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We present a generic unraveling scheme for a detailed-balance-preserved quantum master equation applicable
for stochastic point processes in mesoscopic transport. It enables us to investigate continuous measurement of
a qubit on the level of single quantum trajectories, where essential correlations between the inherent dynamics
of the qubit and detector current fluctuations are revealed. Based on this unraveling scheme, feedback control of
the charge qubit is implemented to achieve a desired pure state in the presence of the detailed-balance condition.
With sufficient feedback strength, coherent oscillations of the measured qubit can be maintained for arbitrary
qubit-detector coupling. Competition between the loss and restoration of coherence entailed, respectively, by
measurement back action and feedback control is reflected in the noise power spectrum of the detector’s output. It
is demonstrated unambiguously that the signal-to-noise ratio is significantly enhanced with increasing feedback
strength and could even exceed the well-known Korotkov-Averin bound in quantum measurement. The proposed
unraveling and feedback scheme offers a transparent and straightforward approach to effectively sustaining ideal
coherent oscillations of a charge qubit in the field of quantum computation.
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I. INTRODUCTION

The advent of quantum information technologies is creating
a considerable demand for strategies to manipulate individual
quantum systems in the presence of noise [1]. Recently,
state-of-the-art nanofabrication has made it possible to monitor
a single quantum state in a continuous manner [2–5]. Broad
prospects are thus attainable for physically implementing
the measurement-based (closed-loop) feedback control of a
quantum system in which the real-time information about the
detector’s output is extracted and appropriate corrections are
instantaneously fed back into the system to obtain some desired
behavior. Thus far, a variety of efficient quantum feedback
protocols have been proposed with potentially wide-ranging
applications, such as the purification of a charge qubit [6–14],
the realization of a mesoscopic Maxwell’s demon [15–17], and
the freezing of a charge distribution [18,19] in full counting
statistics [20,21]. In particular, considerable experimental
progress has now been made toward the realization of the con-
tinuous feedback control of a single mesoscopic qubit [22,23],
as well as of microscopic quantum systems [24–26].

In contrast to classical feedback control, which allows
the acquisition of an essentially unlimited degree of specific
system information, quantum feedback control involves a mea-
sured system that is inevitably disturbed in an unpredictable
manner, and the availability of information is fundamentally
limited by Heisenberg’s uncertainty principle. The essence
of the quantum measurement process involves a tradeoff
between the acquisition of quantum system information and
the dephasing of the measured quantum state owing to the
detector’s back action. The modern theory of weak quantum
measurement offers the crucial possibility of deducing system
information encoded in the detector’s degrees of freedom in

*jyluo@zust.edu.cn

a continuous manner, which can promote a balance between
information acquisition and the disturbance of the measured
system.

Quantum trajectory theory has been widely considered as an
appropriate description to facilitate weak continuous quantum
measurements, with extensive applications in both quantum
optics [27] and mesoscopic physics [28–30]. Basically, quan-
tum trajectories are obtained via unraveling of a Lindblad
quantum master equation (QME). An alternative Bayesian
formalism has been shown to provide precisely equivalent
results [31,32]. The unique advantages of these approaches are
their clear physical implications and the simplicity with which
the evolution of a quantum system can be unraveled, where
system information is continuously acquired and feedback
operations can be appropriately implemented [1,33]. However,
it has been shown that the Lindblad QME does not necessarily
satisfy the detailed-balance relation, a manifestation of the
essential energy exchange between a reduced system and the
detector during the measurement process [34–37]. Therefore,
it is crucial to develop a means of physically unraveling
the detailed-balance-preserved QME into individual quantum
trajectories for enabling the continuous application of quantum
feedback control.

Presently, the unraveling of a detailed-balance-preserved
QME has been established only for the quantum diffusion
process [38], which is thus limited to applications to a diffusive
detector such as a quantum point contact (QPC). As an
alternative to a QPC, a quantum-dot- (QD-) based single-
electron transistor (SET) has been proposed as a sensitive
qubit detector with a number of superior characteristics
relative to a QPC, such as low noise, wide circuit bandwidth,
and weakened temperature restrictions [39–44]. In particular,
SET-based single-shot measurement has recently been realized
experimentally [45,46]. As such, conduction of SET-based
quantum measurements and feedback control would be highly
desirable. However, in comparison with a QPC, the crucial
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difference of the SET detection current is that its transport
characteristics are dominated by single-electron tunneling
events, i.e., so-called stochastic point processes. It is therefore
appealing to establish an unraveling scheme of a QME
applicable to stochastic point processes of SET detectors
to enable continuous quantum measurement and feedback
control while unambiguously preserving the detailed balance
simultaneously.

In this work, we first construct a generic scheme to unravel
a detailed-balance-preserved QME for the stochastic point
process of the tunneling events. It enables us to simulate
single quantum trajectories, in which system information is
continuously acquired and feedback control is appropriately
implemented. The proposed unraveling scheme is employed
to protect a desired charge qubit under continuous weak
detection by an SET, with appropriate treatment of the
essential energy exchange between the qubit and detector. It is
clearly demonstrated that coherent oscillations of the qubit are
sustained for sufficient feedback strength, and the correspond-
ing synchronization degree can attain its maximum value.
The crucial competition mechanism between measurement-
induced qubit dephasing and the revival of coherence due
to feedback is uniquely reflected in the detector’s output
noise power spectrum. It is unambiguously demonstrated
that the signal-to-noise ratio can be significantly improved
with increasing feedback strength and, remarkably, may even
exceed the well-known Korotkov-Averin bound in quantum
measurement.

