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Effective impedance for predicting the existence of surface states
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We build an effective impedance for two-dimensional (2D) photonic crystals (PCs) comprising a rectangular
lattice of dielectric cylinders with the incident electric field polarized along the axis of the cylinders. In particular,
we discuss the feasibility of constructing an effective impedance for the case where the Bloch wave vector is
far away from the center of Brillouin zone, where the optical response of the PC is necessarily anisotropic, and
hence the effective description becomes inevitably angle dependent. We employ the scattering theory and treat
the 2D system as a stack of 1D arrays. We consider only the zero-order interlayer diffraction, and all the higher
order diffraction terms of interlayer scattering are ignored. This approximation works well when the higher
order diffraction terms are all evanescent waves and the interlayer distance is far enough for them to decay out.
Scattering theory enables the calculation of transmission and reflection coefficients of a finite-sized slab, and we
extract the effective parameters such as the effective impedance (Ze) and the effective refractive index (ne) using
a parameter retrieval method. We note that ne is uniquely defined only in a very limited region of the reciprocal
space. (nek0a � 1, where k0 is the wave vector inside the vacuum and a is thickness of the slab for retrieval), but
Ze is uniquely defined and has a well-defined meaning inside a much larger domain in the reciprocal space. For a
lossless system, the effective impedance Ze is purely real for the pass band and purely imaginary in the band gaps.
Using the sign of the imaginary part of Ze, we can classify the band gaps into two groups, and this classification
explains why there is usually no surface state on the boundary of typical fully gapped PCs composed of a lattice
of dielectric cylinders. This effective medium approach also allows us to predict the dispersion of surface states
even when the surface wave vectors are well beyond the zone center.
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I. INTRODUCTION

Photonic crystals (PCs) and metamaterials provide useful
platforms for controlling the propagation of electromag-
netic waves [1–3]. Due to the artificial periodicity of PCs
and metamaterials, their electromagnetic responses are best
described using the language of band structure or similar
concepts. However, it is highly desirable to have an effective
medium description in the long wavelength limit, and various
methodologies have been developed for extracting effective
parameters, such as the electric permittivity and magnetic
permeability, from these otherwise complex and artificially
structured materials [4–22]. One obvious example of the
usefulness of accurate effective medium parameters is the
determination of the existence surface or interface states and
their dispersions without the need of going through tedious
calculations.

In fact, the dispersion of interface states at the boundary
separating two pieces of homogenous materials can be pre-
dicted analytically once the effective parameters are specified.
However, artificially structured materials such as PCs and
metamaterials are inherently inhomogeneous, and standard
effective medium parameters would have difficulty accounting
for interface states that extends to high values of k away
from the center of the Brillouin zone (BZ). This is because,
at high values of k, the wave can probe the details that
the microstructure and standard effective medium approach
may fail. As conventional effective medium theories (EMTs),
such as those based on the coherent potential approximation
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(CPA) [7,8], require the condition keffr0 � 1 (keff is the wave
vector in the effective media, and r0 represents the linear
size of microstructure), they are not expected to provide a
good approximation of a composite material if keff is big,
in which case the effective wavelength inside the material is
small enough for one to know the details of the microstructure.
If we still insist on using effective parameters, they should
depend on the direction of incident. In other words, they
should be spatially dispersive. If one employs the layer
Korringa-Kohn-Rostoker (KKR) method [13–15], one can
regard the PC or metamaterial as a stack of layers parallel
to a given crystallographic plane. In that case, it is clear that,
besides frequency, the extracted effective parameters should
also depend on the parallel component of the wave vector (�kp)
along the given crystallographic plane. In other words, the
EMT becomes naturally angular (�kp) dependent. The relation
between the CPA method and the layer-KKR method for
PCs consisting of spherical scatters has been discussed before
[16,17].

