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Chiral spin liquid from magnetic Wannier states
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We present a mapping of a two-dimensional system of interacting bosons in a strong perpendicular magnetic
field to an equivalent system of interacting bosons on the square lattice in the absence of the field. The mapping
utilizes a magnetic Bloch and the corresponding magnetic Wannier single-particle basis in the lowest Landau
level. By construction, the ground states of the resulting model of interacting bosons on the square lattice are
gapped fractionalized liquids or gapless Bose metal states with broken time-reversal symmetry at specific rational
filling fractions.
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I. INTRODUCTION

Following the remarkable discovery of topological in-
sulators (TI) [1,2], electronic structure topology has been
understood to be a previously largely overlooked, but essential
ingredient in our understanding of the phases of condensed
matter [3]. One of the reasons nontrivial electronic structure
topology is of significant importance is that it is a purely
quantum-mechanical phenomenon, with no classical analogs,
yet, in many cases, has observable manifestations on macro-
scopic scales. This makes such phenomena not only interesting
from the purely scientific viewpoint, but also potentially useful
technologically.

The quantum mechanical nature of the electrons in
solids may also manifest on macroscopic scales through the
electron-electron interactions, well-known examples being
the phenomena of magnetism and superconductivity. Perhaps
particularly remarkable is the fractional quantum Hall effect
(FQHE), where electrons effectively fractionalize and the low-
energy quasiparticles are characterized by fractional quantum
numbers and nonfermionic statistics. This amazing behavior is
made possible by the interplay of the strong electron-electron
interactions (kinetic energy being completely quenched by the
magnetic field), and the nontrivial topology of the individual
Landau levels.

An important question is whether such phenomena are
unique to the system of two-dimensional electrons in a
strong perpendicular magnetic field, or they are more general
and may be found in other systems where both interactions
and nontrivial electronic structure topology are present. This
question was first raised in the seminal paper of Kalmeyer
and Laughlin [4], who pointed out strong similarities between
the physics of FQHE and the resonating valence bond
theory [5] of spin-liquid states in Mott insulators [6]. The
interest in this issue was reinvigorated recently, after the
discovery of TI, which demonstrated that nontrivial electronic
structure topology is quite common among heavy-element
compounds with strong spin-orbit interactions [7]. This
gives one some hope that analogs of FQHE may be found
in crystalline materials with nontrivial electronic structure
topology in the absence of an external magnetic field (such
a hypothetical material may be called a fractional Chern
insulator).

There has by now been a significant amount of work on
fractional Chern insulators, see Refs. [8–29] for an incomplete
list. The purpose of this paper is to derive, somewhat in the
spirit of the Kalmeyer and Laughlin paper [4], a mapping
between a model of interacting bosons in the lowest Landau
level (LLL), and a lattice model of bosons in the absence
of an external magnetic field (but with broken time-reversal
symmetry), with the lattice filling identical to the LLL filling
factor. By construction, the ground states of this lattice model
are equivalent to the ground states of interacting bosons in the
LLL, i.e., may be fractionalized liquids or Bose metals [30,31]
with broken time-reversal symmetry at specific rational filling
factors. While most of the calculations, presented below, may
be carried out for a model of interacting electrons in the LLL
just as well, we choose interacting bosons, having in mind
potential realizations in magnetic systems [6], or cold atoms
in optical lattices [32]. Some work along these lines, but valid
only at high boson filling factors, has already been done by
one of us [33]. In this paper, we present a more complete
analysis, containing points related to the LLL topology,
overlooked in Ref. [33], but crucially important at low
boson filling factors, at which fractionalized liquid states are
realized.