The remainder of the paper is organized as follows. We
begin in Sec. II with the presentation of a generic scheme
for unraveling a detailed-balance-preserved QME into an
ensemble of individual quantum trajectories. The proposed
scheme is utilized to investigate continuous measurement
of a charge qubit by an SET detector in Sec. III. The
essential correlations between inherent dynamics of the qubit
and detector current fluctuations are revealed in Sec. III A
on the level of single quantum trajectories. Section III B is
dedicated to the feedback control of the charge state based
on the proposed unraveling scheme to achieve a desired pure
state in the presence of the detailed-balance condition. The
Korotkov-Averin bound and the conditions whereby it may
be violated are discussed in Sec. III C. Finally, we summarize
the work in Sec. IV.

II. UNRAVELING OF A
DETAILED-BALANCE-PRESERVED QME

In this section, we develop a general scheme for unraveling
a detailed-balance-preserved QME, which is applicable to
stochastic point processes in a wide range of nanostructures.
Let us consider a generic mesoscopic system with the
total Hamiltonian given by H = H0(d†,d) + HB + H ′, where
H0(d†,d) refers to the reduced quantum system of our interest
with d† (d) the creation (annihilation) operator of the reduced
system.

The second term HB is the Hamiltonian of the electrodes.
To be more specific and without loss of generality, we
consider a two-terminal device, where noninteracting elec-
trons in the left and right electrodes are modeled by HB =∑

�=L,R

∑
k ε�kc

†
�kc�k , with c

†
�k (c�k) the creation (annihilation)

of an electron in the left (�=L) or right (�=R) electrode.
Generalization to a multiterminal geometry is straightforward.
The left and right reservoirs are assumed to be in local thermal
equilibrium such that they can be characterized by the Fermi
functions fL/R(ω) = {1 + eβ(ω−μL/R)}−1, where β = (kBT )−1

is the inverse temperature, with kB the Boltzmann constant
and T the temperature. The Fermi energies of the left and
right reservoirs, μL and μR, determine the bias voltage
applied across the reduced system, i.e., V = μL − μR. In what
follows, we adopt symmetric application of the bias voltage,
which means that μL/R = ±V/2. Stochastic electron tunneling
between the reduced system and the electrodes is depicted
by H ′ = ∑

�{F�d
† + H.c.} with F� = ∑

k t�kc�k and t�k the
tunneling amplitude.

The dynamics of the reduced quantum system is described
by the reduced density matrix ρ(t). Under the condition that
the reduced system and the reservoirs are weakly coupled,
the corresponding QME can be derived by tracing the
entire density matrix over the reservoir’s degree of freedom
under a second-order cumulant expansion with respect to
the tunneling Hamiltonian H ′ [47]. In order to achieve an
accurate interpretation of the output characteristics of a device,
it is instructive to decompose the reduced density matrix
into particle-number-resolved ones, in which the reduced
density matrices are conditioned on the number of transmitted
electrons.

This can be done via decomposition of the entire Hilbert
space of the electrode reservoirs [48,49]. Consider that the
entire system is initially in a “vacuum” state |0〉, which means
that the left and right electrodes are filled with electrons up to
the Fermi energies μL and μR, respectively. This vacuum state,
however, is unstable due to the tunnel-coupling H ′. It decays
to a state d†cLk|0〉 with an electron in the reduced system and
a hole in the left electrode. This state is also unstable and
will decay to a state c

†
Rk′cLk|0〉, having an electron in the right

electrode and a hole in the left one. The state will further decay
into a state c

†
Rk′d

†cLk′′cLk|0〉, and so on. The evolution of the
entire system is described by the following many-particle wave
function [48]:

|�(t)〉 =
[
z0(t) +

∑
k

z1k(t)d†cLk +
∑
kk′

zkk′(t)c†Rk′cLk

+
∑

k′′<k,k′
zk′1k′′k(t)c†Rk′d

†cLk′′cLk + · · ·
]
|0〉, (1)

where z(t) are the time-dependent probability amplitudes for
finding the system in the corresponding states described above.
Essentially, these amplitudes are closely associated with
the reduced density matrix. For instance, ρ(0,0)(t) = |z0(t)|2
describes the reduced system without electron tunneling
through the left and right junctions. Analogously, ρ(1,0)(t) =∑

k |z1k(t)|2 denotes the reduced state with one electron
tunneled through the left junction and no electron through
the right one; ρ(1,1)(t) = ∑

k′k |zkk′(t)|2 represents the reduced
state with one electron tunneled through each of the left and
right junctions, respectively, and so on. Averaging over the
reservoir’s degrees of freedom on both sides of Eq. (1), one
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arrives straightforwardly at

