peak at Q = π ; however, in all cases,
the wave function does not possess magnetic long-range order,
in agreement with the Mermin-Wagner theorem, since m

vanishes in the thermodynamic limit, as shown in Fig. 8(b).
Moreover, also the leading-order corrections in the system size
are correct for any value of α, i.e., S(Q) ∝ (ln cL/2)3/2, where
c = 25.5 [39].

In the following, we would like to discuss the accuracy of
this class of wave functions for the unfrustrated Heisenberg
model:

H = J
∑

i

Si · Si+1. (36)

It is well known [40] that already the fully projected Fermi
sea (35) represents a very good variational ansatz for this
model, with an accuracy on the ground-state energy of about
0.2% [i.e., E/J = −0.44212(1) compared with the exact value
Eex/J = 1/4 − ln 2 = −0.44315]. Within this class of states,
we can strongly improve the accuracy of the fully projected
Fermi sea: the best energies are obtained for p = 0 [E/J =
−0.44290(1)] and p = 2 [E/J = −0.44289(1)]; see Fig. 8(d).

In all cases, the finite-size scaling of the energy per site shows
the correct behavior in the leading-order corrections (up to
order 1/L2) [41]; see Fig. 8(c).

C. Dimerization

To conclude the one-dimensional case, we consider the
case of dimerization. The possible emergence of valence-
bond solids has been discussed in depth for one- and two-
dimensional spin models [42]. Few works have used fermionic
wave functions that explicitly break the translational symmetry
to assess the possible emergence of dimer order in various
lattices [43–45]. However, here we are interested in the case in
which the variational wave function preserves all symmetries,
similarly to what has been done in bosonic RVB sates [18].
Indeed, dimer order is present within fermionic RVB wave
functions that have short-range pairing amplitudes, as is typical
for a gapped BCS spectrum:

ε(k) = −2 cos k, (37)

�(k) = �0. (38)

A gapped BCS spectrum can be obtained for �0 > 0. Simi-
larly, one could consider �(k) = �2 cos(2k) (not shown here).
Both �0 and �2 are variational parameters. Notice that, in both
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FIG. 9. Dimer-dimer correlations of Eq. (39) for the one-
dimensional wave function obtained with Eqs. (37) and (38). The
gapless case has �0 = 0, while the gapped one has �0 = 1.

cases, the Marshall sign rule does not apply, as expected from
a generic dimerized phase.

For the dimer-dimer correlation function, one can consider
the simplified form that includes only z-z correlations:

χ (r) = 1

L

∑
i

〈
Sz

i S
z
i+1S

z
i+rS

z
i+1+r

〉
. (39)

The order parameter for long-ranged dimerization can then be
defined as

D2
d = 9 lim

r→∞ |2 χ (r) − χ (r + 1) − χ (r − 1)|, (40)

where the factor 9 is introduced in order to take into account
the three spin components.

In Fig. 9, we show the dimer-dimer correlations χ (r)
for two cases with �0 = 0 (gapless) and �0 = 1 (gapped).
For the former case, χ (r) → const for large distances (in
the definition of the dimer-dimer correlation, we do not
subtract the disconnected terms), indicating that the wave
function does not possess any dimer order. By contrast, for
the latter case, χ (r) oscillates between two different values,
which is the expected behavior for a dimerized system. We
would like to mention that, in the presence of a gapped
BCS spectrum, both periodic and antiperiodic conditions
can be chosen in the BCS Hamiltonian (27), still having a
unique ground state. The results shown in Fig. 9 have been
obtained with periodic boundary conditions, but a similar
outcome can also be obtained with antiperiodic ones. These
two states have momentum k = 0 and k = π and are the ones
that become degenerate in the thermodynamic limit [36,46].
The size scaling of the dimer order parameter (40) confirms
the possibility of describing a finite dimerization within the
class of translationally invariant (gapped) states of Eqs. (37)
and (38), as shown in Fig. 10.

D. RVB wave functions in the two-dimensional square lattice

We now discuss the possible emergence of magnetic order
in the two-dimensional square lattice. To reduce the finite-size
effects, we consider 45◦ degree tilted square lattices, with
L = 2l2 sites, l being an odd integer. Similarly to the one-
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FIG. 10. Size scaling of the square of the dimer order parameter
of Eq. (40) for the gapless (�0 = 0) and gapped (�0 = 1) cases.

dimensional case, we adopt the following parametrization for
the pairing amplitude of Eq. (26):

ε(k) = −2(cos kx + cos ky), (41)

�(k) =
{+|ε(k)|p for ε(k) < 0,

−|ε(k)|p for ε(k) > 0.
(42)