The rest of the paper is organized as follows. In Sec. II, we
introduce our model of interacting bosons in two dimensions
(2D) in the presence of a strong perpendicular magnetic field,
such that the LLL projection may be used. We introduce a
magnetic Bloch and magnetic Wannier single particle basis in
the LLL, following the procedure, first described by Rashba
et al. [34]. The advantage of this particular realization of
the magnetic Wannier states is that they have the fastest
possible decay rate for such states, 1/r2, in all directions, and
have the full symmetry of the Bravais lattice [35]. In Sec. III,
we derive a representation of the density operator in the
magnetic Bloch basis and point out some of its most important
properties. Focusing on long-wavelength density modes, we
perform a gradient expansion of the density operator and derive
a simplified expression, valid in the long-wavelength limit. In
Sec. IV, using the results obtained in the previous sections,
we rewrite the Hamiltonian of interacting bosons in the LLL
in the magnetic Wannier basis, using the long-wavelength
expressions for the density operators. We show that in this
long-wavelength limit the Hamiltonian has a very simple form,
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consisting only of a few distinct (long-range) terms. This
provides a mapping between the Hamiltonian of interacting
bosons in the LLL and a lattice boson Hamiltonian, with no
explicitly present external magnetic field (broken time-reversal
symmetry is still explicit, however, since some of the terms in
the Hamiltonian are complex). We conclude in Sec. V with a
discussion of our results and a brief summary.

II. MAGNETIC BLOCH AND MAGNETIC WANNIER
BASES IN THE LLL

We start from a model of bosons of charge −e, interacting
via some two-body interaction potential in 2D (to be specified
in more detail below), in the presence of a perpendicular
magnetic field B = Bẑ. We will assume that the magnetic
field is sufficiently strong, such that only states in the LLL are
important.

We will use the LLL basis of magnetic Wannier states,
first introduced in Ref. [34]. The advantage of this particular
realization of the magnetic Wannier states is that they have
the fastest decay rate at long distances, compatible with the
nontrivial LLL topology, which is 1/r2 [35]. They also are
highly symmetric and allow, as will be demonstrated below,
for the construction of Wannier Hamiltonians with the full
symmetry of any 2D Bravais lattice.

To construct this basis, we adopt the symmetric gauge A =
1
2 B × r, and start from the zero-angular-momentum symmetric
gauge orbital in the LLL

c0(r) = 1√
2π�2

e
− r2

4�2 , (1)

where � = √
c/eB is the magnetic length and will use the � =

1 units throughout. We then construct an overcomplete basis
of the LLL orbitals by translating the c0(r) orbital, localized
at the origin, to sites of any 2D Bravais lattice with unit cell
area 2π�2. We will focus on the simplest case of the square
lattice henceforth, as the latest geometry is unimportant here,
see discussion of this point below. We obtain

cm(r) = Tmxax
Tmyay

c0(r)

= (−1)mxmy

√
2π�2

e
− (r−rm)2

4�2 + i

2�2 ẑ·(r×rm)
. (2)

Here,

TR = e−iR·(p− e
c

A), (3)

is the magnetic translation operator in the symmetric gauge,
ax,y = ax̂,aŷ are the primitive translation vectors of the square
lattice with the lattice constant a =

√
2π�2, and m = (mx,my)

is a vector with integer components, labeling the lattice
sites.

The set of functions cm(r) is overcomplete by ex-
actly one state, which is a consequence of the Perelomov
identity [36] ∑

m

(−1)mx+my cm(r) = 0. (4)

This property plays an important role in what follows.

FIG. 1. Plot of |�k(r)|2 for k = 0. In general |�k(r)|2 has the
form of a square Abrikosov vortex lattice, shifted with respect to the
lattice, shown in the figure, by the vector �2ẑ × k.

The magnetic Bloch states may now be constructed as linear
combinations of the LLL orbitals cm(r) as

�k(r) = 1√
Nν(k)

∑
m

cm(r)eik·rm

=
√

2

a2Nν(k)
e
− π

2a2 r2

e
− a2

2π
[ky+ π

a2 (x−iy)]2

× θ3

(
k+a

2
,e−π

)
θ3

(
k−a

2
− iπ

a
(x − iy),e−π

)
, (5)

where N = LxLy/2π�2 is the number of the magnetic flux
quanta, contained in the sample area LxLy,θ3(z,q) are Jacobi
theta functions and ν(k) is needed to normalize the Bloch
function to unity in the sample volume. Explicitly, the
normalization factor is given by

ν(k) =
∑

m

(−1)mxmy e
− r2

m
4�2 eik·rm

=
√

2e− k2
y a2

2π θ3

(
k+a

2
,e−π

)
θ3

(
k−a

2
,e−π

)
. (6)

The probability density, corresponding to a magnetic Bloch
state, |�k(r)|2, has the form of a square Abrikosov vortex
lattice, as shown in Fig. 1.