ρ(t) = ρ(0,0)(t) + ρ(1,0)(t) + · · · =
∑

NL,NR

ρ(NL,NR)(t), (2)

where ρ(NL,NR)(t) is the so-called electron-number-resolved
density matrix, describing the state of the reduced system
conditioned on the event that NL electrons were transmitted
across the left and NR across the right junction up to the time
t . The time evolution of the many-particle wave function in
Eq. (1) satisfies the Schrödinger equation. By partial tracing
over the reservoir’s degree of freedom, one eventually arrives
at the following electron-number-resolved QME [48,49]:

ρ̇(NL,NR) =−(iL0 + R0)ρ(NL,NR) − R+
L ρ(NL+1,NR)

−R−
L ρ(NL−1,NR) − R+

R ρ(NL,NR+1) − R−
R ρ(NL,NR−1),

(3)

where L0(· · · ) ≡ [H0,(· · · )] stands for the Liouvillian associ-
ated with the Hamiltonian H0 of the reduced quantum system,
and

R0ρ
(NL,NR) = 1

2
{d†A(−)ρ(NL,NR) + ρ(NL,NR)A(+)d†} + H.c.

(4a)

represents the continuous evolution of the reduced system. The
last four terms in Eq. (3), i.e.,

R+
L ρ(NL+1,NR) = − 1

2 {d†ρ(NL+1,NR)A
(+)
L } + H.c., (4b)

R−
L ρ(NL−1,NR) = − 1

2 {A(−)
L ρ(NL−1,NR)d†} + H.c., (4c)

R+
R ρ(NL,NR+1) = − 1

2 {d†ρ(NL,NR+1)A
(+)
R } + H.c., (4d)

R−
R ρ(NL,NR−1) = − 1

2 {A(−)
R ρ(NL,NR−1)d†} + H.c., (4e)

describe electron tunneling through the left and right junctions
of the device. Throughout this work, we set � = e = 1
for Planck’s constant and the electron charge, unless stated
otherwise. Equation (2) implies that the number of electrons
tunneled through the left and right junctions is a stochastic vari-
able, with the probability distribution given by P (NL,NR,t) =
tr{ρ(NL,NR)(t)}, where tr{· · · } represents the trace over the
degrees of freedom of the reduced system. It is apparent that the
probability distribution satisfies the normalization condition∑

NL,NR
P (NL,NR,t) = tr{ρ(t)} = 1. Actually, the study of the

stochastic nature of mesoscopic transport is within the scope
of the well-known theory of full counting statistics [20,21].
Here, we are interested in the continuous weak measurement,
in which the detector acquires system information and renders
the measured system in a continuous manner. This is in contrast
to the project measurement, which occurs instantaneously and
extracts system information completely. It is the purpose of
the present work to unravel the QME into individual quantum
trajectories to study the stochastic nature in quantum weak
measurements. A specific example will be given in Sec. III.

In deriving Eq. (3) we have introduced A(±) = ∑
�=L,R A

(±)
�

and A
(±)
� ≡ [C̃(±)

� (±L0) + iD̃
(±)
� (±L0)]d, with the coupling

spectral functions given by

C̃
(±)
� (±L0) =

∫ ∞

−∞
dt C

(±)
� (t)e±iL0t . (5)

The reservoir correlation functions involved, characterizing
the effect of electron stochastic tunneling into (+) and out of
(−) the device, are defined as

C
(+)
� (t) = 〈F †

� (t)F�〉B, (6a)

C
(−)
� (t) = 〈F�(t)F †

� 〉B, (6b)

where 〈· · · 〉B ≡ trB[(· · · )ρB] stands for the trace over the local
thermal equilibrium state (ρB) of the reservoirs of the device.
With the knowledge of the reservoir spectral functions, the
dispersion functions D̃

(±)
� (±L0) can be evaluated according to

the Kramers-Kronig relation [50,51]

D̃
(±)
� (±L0) = −P

π

∫ ∞

−∞
dω

C̃
(±)
� (±ω)

L0 − ω
, (7)

where P stands for the Cauchy principal value. The dispersion
functions are responsible for renormalization of the internal
energy scales [52–54].

Note that the reservoir correlation functions in Eq. (6)
satisfy the symmetry and detailed-balance relations as fol-
lows [47,55]:

[C(±)
� (t)]∗ = e±βμ�C

(∓)
� (t − iβ). (8)

According to Eq. (5), the above detailed-balance relation can
be reexpressed in the frequency domain as

C̃
(±)
� (+L0) = e±β(μ�±L0)C̃

(∓)
� (−L0). (9)

For large measurement voltage, i.e., where the applied voltage
is much greater than the internal energy scales of the qubit,
the coupling spectrum functions C̃

(±)
� (±L0) can be well

approximated by C̃
(±)
� (0). Under such an approximation, our

approach reduces to the conventional Lindblad QME [28,30],
or, equivalently, to the quantum Bloch equations derived by
Gurvitz et al. [42,56].