Let us now focus on a PC comprising a rectangular lattice
of dielectric cylinders (the relative permeability equals one)
embedded in the air. Following the paradigm of the KKR
method [13–15], we treat the PC as a stack of layers parallel
to a given crystallographic plane. To describe the scattering
properties of this PC, the scattering field is first expanded as
a summation of cylindrical functions and then transformed to
a linear combination of plane waves with different �kp + �g,
i.e.,

�K±
�g = (�kp + �g, ±

√
k2 − ‖�kp + �g‖2

), (1)
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where �g is the reciprocal vector parallel to the chosen
crystallographic plane, �kp is the Bloch wave vector parallel

to the plane, and
√

k2 − ‖�kp + �g‖2
is the component of the

plane wave normal to plane. The intralayer coupling can be
calculated in full rigor using standard lattice sum techniques.
However, in order to describe the optical properties of this
system within the context of the effective medium approach,
we need to discard the interlayer interactions with reciprocal
vector �g �= 0. This approximation is applicable when the√

k2 − ‖�kp + �g‖2
terms are all imaginary with reciprocal

vector �g �= 0, are all evanescent waves, and at the same time,
the interlayer distance is long enough for them to decay. This
discarding �g �= 0 approximation (no higher order diffraction
terms) is effectively a homogenization process so that each
layer of cylinders behaves collectively as a homogenous slab
as far as wave scattering is concerned. To extract the effective
impedance which describes the homogenized slab, we can first
calculate the reflection coefficient (r) and the transmission
coefficient (t) with the KKR method. The effective impedance
can then be obtained with the retrieval methods [9–11] based
on the requirement that the effective parameters gives the same
scattering property (same r and t) as the real system. We
will call this approach “layer EMT”, and we will show in the
following that this layer EMT can enable us to extend to the
effective region of the effective impedance away from the �

point (i.e., keffr0 being small is not a necessary requirement
anymore) and thereby allowing us to predict the dispersion of
surface waves with large values of �kp.

The paper is organized as follows: In Sec. II, we discuss in
detail how to construct the layer EMT using a layer-by-layer
scattering theory and a retrieval method to extract the effective
parameters of the system. In Sec. III, we compare this EMT
with some conventional EMTs, including the CPA-based
method [7], the boundary EMT [23,24], and the retrieval
method [9–11]. We also compare the projected band structure
as well as the transmission spectrum of a slab of finite
thickness predicted with the layer EMT and those from full
wave simulation. In Sec. IV, we discuss some of the possible
applications of this EMT. In particular, we will use this
approach to explain why there is usually no interface state
on the boundary of typical fully gapped PCs comprised of
dielectric cylinders. We also show that our effective impedance
can predict the dispersions of surface states between a PC and
a homogenous material. In Sec. V, we discuss some possible
extensions and potential applications of the layer EMT and
then give our conclusions in Sec. VI.

II. FORMULATION

Our system is shown schematically in Fig. 1(a), which
consists of an array of identical dielectric cylinders (blue disks)
forming a rectangular lattice embedded in a vacuum and the
lattice constant is a (b) along the x (y) direction. The radius,
the relative permittivity, permeability, and refractive index of
the cylinder are given by rc, εc, μc, and nc, respectively,
and nc = √

εcμc. In our numerical simulations, we use a
nonmagnetic cylinder with μc = 1, and our theory also applies
when μc does not equal one. A plane wave with the electric
field parallel to the axis of the cylinder (the z direction)

(b)
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FIG. 1. (a) System consisting of identical cylinders (blue disks)
embedded in a vacuum, the lattice constant is a(b) along the x(y)
direction. The E field of the incident plane wave is along the axis of
the cylinders (the z direction), and the component of the wave vector
along the y direction is given by kp . This system can be treated as a
stack of layers with boundaries marked by the dashed orange lines.
(b) A plane wave with unit amplitude impinges on a single column of
cylinders, and the transmission and reflection coefficients are given
by t and r , respectively. The virtual boundaries of the column (marked
with dashed orange lines) are chosen such that the cylinders are at
the center of the column.

impinges on this PC. The wave vector of this plane wave
is given by �k0, and the component parallel to the y direction is
kp. The incident plane wave is hence specified as

�Einc = E0 exp[i(kpy + kxx)]ẑ, (2a)

H inc
x = kp

ωμ0
E0 exp[i(kpy + kxx)], (2b)