The function ν(k) is non-negative everywhere in the
first Brillouin zone (BZ). As immediately follows from the
Perelomov identity, Eq. (4), ν(k) vanishes at the BZ corner
k0 = (π/a,π/a),ν(k0) = 0. Near k0,ν(k) behaves as

ν(k0 + k) ≈ γ

2
k2a2, (7)

where

γ = − 1

2a

∑
m

(−1)mx+my cm(0)r2
m, (8)

is a positive constant of order unity. We will use the above
results extensively later.
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The quantum geometry of the magnetic Bloch states,
defined by Eq. (5), turns out to be closely connected to
the properties of the function ν(k). Defining a “periodic
part” of the Bloch function in the standard way as (it is
periodic, but with respect to the magnetic translations, not
ordinary ones) uk(r) = e−ik·r�k(r), and evaluating the Berry
connection A(k) = −i〈uk|∇k|uk〉, we obtain

A(k) = 1
2 (ẑ × ∇k) ln[ν(k)]. (9)

This may be particularly easily evaluated near the BZ corners.
In this case, using Eq. (7), we obtain

A(k0 + k) ≈ ẑ × k
k2

. (10)

This expression is singular when k → 0, which expresses
the impossibility of choosing a smooth gauge for the Bloch
functions in the LLL, due to the nonzero Chern number, to be
calculated below. The BZ corner is where a “Dirac string” must
enter the first BZ, to ensure that the circulation of the Berry
connection around the BZ boundary is equal to 2π . Evaluating
the z component of the Berry curvature, we obtain

�z(k) = ∇k × A(k) = 1

2
∇2

k ln[ν(k)] = − a2

2π
, (11)

which follows immediately from Eq. (6). The integral of �z(k)
over the BZ then gives the nontrivial Chern number of the LLL,
as it should

C = 1

2π

∫ π/a

−π/a

dkxdky�z(k) = −1. (12)

This result may also be obtained using the expression Eq. (10)
for the Berry connection near the BZ corners. If we evaluate
the circulation of the Berry connection around the firs BZ
boundary, it is clear that, due to the periodicity of the function
ν(k) in the first BZ, only the singular points at the BZ corners
will actually contribute to the circulation, see Fig. 2. Using
Eq. (10), one obtains∮

∂BZ
A(k) · dk = −2π, (13)

which is equivalent to Eq. (12).

FIG. 2. . First Brillouin zone with corner patches shown by
shaded circles of radius 1/ξ . Circulation of the Berry connection
vector around the BZ boundary, excluding the corners, as shown by
arrows, gives the Chern number C = −1.

The magnetic Wannier states are related to the Bloch states
in the standard way:

�m(r) = 1√
N

∑
k

�k(r)e−ik·rm . (14)

It is straightforward to show [34] that the divergence of the
normalization factor of the Bloch wave function at the BZ
corner,

1√
ν(k0 + k)

∼ 1

k
, (15)

leads to a power-law 1/r2 tail in the long-distance decay of the
Wannier states �m(r). Nonetheless, the functions �m(r) form
a complete orthonormal set of states, since the Bloch function
�k0 (r) is still well-defined, the singularity, in the form of a
momentum-space vortex, only existing in its phase:

�k0+k(r) = ieiφk

√
2Nγ

∑
m

(−1)mx+my (mx − imy)cm(r), (16)

where k → 0 and φk is the azimuthal angle of the vector k. This
phase singularity is again a consequence of the Dirac string,
as in Eq. (10). Since the functions �m(r) form a complete
orthonormal set of states, the question of the LLL Hamiltonian
in the magnetic Wannier basis is also well-defined.

III. DENSITY OPERATOR IN THE MAGNETIC BLOCH
AND WANNIER BASES

In this section, we will construct the density operator in the
Bloch and Wannier bases, introduced in the previous section.
As is well-known, the peculiar algebra (Girvin-MacDonald-
Platzman, or GMP algebra) [37] of the LLL-projected density
operator plays a crucial role in the appearance of the fractional
quantum Hall liquid states in the LLL. It is thus important
to understand how this algebra is realized when the density
operator is written in the magnetic Bloch and Wannier
bases.