The unique advantage of the present approach is that it
is able to properly account for the energy exchange between
the reduced system and the reservoirs, and thus ensures the
detailed-balance relation, as implied in Eq. (9). Physically,
C̃

(+)
� (+L0) is relevant to electron tunneling from the electrodes

to the reduced system which is accompanied by absorption
of energy quanta from the quantum system, and C̃

(−)
� (−L0)

describes the opposite process with emission of energy quanta
to the quantum system. Thus, C̃

(±)
� (±L0) imply the essential

correlation between the dynamics of a reduced system and
current fluctuations of the device. It is this unique feature of
energy exchange between the reduced system and reservoirs
that leads eventually to the detailed-balance relation in Eq. (9).

Indeed, the detailed-balance relation has important im-
pact on the dynamics of a reduced system. Yet the power
of the detailed-balance-preserved QME cannot be readily
unleashed unless it can be unraveled into single quantum
trajectories in which important quantum operations, such
as continuous quantum measurement and quantum feedback
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control, can be appropriately implemented. Furthermore, the
unraveling enables us to reveal how the energy exchange
affects this dynamics, in particular, the evolution of a quan-
tum state into decoherence with only a limited number of
realizations. However, unraveling of the detailed-balance-
preserved QME (3) is not a trivial matter, as it actually
corresponds to an infinite number of coupled equations. We
thus perform a discrete Fourier transformation ρ̃(χL,χR,t) =∑

NL,NR
ei(NLχL+NRχR)ρ(NL,NR)(t), where χ� is the so-called

counting field in full counting statistics [20,21]. The trans-
formation leads to a counting-field-dependent master equation

∂

∂t
ρ̃(χL,χR,t) = LχL,χR ρ̃(χL,χR,t), (10a)

where the counting-field-dependent Liouvillian LχL,χR can be
found by utilizing Eq. (3)

LχL,χR = −
{

iL0 + R0 +
∑

�=L,R

∑
±

e∓iχ�R±
�

}
. (10b)

The formal solution to Eq. (10) leads to the counting-field-
dependent evolution of the system

ρ̃(χL,χR,t) = exp{LχL,χR (t − t0)}ρ̃(χL,χR,t0). (11)

We assume that electron counting begins at t0 such that
ρ(NL,NR)(t0) = ρ(t0)δNL,0δNR,0 and, thus, ρ̃(χL,χR,t0) = ρ(t0).
By performing the inverse Fourier transformation, one read-
ily obtains the electron-number-resolved propagation of the
system

ρ(NL,NR)(t) = U(NL,NR,t − t0)ρ(t0), (12a)

where U(NL,NR,δt) is nothing but the electron-number-
resolved propagator, given by

U(NL,NR,δt) =
∫ π

−π

dχLdχR

(2π )2
eLχL ,χR δt−i

∑
� N�χ� . (12b)

An important feature of this propagator is that it solely depends
on the dynamic structure of the QME (3) rather than on
the initial quantum state, which makes it very efficient for
unraveling the QME (3) into individual quantum trajectories.

Specifically, let us consider the evolution of the quantum
state during an infinitesimal time interval [tk,tk + dt]. In
general, Eq. (12) is valid for an arbitrary number of electrons
(NL/R) transmitted through the reduced system, depending on
the time interval (dt). In what follows, we are interested in
the stochastic point process, i.e., where individual electron
tunneling events dominate. For that purpose, it is necessary
to take dt 	 min(�−1

L ,�−1
R ), where �� is the tunnel-coupling

strength between the reduced system and the left (�=L) or
right (�=R) electrode. It ensures that the probability of having
N� � 2 electrons tunneled through the junction � is practically
zero. Furthermore, instead of using NL and NR directly, we
introduce two stochastic point variables dNL(t) and dNR(t)
to respectively represent the numbers of electrons having
tunneled through the left and right junctions during the time
interval dt . Given the state condition ρ(tk) at tk , the state at
tk + dt is determined according to Eq. (12) as

ρ(dNL,dNR)(tk + dt) = U(dNL,dNR,dt)ρ(tk). (13)

If the individual measurement records are ignored (i.e., av-
eraged over), the ensemble-averaged quantum state is given by

ρ(tk + dt) =
∑

dNL,dNR

ρ(dNL,dNR)(tk + dt)

=
∑

dNL,dNR

Pr(dNL,dNR)ρc(tk + dt), (14)

where Pr(dNL,dNR) = tr{ρ(dNL,dNR)(tk + dt)} represents
the probability of dNL electrons tunneling through the left
junction and dNR electrons tunneling through the right
junction at time tk + dt , and tr{· · · } denotes the trace over the
degrees of freedom of the reduced system. The normalized
state conditioned on a definite measurement result obtained at
tk + dt can be established from Eq. (14):

ρc(tk + dt) = ρ(dNL,dNR)(tk + dt)

Pr(dNL,dNR)
, (15)

where the superscript “c” attached to the density matrix
is to specify that the state is conditioned on the definite
measurement result.

Equations (13) and (15) indicate that, if one generates dNL

and dNR stochastically for each time interval [tk,tk + dt] and
then collapses the system onto a specific state ρc(tk + dt) at the
end of the time interval, one has actually achieved a particular
single realization of continuous measurements conditioned on
the specific measurement results. In each time interval, the
stochastic point variables dNL and dNR are generated in such
a way that their ensemble averages over a large number of
quantum trajectories, denoted by E[· · · ], satisfy

E[dNL(t)] = �Ltr{d†ρc(t)d}dt, (16a)

E[dNR(t)] = �Rtr{dρc(t)d†}dt. (16b)

It is now clear that electron tunneling conditions the future
evolution of the quantum state [Eqs. (13) and (15)], while the
real-time quantum state affects the observed tunneling events
through the left and right junctions [cf. Eq. (16)]. Within this
unraveling scheme one is able to propagate the conditioned
quantum state ρc(t) and the observed result [dNL(t) and
dNR(t)] in a self-consistent manner.