As before, the projected Fermi sea is recovered with p = 1.
The dominant pairing amplitudes are aligned, in real space,
along the diagonals, scaling as f (r) ∝ 1/rα , with α = 2 for
p � 1, α = 4 − 2p for 1 � p � 2, and α = 0 for p � 2.
As for the LDA wave function, antiferromagnetic order is
expected whenever the pairing function f (r) decays slowly
with the distance. Within our parametrization, α � 2, which
fulfills this requirement. In Fig. 11(a), we report the pairing
function along the diagonal direction for a few values of p.
We find that S(q) has a peak at Q = (π,π ). As was pointed
out in the variational Monte Carlo study of Ref. [47], the
projected Fermi sea on the square lattice possesses long-range
magnetic order. However, in Ref. [47] the actual values of the
spin-spin correlations must be corrected by a factor 3/4, given
the definition of the isotropic spin-spin correlations. This fact
implies that the correct value m ≈ 0.161 is slightly smaller
than the one reported in Ref. [47]. Our data are in perfect
agreement with m ≈ 0.161, as shown in Fig. 11(b) for the
p = 1 case.

Remarkably, long-range magnetic order is obtained for
all values of p within the parametrization of Eqs. (41)
and (42); see Fig. 11(b). Moreover, the actual values of
the finite-size magnetization, as well as its thermodynamic
extrapolation, are similar for small and large values of p:
for example, we obtain the same values (within a few error
bars) for p = 0 and 2. In these cases, the thermodynamic
extrapolation gives m ≈ 0.224, substantially above the value
obtained with p = 1, but still below the exact value of the
unfrustrated Heisenberg model for which m ≈ 0.307 [48–50].
Nevertheless, the fully projected wave function that we have
considered here represents a clear example in which it is
possible to realize a symmetry breaking within a state that
preserves all the symmetries.

Furthermore, in the two-dimensional case the size effects
of the energy per site are similar to those of two-dimensional
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FIG. 11. The same as in Fig. 8 but for the two-dimensional case. The variational wave function is described by Eqs. (41) and (42). In (a)
|f (r)| is shown along the diagonal direction of the square lattice.

ordered antiferromagnets, i.e., with 1/L3/2 corrections [51,52]
[Fig. 11(c)]. However, in this case, the accuracy on the energy
is much worse compared to the one-dimensional case, being
16% for the best case [48,49]; see Fig. 11(d).

We conclude this part on the two-dimensional lattice by
mentioning that, while fully symmetric wave functions may
easily describe situations with collinear magnetic order (we
showed the case of Néel order), it is much less trivial to
obtain noncollinear magnetic states. Usually, noncollinear
order appears in frustrated lattices, which break the Marshall
sign rule. While these states may be easily captured by
explicitly breaking the symmetry in the variational wave
function [53,54], we could not succeed at reproducing them
within a fully symmetric state.

IV. CONCLUSIONS

In this paper, we have shown that Jastrow-Slater wave
functions, constructed by applying a Jastrow factor to non-
interacting fermionic states, represent a very flexible tool
to describe different phases of strongly correlated systems.
In particular, it is possible to capture phases with broken
symmetries even when these variational states are symmetry-
invariant. We reported two classes of examples. In the first
one, which applies to itinerant systems (i.e., Hubbard-like
models), we showed that charge or orbital order may naturally
emerge from a short-range Jastrow factor. The existence of a
phase transition and the stabilization of a symmetry-broken
phase can be related to a simple mapping between quantum

averages and an effective classical partition function, where the
strength of the Jastrow factor is directly related to an effective
classical temperature. In this case, the configurations that are
generated along the Monte Carlo simulation face a breaking of
ergodicity, when the Jastrow pseudopotential is strong enough.
This is exactly the same phenomenology of classical systems
that undergo phase transitions at low temperatures (e.g., the
two-dimensional Ising model).

In the second class, which applies to spin systems (i.e.,
Heisenberg-like models), we have illustrated that antifer-
romagnetism in two dimensions and dimerization in one
dimension may be generated in fully projected wave functions.
In this case, there is no classical mapping to guide physical
intuition. The emergence of a finite magnetization in two
dimensions is due to the presence of the full Gutzwiller
projector and of long-range singlets that create a sizable
entanglement in the variational wave function, similarly to
what happens within the bosonic LDA wave function. In
contrast to the previous example on charge/orbital order, in the
magnetic order case there is no broken ergodicity in the Monte
Carlo single-particle moves (e.g., all the spin components
have exactly zero expectation value). This may be ascribed
to the fact that the magnetic order is Heisenberg-like while
the charge order is Ising-like; the former can easily overcome
the potential barrier while the latter cannot. Nevertheless, as
for the LDA wave function, a finite magnetization is achieved
when singlets are correlated at long distances. We would like to
conclude by emphasizing the fact that the presence of the full
Gutzwiller projector of Eq. (4) is necessary to obtain magnetic

125127-10



SPONTANEOUS SYMMETRY BREAKING IN CORRELATED . . . PHYSICAL REVIEW B 93, 125127 (2016)

order; otherwise, the soft Gutzwiller term (3) can only change
spin-spin correlations at short distances, implying a vanishing
magnetization in the thermodynamic limit.
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