Evaluating the Fourier transform of the LLL-projected
density operator, one obtains


(q) =
∫

d2r�†(r)� (r)e−iq·r

= e− q2a2

4π

∑
k

ν
(
k + q

2 − i
2 ẑ × q

)
√

ν(k + q)ν(k)
b
†
kbk+q. (17)

This expression may be simplified further either using Jacobi
theta function identities or invoking properties of the Bloch
functions �k(r). We will take the second route as it is more
transparent.

The property of the Bloch functions we will use is that
they are fully determined, up to a k-dependent phase factor,
by their zeros, which form a square Abrikosov vortex lattice
with the lattice constant a, as shown in Fig. 1. Mathematically,
this statement may be expressed in the form of the following
relation [33]:

�k+q(r) = eiγ (k+q,k)e
i
2 q·r�k(r − �2ẑ × q), (18)
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where eiq·r/2 is an Aharonov-Bohm phase factor and

eiγ (k+q,k) =
∫

d2r�k+q(r)�∗
k(r − �2ẑ × q)e− i

2 q·r

= e− q2a2

8π

ν
(
k + q

2 − i
2 ẑ × q

)
√

ν(k + q)ν(k)
. (19)

This immediately gives

γ (k + q,k) = Im ln ν

(
k + q

2
− i

2
ẑ × q

)
, (20)

or, equivalently

ν
(
k + q

2 − i
2 ẑ × q

)
√

ν(k + q)ν(k)
= e

q2a2

8π eiIm ln ν(k+ q
2 − i

2 ẑ×q). (21)

The physical meaning of the phase γ (k + q,k) is the
momentum-space Berry phase, accumulated upon adiabatic
evolution of the Bloch state from k to k + q (strictly speaking,
a path in the first BZ needs to be specified for this identi-
fication to be precise, but this will not be necessary for our
purposes).

Thus we finally obtain the following expression for the
density operator


(q) = e− q2a2

8π

∑
k

eiγ (k+q,k)b
†
kbk+q ≡ e− q2a2

8π 
̄(q). (22)

Using Eqs. (11) and (18), it is straightforward to show that the
density operators 
̄(q) satisfy the GMP algebra

[
̄(q),
̄(q′)] = −2i sin

[
a2

4π
ẑ · (q × q′)

]

̄(q + q′), (23)

as they should.
To make further progress, we will assume that q a may

be taken to be small, i.e., only the long-wavelength density
modes are of interest to us. This might, perhaps, be justified
using renormalization-group-type arguments, although it is
not easy in the present case, as we are interested in gapped
fractionalized liquid phases with short correlation length. We
will thus take a more simple-minded approach here and assume
the interparticle interaction potential has a long, but finite,
range ξ � a. Contribution of the density modes with q > 1/ξ

is then suppressed naturally, without renormalization. This
also gives us a natural small parameter a/ξ , which we will use
to control our theory. Extensive earlier studies of the FQHE in
finite-width quantum well systems [38] indicate that ξ may be
safely taken to be as long as ten magnetic lengths.

Taking q a � 1, the Berry phase given by Eq. (20) is an
analytic function of q everywhere, except in a circular patch
of radius 1/ξ � 1/a around the BZ corner, see Fig. 2. This is
again a consequence of the Dirac string, entering the BZ at the
corner. Let us analyze the behavior of γ (k + q,k) near the BZ
corner k = k0 in detail. Using Eq. (7), one obtains

Im ln ν

(
k0 + k + q

2
− i

2
ẑ × q

)
≈ atan

(ẑ × k) · q
k2 + k · q

. (24)

The meaning of Eq. (24) is simply the azimuthal angle between
the directions of the vector k + q and vector k. This may be
viewed as a direct consequence of Eq. (16). Outside of the BZ

corner patch, where q < k, this gives

Im ln ν

(
k0 + k + q

2
− i

2
ẑ × q

)