H inc
y = − kx

ωμ0
E0 exp[i(kpy + kxx)], (2c)

where ω is the angular frequency and kx =
√

k2
0 − k2

p is the
wave vector along the x direction. This two-dimensional
(2D) PC can be treated as a stack of 1D layers with virtual
boundaries marked with dashed yellow lines in Fig. 1(a). To
study the properties of this 2D PC, we start with a single
layer of such cylinders and calculate the transmission (t) and
reflection (r) coefficients at the virtual boundaries [indicated
with the dashed yellow lines in Fig. 1(b)] of this layer. The layer
is chosen in a central symmetric manner with reference to the
center of the cylinders. The lowest three modes of a dielectric
cylinder in a vacuum consists of one electric monopole (PZ)
and two magnetic dipoles (Mx and My , which represent
magnetic dipoles along the x and y direction, respectively),
and these three modes determine the scattering properties of
the cylinder when the frequency of the incident wave is not
too high. The excitation strength of the monopole and dipoles
are given by [25,26]

Pz = αEEloc
z , (3a)

�M = αM
�H loc, (3b)
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where Eloc
z and �H loc are the z component of the local electric field and the local magnetic field at the position of the cylinder,

and αE and αM are the polarizability of the monopole and dipole of a cylinder, respectively, which are given by

αE = 4iε0

k2
0

β0(rck0), (4a)

αM = 8i

k2
0

β1(rck0), (4b)

and

βn(rck0) = μcJn(ncrck0)J ′
n(rck0) − ncJn(rck0)J ′

n(ncrck0)

μcJn(ncrck0)H
′(1)
n (rck0) − ncH

(1)
n (rck0)J ′

n(ncrck0)
, (5)

where Jn, H (1)
n , J ′

n, and H
′(1)
n are the nth order Bessel function, Hankel function of the first kind, and their derivatives, respectively.

The local fields consist of the incident plane wave field and the scattering fields from other cylinders; the monopole and magnetic
dipoles of the lth cylinder are hence given by

Pl = αE

⎧⎨
⎩Einc

l +
∑
m�=l

[
ik2

0

4ε0
PmH

(1)
0 (k0|�r − �rm|) + iωμ0ẑ · ∇ ×

(
i

4
�MmH

(1)
0 (k0|�r − �rm|)

)]∣∣∣∣∣∣
�r=�rl

⎫⎬
⎭, (6a)

�Ml = αM

⎧⎨
⎩ �H inc

l +
∑
m�=l

[
∇ ×

(
ω

4
PmH

(1)
0 (k0|�r − �rm|)ẑ

)
+ ∇ × ∇ ×

(
i

4
�MmH

(1)
0 (k0|�r − �rm|)

)]∣∣∣∣∣∣
�r=�rl

⎫⎬
⎭, (6b)

where Einc
l and �H inc

l are the electric field along the z direction and magnetic field of the incident wave at the position of the lth
cylinder, and �rl = (a/2,lb). As the system is periodic along the y direction, the Bloch condition along the y direction can be
applied, and

Pm = exp
(
imbkp

)
P, (7a)

�Mm = exp
(
imbkp

) �M, (7b)

where P and �M are the monopole and magnetic dipole moments of the 0th cylinder. Take Eq. (7) into Eq. (6), and we have⎛
⎜⎝

ε0

k2
0αE

− F1 −F3 0

F3
1

αM
+ F6 0

0 0 1
αM

+ F4

⎞
⎟⎠

⎛
⎜⎝

iωP

Mx

My

⎞
⎟⎠ =

⎛
⎜⎝

i
ωμ0

Einc

H inc
x

H inc
y

⎞
⎟⎠, (8)

where F1, F3, F4, and F6 are lattice sums defined as

F1 =
∑
m�=0

i

4
H

(1)
0 (mbk0)eimkpb, (9a)

F3 = ∂

∂y

∑
m�=0

i

4
H

(1)
0 (mbk0)eimkpb

∣∣∣∣
�r=0

, (9b)

F4 = ∂2

∂x2

∑
m�=0

i

4
H

(1)
0 (mbk0)eimkpb

∣∣∣∣
�r=0

, (9c)

and

F6 = ∂2

∂y2

∑
m�=0

i

4
H

(1)
0 (mbk0)eimkpb

∣∣∣∣
�r=0

. (9d)

These lattice sums converge slowly in the real space, so we need to transform to the reciprocal space, and the results are as
follows [27]:

F1 = 1

2π

(
ln

(
k0b

4π

)
+ γE

)
+ i

(
1

2bkx

− 1

4

)
+ 1

2b

∞∑
m=1

(
i

qm

+ i

q−m

− 2

gm

)
, (10a)

F3 = − kp

2bkx

− i
kp

2π
−

∞∑
m=1

[(
kp − gm

)
2bqm

+
(
kp + gm

)
2bq−m

]
, (10b)
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F4 = − k2
0

4π

(
ln

(
k0b

4π

)
+ γE − 1

2

)
− kp

2

4π
− π

6b2
+ i

(
k2

0

8
− kx

2b

)
− 1

2b

∞∑
m=1

(
iqm + iq−m + 2gm − k2

0

gm

)
, (10c)

F6 = − k2
0

4π

(
ln

(
k0b

4π

)
+ γE + 1

2

)
+ kp

2

4π
+ π

6b2
+ i

(
k2

0

8
− kp

2

2bkx

)
− 1

2b

∞∑
m=1

(
i(kp − gm)2

qm

+ i(kp + gm)2

q−m

− 2gm − k2
0

gm

)
,

(10d)

where γE is the Euler constant, gm = 2πm/b, k2
0 = q2

m + (kp − gm)2(m ∈ Z). According to Eq. (2), the incident
fields at the center of the 0th cylinder, i.e., x = a/2, y = 0, are Einc = E0 exp(ikxa/2), H inc

x = kp

ωμ0
E0 exp(ikxa/2),

and H inc
y = − kx

ωμ0
E0 exp(ikxa/2). If we define P̃ = ω2μ0P exp(−ikxa/2)/E0, M̃x = ωμ0Mx exp(−ikxa/2)/E0, and M̃y =

ωμ0My exp(−ikxa/2)/E0, then Eq. (8) can be written as⎛
⎝ iP̃

M̃x

M̃y

⎞
⎠ =

⎛
⎜⎝

1
αM

+ F6 F3 0

−F3
ε0

k2
0αE

− F1 0

0 0 αM

1+F4αM

⎞
⎟⎠

⎛
⎝ i/ζ

kp/ζ

−kx

⎞
⎠, (11)

where ζ = ( 1
αM

+ F6)( ε0

k2
0αE

− F1) + F3
2. Up to this point, the only approximation is that we just keep the monopole and dipole

excitations of the dielectric cylinder. The scattering field of this layer of cylinders is expanded as a summation of plane waves with
the parallel component of the wave vector given by kp + gm. When all the diffraction terms with gm �= 0 are evanescent waves
and the interlayer distance is large enough for these diffraction terms to decay out, the dominant component of the scattering
field is the lowest order (gm = 0) plane wave term. We shall ignore all the higher order diffraction terms when dealing with
the interlayer scattering in order to build an EMT. We note here that we keep the complete summation in Eq. (10a) when we
are calculating the intralayer interaction. This approximation works when |kp ± 2π/b| > k0, in which case the x component of
the wave vector of the mth (m ∈ Z) diffraction term with gm �= 0 is given by

√
k2

0 − (kp − 2mπ/b)2 and is purely imaginary.
Close to the zone boundary |kp ± 2π/b| = k0, the decay length (inversely proportional to the imaginary part of the wave vector
along the x direction) of the ±1 order diffraction term becomes quite large, and hence this approximation becomes poor. This is
consistent with the fact that EMT approaches would typically fail when the wave vector approaches the zone boundary. Under
this approximation, the scattering field can be written as

�Es = ẑ
ik2

0

ε0

(
P

2bkx

+ Mxkp

2bωkx

− Mysgn(x − a/2)

2bω

)
exp(ikx |x − a/2| + ikpy), (12)

and the reflection field and transmission field are

�Er = iE0

2bkx

(
P̃ + M̃xkp + M̃ykx

)
ei(kxa+kpy)ẑ. (13)

�Et =
[

1 + i

2bkx

(P̃ + M̃xkp − M̃ykx)

]
E0e

i(kxa+kpy)ẑ. (14)

Then we obtain the reflection and transmission coefficient
at the virtual boundary in Fig. 1(b) as

r = i

2bkx

(P̃ + M̃xkp + M̃ykx)eikxa, (15)

t =
[

1 + i

2bkx

(P̃ + M̃xkp − M̃ykx)