III. APPLICATION TO QUANTUM MEASUREMENT AND
FEEDBACK CONTROL

So far, we have successfully constructed an efficient scheme
to unravel a detailed-balance-preserved QME into single
quantum trajectories. The proposed theory is applicable to
a wide range of mesoscopic systems in which transport is
dominated by stochastic point process. In this section, we first
investigate the conditional dynamics of a charge qubit under
continuous measurement by an SET detector. The developed
scheme allows us to analyze the influence of energy exchange
between the qubit and detector, as well as the essential
correlation between current fluctuations in the detector and
qubit dynamics on the level of a single quantum trajectory.
Feedback control of the charge qubit is implemented in single
quantum trajectories to protect a desired pure state. The effect
of feedback control is characterized by the signal-to-noise
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FIG. 1. Schematic setup of a solid-state charge qubit under
continuous monitoring by an SET detector. The charge qubit is
represented as an extra electron confined in a double QD. The SET
is a single QD sandwiched between the left and right electrodes with
intrinsic tunneling widths �L and �R, where the QD is capacitively
coupled to the qubit via Coulomb repulsion. The possible electron
configurations of the quantum system (qubit plus SET QD) are
displayed in (a)–(d).

ratio, which might even exceed the well-known Korotkov-
Averin bound in quantum measurement.

A. Continuous measurement of a qubit by an SET

A charge qubit under continuous monitoring by an SET
detector is schematically shown in Fig. 1. The qubit is denoted

as an extra electron in a double QD. The occupations of
the extra electron in the lower and upper QDs respectively
correspond to logic (dot) states |A〉 and |B〉 of the charge
qubit. The SET detector is a single QD sandwiched between
left and right electrodes of respective intrinsic tunneling widths
�L and �R, where the QD is capacitively coupled to the qubit
via Coulomb interaction. The energy level of the single QD is
susceptible to changes in the nearby electrostatic environment,
and, thus, can be used to sense the location of the extra electron
in the charge qubit. The reduced system is comprised of the
charge qubit, a single QD of the SET, and their coupling, with
Hamiltonian given by

HS = 1
2ε σz + �σx + (E0 + δU |B〉〈B|)d†d, (17)

where d† and d are respectively the creation and annihilation
operators for an electron in the single QD, ε is the qubit level
mismatch, � is the qubit interdot tunnel coupling, and σz ≡
|A〉〈A| − |B〉〈B| and σx ≡ |A〉〈B| + |A〉〈B| are pseudospin
operators for the qubit. We assume there is only a single
energy level E0 within the bias regime defined by the Fermi
energies of the left and right electrodes. If the qubit dwells in
logic state |B〉, the SET QD responds to the strong Coulomb
repulsion δU . As a result, electron transport through the SET
will be significantly affected. It is precisely this mechanism
that enables the acquisition of qubit information via the readout
characteristics of the SET.

Figure 2 presents particular single realizations based on
the unraveling scheme developed in Sec. II. The conditional
reduced density matrix element ρc

jj with j = {a,b,c,d} corre-
sponds to the electron configurations shown in Figs. 1(a)–1(d),

FIG. 2. Typical quantum trajectories and corresponding detection records for �/� = 1.0 (a)–(f) and �/� = 0.1 (g)–(l), where � =
�L + �R is held constant and used as the unit of energy. The initial condition is an empty SET QD with the charge qubit in the logic state |A〉,
as shown in Fig. 1(a), i.e., ρc(t = 0) = |a〉〈a|. The measurement voltage is V/� = 3.0, which implies μL/R = ±1.5�. The time step used is
�t = 0.01�−1. Other plotting parameters are ε = 0, kBT/� = 1.0, �L = �R = �/2, and δU/� = 10.
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FIG. 3. Dynamics of the measured charge qubit in the dot state representation (a),(b) and eigenstate representation (c),(d), obtained by an
ensemble average taken over 20 000 quantum trajectories. For comparison, the results in the absence of the detailed balance are also plotted
by the dotted curves. The initial condition is wAA(t = 0) = 1. The total tunneling width � = �L + �R is kept constant and used as the unit of
energy. The tunnel couplings to the left and right electrodes are asymmetric, �L/�R = 1

9 . The interdot coupling of the qubit is �/� = 0.5.
The other plotting parameters used are the same as those in Fig. 2.

respectively. The initial condition corresponds to the charge
configuration shown in Fig. 1(a), i.e., ρc(t = 0) = |a〉〈a|. The
single realization for �/� = 1.0 is plotted in Figs. 2(a)–2(f).
The charge qubit exhibits oscillations between quantum states
|a〉 and |b〉, which is stochastically interrupted whenever an
electron tunnels into the SET [see, for example, Fig. 2(e) for
dNL]. The electron may dwell in the SET for a random period
of time, where it experiences rapid oscillations before it tunnels
out of the QD.