≈ ẑ × k
k2

· q ≈ A(k0 + k) · q, (25)

The above discussion makes it clear that, in general, 
̄(q)
is a nonanalytic function of q in the vicinity of q = 0 and
thus may not be expanded in Taylor series with respect to q.
However, as will be seen below, the nonanalyticity appears
explicitly only when one goes beyond the first order in q, or,
in other words, ∇
̄(q → 0) is finite, even though all the higher
gradients are not. Thus, the gradient expansion of 
̄(q) does
exist, if it is restricted to terms of up to first order in qa, or
a/ξ . Expanding to only this order, we thus obtain


̄(q) ≈
∑

k

eiA(k)·qb†kbk+q ≈
∑

k

[1 + iA(k) · q]b†kbk+q.

(26)
This is an expression for the LLL-projected density operator
to leading nontrivial order in the small parameter a/ξ .

IV. LLL HAMILTONIAN IN THE MAGNETIC WANNIER
BASIS

We now rewrite Eq. (26) in the magnetic Wannier basis
using

b
†
k = 1√

N

∑
m

b†meik·rm . (27)

One obtains


̄(q) =
∑

m

e−iq·rmb†mbm

+ i

N

∑
mm′

∑
k

A(k) · qeik·(rm−rm′ )e−iq·rm′ b†mbm′ . (28)

Even though the Berry connection A(k) is singular in the limit
k → k0 due to the presence of the Dirac string, the integral over
k in Eq. (28) still converges (but divergent terms will appear if
expansion to higher orders in q is attempted). However, due to
the divergence of the Berry connection, the main contribution
to the integral over k at long distances, i.e. when |rm − rm′ | �
a, comes from the vicinity of the BZ corner. This also makes
sense physically since, as discussed at the end of Sec. II, it is
the contribution of vicinity of the BZ corner that leads to the
1/r2 tail of the Wannier function �m(r). In this case, A(k)
may be approximated by Eq. (10) and the integral over k in
Eq. (28) is then easily evaluated analytically. We obtain


̄(q) =
∑

m

e−iq·rmb†mbm − a2

2π

∑
mm′

q · ẑ × (rm − rm′ )

(rm − rm′ )2

× eik0·(rm−rm′ )e−iq·rm′ b†mbm′ . (29)

The oscillating phase factor eik0·(rm−rm′ ) may be eliminated by
a gauge transformation of the boson creation and annihilation
operators

bme−ik0·rm → bm, (30)

and we will ignore this factor henceforth.
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The interacting boson Hamiltonian, projected to the LLL,
is given by

H = 1

2LxLy

∑
q

U (q)e− q2a2

4π 
̄(q)
̄(−q), (31)

where U (q) is the Fourier transform of the interparticle
interaction potential. In accordance with the discussion above,
we take U (q) to be negligible when q > 1/ξ and equal to a
constant U (q) = Uξ 2 when q < 1/ξ , where U has dimensions
of energy. In this case, the integral over q in Eq. (31) is easily
done analytically. Restricting ourselves to only the terms of
zeroth and first order in the small parameter a/ξ , we obtain
H = H0 + H1, where

H0 = U0

∑
mn

J1(|rm − rn|/ξ )

|rm − rn|/ξ b†mbmb†nbn, (32)

and

H1 = i
aU1

ξ

∑
mm′n

ẑ · a ξ (rm − rm′ ) × (rm′ − rn)

|rm′ − rn|2|rm − rm′ |2

× J2(|rm′ − rn|/ξ )b†mbm′b
†
nbn, (33)

where J1,2 are Bessel functions of the corresponding order,
U0 = U/4π , and U1 = U/4π2. Equations (32) and (33)
constitute the main result of our paper.

It may be useful, especially for possible future numerical
studies of this model, to extend it by introducing an ordinary
kinetic energy term (hopping) for the bosons. Physically, this
may be achieved by adding an external potential, with exactly
the same periodicity as the square lattice, formed by the
magnetic Wannier state centers. This potential would introduce
a boson hopping term of the form

H2 = −t
∑
〈mm′〉

eik·(rm−rm′ )b†mbm′ . (34)

Here, hopping is assumed to be restricted to the nearest-
neighbor pairs of sites, t > 0, and the phase factor eik·(rm−rm′ )

depends on the location of the Wannier orbital center within
the unit cell of the physical square lattice. The ground states
of H0 correspond to the bosons condensing into one of the
Bloch states �k(r) and forming an Abrikosov vortex lattice
state. The value of k determines the location of the vortex
cores of the Abrikosov lattice relative to the Wannier orbital
centers.