The single realization for a suppressed interdot coupling
(�/� = 0.1) is displayed in Figs. 2(g)–2(l). Contrary to the
case of �/� = 0.1, one observes very slow oscillations be-
tween |a〉 and |b〉, as shown in Figs. 2(g) and 2(h). Furthermore,
one finds unambiguous examples of the bunching of electron
tunneling events through the SET; see Figs. 2(k)–2(l). While
the qubit stays in the logic state |B〉, it prevents electrons from
tunneling through the SET due to the strong Coulomb repul-
sion between the qubit and the SET QD (δU/� 
 1). Elec-
trons can flow only over short time windows when the qubit
relaxes to the logic state |A〉, leading eventually to the bunching
of tunneling events. It thus clearly demonstrates that our
unraveling scheme offers an essential method to reveal the cor-
relation between the inherent dynamics of a qubit and detector
current fluctuations on the level of single quantum trajectories.

Furthermore, the quantum trajectory based on the detailed-
balance-preserved QME enables us to reveal the essential
effect of energy exchange between the charge qubit and
detector: the qubit evolves into decoherence with only a limited
number of realizations. For that purpose, we investigate the
unconditional evolution of the reduced system ρ(t) (qubit plus
SET QD) by ensemble averaging over quantum trajectories
analogous to those in Fig. 2. The dynamics of the charge qubit
alone w(t) can then be obtained as

w(t) = trSET{ρ(t)}, (18)

where trSET{· · · } stands for the trace over the degrees of
freedom of the SET QD. In the charge configurations as

shown in Fig. 1, one readily verifies that wAA = ρaa + ρcc and
wBB = ρbb + ρdd, which represent the probabilities of finding
the charge qubit in the logic states |A〉 and |B〉, respectively.
The nondiagonal element wAB = ρab + ρcd stands for the
so-called quantum coherence between logic states |A〉 and |B〉.

The numerical results are displayed in Fig. 3, where the
dynamics of the charge qubit alone is obtained by ensemble
averaging over 20 000 quantum trajectories (solid curves).
For a close comparison, we have also presented in Fig. 3
the results in the absence of detailed balance (dotted curves),
which are obtained simply by replacing C(±)(±L0) with
C(±)(0), or equivalently using the Lindblad master equation in
Refs. [30,42]. We consider very asymmetrical tunnel coupling
strengths (�L/�R = 1

9 ) where the measurement was found to
be highly effective [42]. In the dot state representation, the re-
laxation behaviors are quantitatively similar; see Fig. 3(a). The
measurement back-action-induced qubit dephasing behavior,
characterized by the off-diagonal element of the density matrix
(wAB), exhibits very different behavior; see Fig. 3(b). In the
absence of detailed balance, the off-diagonal element nearly
vanishes in the stationary limit. However, in the presence of
detailed balance, the real part of wAB apparently attains a
nonzero constant value.

In the eigenstate (|+〉 and |−〉) representation, nondiagonal
elements of the density matrix (w+− and w−+) vanish
in the long-time limit [57,58], regardless of whether the
detailed-balance relation is satisfied or not [see Fig. 3(d)].
The qubit relaxation behavior, however, exhibits remarkable
differences. The probabilities of the two eigenstates show
radical differences with and without detailed balance; see
Fig. 3(c). It thus clearly illustrates that our quantum trajectory
theory fully accounts for the detailed-balance condition and
its essential ramifications in the measurement dynamics.

B. Implementation of feedback control

We have successfully unraveled a detailed-balance-
preserved QME in the context of a charge qubit under
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continuous measurement by an SET. It paves the way toward
feedback control of a quantum state in the presence of essential
energy exchange between the quantum system and detector.
We are now in a position to implement feedback control
for the coherent evolution of a charge qubit based on the
single realizations obtained in Sec. III A. In the dot state
representation of the qubit (|A〉 and |B〉), the desired (target)
pure state to be protected is

|ψd (t)〉 = cos(�t)|A〉 + i sin(�t)|B〉. (19)

The basis of the feedback control begins by converting the
detector’s output information into the evolution of the qubit
state wc(t), where wc(t) = trSET{ρc(t)}. The real-time qubit
state wc(t) is then compared with the target state wd (t) ≡
|ψd (t)〉〈ψd (t)|, and their difference is utilized to design the
feedback Hamiltonian such that the difference is decreased
at the next step. At each successive step, the feedback
Hamiltonian acts only for an infinitesimal time interval dt .
According to the suboptimal algorithm [59], state propagation
in each infinitesimal time step maximizes the fidelity of wc(t)
with wd (t). Specifically, let us consider state evolution with
respect to the feedback Hamiltonian Hfb, where the state
wc(t + dt) is given by

wc(t + dt) = wc(t) − i[Hfb,w
c(t)]dt

− 1
2 [Hfb,[Hfb,w

c(t)]](dt)2 + · · · . (20)

Here, Hfb is to be determined via the fidelity of the state
wc(t + dt) with the target state, defined as