The full Hamiltonian H = H0 + H1 + H2 will then contain
both an ordinary superfluid phase, when the H2 term is
dominant, and the fractionalized chiral liquid phases when
H0 + H1 is dominant. This may be generalized even further by
allowing the coupling constants U0 and U1 to be independent,
which will also introduce ordinary Mott insulator phases with
broken translational symmetry when U0 � t,U1.

V. DISCUSSION AND CONCLUSIONS

In the previous sections, we have derived, using a con-
trolled expansion in the small parameter a/ξ , a magnetic
Wannier state representation of interacting bosons in the
LLL. This Hamiltonian describes interacting bosons on a
square lattice (the lattice geometry does not play a role

here, as discussed below). The magnetic field does not enter
explicitly in this Hamiltonian, but time-reversal symmetry is
still explicitly broken in the H1 part of the Hamiltonian. The
form of the H1 term is a direct consequence of Eq. (26)
and in this sense it may be regarded as a realization of
the GMP algebra, satisfied by the LLL-projected density
operators.

By construction, the ground states of the lattice Hamiltonian
must be the same as the ground states of interacting bosons in
the LLL, which include gapped fractionalized quantum Hall
liquids at some rational filling fractions, e.g., at filling factor
1/2. In this sense, the Hamiltonian given by Eqs. (32)–(34)
may be regarded as a parent Hamiltonian of chiral spin liquids
(although time reversal is broken explicitly here). Chiral
spin liquids have attracted considerable attention [4,39–43],
particularly due to recent work demonstrating they may
be realized in spin-1/2 antiferromagnets on the kagome
lattice [40,44–50]. While in our model time-reversal sym-
metry is broken explicitly, it may still be a useful start-
ing point for constructing models in which it is broken
spontaneously.

The expression for the kinetic part of the Hamiltonian,
Eq. (33), reveals several features, which are presumably
important to achieve a chiral spin liquid. First, H1 has the
form of a correlated hopping Hamiltonian, where the boson
hopping amplitude from site m to m′ depends on the boson
density at site n. This reminds one, not accidentally, of
flux attachment [51]. Second, both H0 and H1 terms are
long-range, exhibiting power-law decay. This is a direct
consequence of the long-range 1/r2 tail of the Wannier
functions �m(r), which in turn is rooted in the nontrivial
topology of the LLL. This feature is also shared with
previous constructions of parent Hamiltonians for chiral spin
liquids [41,43], employing mapping to the LLL in some form.
The power-law decay in Eqs. (32) and (33) is the fastest
possible for this type of construction, since we are using
the Wannier states with the fastest possible decay rate in all
directions.

In our construction of the magnetic Wannier basis, we
have chosen to place the Wannier orbitals on the sites of
a square lattice. This choice is of course arbitrary: any 2D
Bravais lattice would work just as well. This may appear
strange since the lattice geometry naturally plays a crucial
role within the prevailing paradigm in the search for quantum
spin liquid physics, that of geometrically frustrated magnets.
In our model, however, lattice geometry plays no role at all
due to the long-range nature of the interactions. The choice of
the square lattice was thus dictated only by its simplicity. Our
construction, however, may be repeated on any 2D Bravais
lattice with identical results.

In conclusion, we have provided a derivation of a lat-
tice Hamiltonian, which by construction, will have gapped
fractionalized liquid ground states at certain rational filling
fractional filling fractions, such as 1/2. The construction
employs magnetic Wannier states, which are highly symmetric
(the Hamiltonian has the full symmetry of the Bravais lattice
used) and have the fastest possible decay rate, compatible
with the nontrivial topology of the LLL, i.e., 1/r2. It would be
interesting to confirm our construction by an explicit numerical
solution of Eqs. (32)–(34).
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