F ≡〈ψd |wc(t + dt)|ψd〉
=〈ψd |wc(t)|ψd〉 − i〈ψd |[Hfd,w

c(t)]|ψd〉dt

− 1
2 〈ψd |[Hfb,[Hfb,w

c(t)]]|ψd〉(dt)2 + · · · . (21)

To optimize the fidelity, one should maximize the dominant
term, i.e., the term proportional to dt . This imposes certain
constraints, e.g., constraints on the sum of the squares of the
eigenvalues, on the sum of the norms of the eigenvalues, or on

the maximum eigenvalue of Hfb, which originate from either
a limitation on the feedback strength or finite Hamiltonian
resources. Here, employing the first type of constraint, i.e.,
trqb{H 2

fb} � ν, where ν is the feedback strength and trqb{· · · }
represents the trace over the degrees of freedom of the charge
qubit, the feedback Hamiltonian is constructed as [38,60]

Hfb = iκ[|ψd (t)〉〈ψd (t)|,wc(t)], (22)

where κ =
√

ν
2(p−q) , with p = 〈ψd |[wc(t)]2|ψd〉 and q =

[〈ψd |wc(t)|ψd〉]2.
It is also instructive to insert the target state [Eq. (19)] into

Eq. (22), which provides

Hfb = Kσx (23a)

with σx the pseudospin operator for the charge qubit defined
in Eq. (17) and

K =
{

+√
ν
2 , �φ < 0,

−√
ν
2 , �φ > 0.

(23b)

This, in fact, yields another version of Hfb that resem-
bles a simple bang-bang control. The feedback param-
eter between two values is readily determined by the
phase error defined as �φ ≡ φ(t) − φ0, where φ(t) =
arctan (2Im{wc

AB(t)}/[wc
AA(t) − wc

BB(t)]) represents the rela-
tive phase between states |A〉 and |B〉, and φ0 = 2�t(mod
2π ). It is noted that the two versions of Hfb given by Eqs. (22)
and (23) are completely equivalent. Yet the unique advantage
of the latter version is that it is much easier to implement
experimentally.

The effect of feedback control is plotted in Fig. 4 for various
values of feedback strength ν. The feedback is implemented in
each quantum trajectory, analogous to those shown in Fig. 2.
The propagation of the state is obtained from an ensemble
average over 20 000 trajectories. For a sufficiently large
feedback strength (see the dotted curves for ν = 1), coherent
oscillations of the charge qubit can be maintained, in principle,

FIG. 4. Time evolution of the charge qubit and corresponding synchronization degree for various values of feedback strength ν: 0.01 (solid
curves), 0.1 (dashed curves), and ν = 1.0 (dotted curves). The results are obtained from the ensemble average over 20 000 quantum trajectories.
The inherent qubit interdot coupling is �/� = 0.5, where � = �L + �R is held constant, and is used as the unit of energy. All other plotting
parameters are equivalent to those employed in Fig. 2.
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for an arbitrary period of time. To quantitatively characterize
how close to the desired state the protected state could come,
we introduce the synchronization degree, defined as D ≡
2〈trqb{wcwd}〉 − 1, with 〈· · · 〉 the time average. Complete
synchronization exists for D = 1, indicating that the target
state is perfectly sustained via the feedback control. The results
for the various feedback strengths considered are shown in
Fig. 4(d). Apparently, for ν = 1, D comes very close to the
maximum value of 1, verifying thus the high effectiveness of
our feedback scheme.

C. Signal-to-noise ratio

The essence of the continuous quantum measurement
process involves the tradeoff between the acquisition of qubit
information and the back-action-induced dephasing of the
qubit [56,61–63]. Feedback control serves as an essential
mechanism to restore the coherence of the quantum state. To
characterize the competition between the back-action-induced
dephasing and feedback-control-induced revival of coherence,
it is instructive to investigate the noise power spectrum S(ω) of
the detector’s output, which is defined as the Fourier transform
of the two-time correlation function G(τ ) of the detection
current:

S(ω) = 2
∫ ∞

−∞
dτ eiωτG(τ ). (24)

Here, according to quantum trajectory theory, G(τ ) is given
by [29,64]

G(τ ) = {E[i�(t + τ )i�(t)] − E[i�(t + τ )]E[i�(t)]}|t→∞,

(25)

where i�(t) = dN�/dt is the stochastic current through the
left (� = L) or right (� = R) junction for the stochastic point
process.

Let us first evaluate G(τ ) for the current transport through
the left junction of the SET (the right junction provides
the same results, as we have verified), which qualitatively
characterizes the influence of the quantum feedback control
on the measurement dynamics. Figure 5 presents numerical
results for G(τ ) for various values of feedback strength ν,
where ensemble averages are obtained over 20 000 quantum
trajectories. For a small feedback strength (ν = 0.01), the
quantum system gradually loses its correlation, as shown
in Fig. 5(a). As feedback strength increases, the correlation
function clearly demonstrates coherent oscillation behavior;
see Fig. 5(c) for ν = 1.0.

With an adequate knowledge of G(τ ), it is straightforward
to obtain S(ω) using Eq. (24). Here, to obtain a smooth
representation of G(τ ), 80 000 more quantum trajectories were
used. The influence of feedback control on S(ω) for values of
ν defined as 0.01 (solid curves), 0.1 (dashed curves), and 1.0
(dotted curves) is displayed in Fig. 6. All other parameters are
equivalent to those employed for Fig. 5. The most important
feature is a noise peak located at the qubit characteristic
frequency � = √

ε2 + 4�2, which is in fact a reflection of
the coherent oscillations of the qubit. Interestingly, the height
of this peak [S(�)] relative to its noise pedestal, given as S∞ =
S(∞), has been shown to be a measure of the signal-to-noise

FIG. 5. Correlation functions G(τ ) of the detection current
through the left junction for various values of feedback strength:
(a) ν = 0.01; (b) ν = 0.1; and (c) ν = 1.0. The correlation functions
are obtained from ensemble averages over 20,000 quantum trajecto-
ries. All other plotting parameters are equivalent to those employed
in Fig. 4.

ratio (SNR) [65,66]

SNR = S(�) − S∞
S∞

. (26)

The signal-to-noise ratio characterizes how close to the quan-
tum limit the detector can operate. It has been argued that the
tradeoff between the acquisition of qubit information and the
back-action-induced dephasing leads to a fundamental limit on
the SNR, which is well known as the Korotkov-Averin bound
in quantum measurement [65,66]. According to this limit, the
SNR can have a maximum value of 4, which can occur only for

FIG. 6. Noise power spectrum of the detection current through
the left junction obtained by Fourier transform of the corresponding
correlation functions for various values of feedback strength: ν =
0.01 (solid curve); ν = 0.1 (dashed curve); and ν = 1.0 (dotted
curve). To obtain a smooth representation of the correlation functions,
80,000 more quantum trajectories were used. Other parameters are
the same as those in Fig. 5.
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a quantum-limited detector, where the qubit loses coherence
purely due to the flow of qubit information, rather than due
to fluctuating environments. In a less effective measurement,
qubit dephasing occurs faster than the information acquisition,
and the resultant SNR is less than 4.

It has been argued that the SNR of an SET detector cannot
attain the limit of an ideal detector [42]. We find consistent
results for a weak feedback strength (ν = 0.01), as shown
by the solid curve in Fig. 6. However, with an increasing
feedback strength, coherence of the charge qubit is effectively
restored, which leads to a prominent rise in the coherent
peak. Remarkably, in the case of strong feedback strength
(see the dotted curve in Fig. 6 for ν = 1.0) we observe an
SNR greater than the bound limit of 4, leading to a violation of
the Korotkov-Averin bound. Our proposed feedback protocol
therefore serves as an effective method to improve the SNR and
restore ideal coherent oscillations of a qubit under continuous
measurement by an SET detector.

So far, a variety of approaches have been proposed that
can potentially result in the violation of the Korotkov-Averin
bound. These approaches are basically divided into two
types. The first type is based on the inhibition of the noise
pedestal using strongly responding detectors [43,44] or twin
detectors [67,68]. The second type involves the restoration of
the coherence of the qubit by utilizing, for example, quantum
nondemolition measurements [69,70] or the non-Markovian
memory effect [71]. The violation of the Korotkov-Averin
bound in the present work belongs to the second type. The
unique advantage of this approach is that we can precisely
achieve a desired SNR in a controllable manner by simply
adjusting the feedback strength.

Recently, an SET-detection-based feedback scheme has
also been proposed for the stabilization of a pure state, where
electronic detector current is directly back coupled into the
qubit parameter [11]. It was demonstrate that charge qubit
states are stabilized above a critical detector-qubit coupling
simply after a few electron jumps through the detector. In
comparison, the advantage of the present feedback scheme
is that coherent oscillations of the qubit can be maintained,
in principle, for arbitrary qubit-SET coupling parameters,
provided the feedback is sufficiently strong.

IV. SUMMARY

We have developed a generic and efficient scheme for the
unraveling of a detailed-balance-preserved quantum master
equation. It is applicable to a wide range of nanostructures in
which transport is dominated by stochastic point processes.
The proposed scheme was employed to investigate continuous
measurement of a charge qubit by a single-electron transistor,
where essential correlations between the inherent dynamics
of the qubit and detector current fluctuations were revealed
on the level of single quantum trajectories. It was illustrated
that energy exchange between the detector and qubit has a
vital role to play in the measurement dynamics, particularly
in the decoherence behavior of the charge qubit. The quantum
trajectory enables us to implement feedback control of the
charge state to achieve a desired pure state in the presence
of the detailed-balance condition. It was demonstrated that
coherent oscillations of the charge qubit can be maintained
for an arbitrary period of time, and the corresponding
synchronization degree can attain its maximum value for
sufficient feedback strength. The effectiveness of the feedback
control was further reflected in the noise power spectrum of
the detector’s output. The signal-to-noise ratio was observed
to increase with rising feedback strength, and, remarkably,
could even exceed the well-known Korotkov-Averin bound
in quantum measurement. The proposed unraveling scheme
together with the feedback control algorithm turned out to be
effective in protecting and maintaining ideal quantum coherent
oscillations in a very transparent and straightforward manner,
and thus are anticipated to have important applications in the
field of solid-state quantum computation.
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