]
eikxa. (16)

Up to now, we have solved the scattering problem of a
single column of identical cylinders analytically. Following
the approach of the retrieval methods [9–11], we look for a
layer of homogenous material with thickness a that has the
same r and t , and then solve for the effective parameters of
the homogenous material. Here, we intend to find the effective
refractive index (ne) and relative impedance (Ze) instead of
the effective relative permittivity and permeability usually
given in retrieval methods. The relative effective impedance
is defined as the ratio between the electric field along the
z direction and the magnetic field along the y direction, i.e.,

Ze = −Ez/(HyZ0), where Z0 is the impedance of vacuum and
the minus sign is used to ensure that Ze equals bulk impedance
when kp = 0. The value of effective impedance tells the re-
flection and transmission of a plane wave at a planar boundary
between two different materials. Ze depends on how the PC is
truncated. Different surfaces (different positions or directions)
of a PC have different values of impedance, and hence we
call it surface impedance. To be specific, the surface of a PC
is specified to be along the y direction and has a distance of
a/2 from the outermost column of cylinders. The effective
refractive index tells the phase delay inside the PC. As we use
the transmission and reflection coefficient at the boundary for
retrieval, there is a well-known uncertainly of 2mπ (m ∈ Z) in
the determination of the phase delay. After some mathematics,
we obtain ne and Ze as functions of ω and kp

Ze(ω,kp) = ±
√

(r + 1)2 − t2√
ε0 − kp

2/
(
k2

0μ0
)√

(r − 1)2 − t2
, (17)

ne(ω,kp) = ± 1

k0a
arccos

(
1 − r2 + t2

2t

)
+ 2π

k0a
m(m ∈ Z).

(18)

ñe(ω,kp) = ±
√

n2
e + k2

p/k2
0 . (19)
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Here, ne records the phase delay along the x direction,
and ñe can be interpreted as the bulk refractive index in the
low frequency limit. It can be proved that (see Appendix A),
if there is no absorption or gain in the system, Ze is purely
real or purely imaginary, while cos(nek0a) is purely real in
Eqs. (17) and (18). Let us consider a plane wave impinges on
a semi-infinite PC and the reflection coefficient is given by
r . From energy conservation consideration, |r| � 1, and this
in turn requires Re(Ze) � 0 since r = (z − 1)/(1 + z). On the
other hand, to ensure the amplitude of the transmitted wave
is finite at infinity, Im(ne) must be positive. If Ze is purely
imaginary, then |r| = 1 and is inside the gap region. Otherwise,
if Ze is purely real, it must be inside a passband and vice versa.
There are, however, some discrete points inside the passband
at which |r| = 1, and Ze equals 0 or ±∞. If |cos(nek0a)| � 1,
ne is purely real, and the corresponding frequency is inside the
passband; if |cos(nek0a)| > 1, the imaginary part of ne is not
zero, and the corresponding frequency is inside the bandgap
and vice versa.

It can also be proved that (see Appendix B) these effective
parameters retrieved from only one layer of a cylinder are the
same as those from several layers of a cylinder once the unit
cell chosen for retrieval has mirror symmetry relative to the
center of the unit cell and the higher order interlayer diffraction
terms can be ignored. In other words, the parameters are
independent of the number of layers for retrieval; we can hence
use the parameters retrieved from a single layer of cylinders
to describe a bulk PC.

III. COMPARISON WITH OTHER EMT METHODS

In the last section, we analytically derived an effective
medium description for 2D PCs for a rectangular lattice. In this
section, we will compare our layer EMT with conventional
EMTs, including CPA-based method [7], boundary EMT
[23,24], and parameter retrieval method [9–11,28–30]. We will
also compare with full wave simulations.

A. The low frequency limit

Let us start with the low frequency limit, the linear
dispersion region where both wave vector k and angular
frequency ω go to zero. Traditional EMTs [4–6] work in the
limit of k → 0 and ω → 0. More modern approaches, such
as the CPA-based method [7] and boundary EMT [23,24],
can extend the range of validity to higher frequencies and
can take care of resonances, but they should of course give
the same effective parameters when k → 0 and ω → 0. In
this part, we will compare our EMT (named layer EMT) with
the CPA-based method [7] and the boundary EMT [22,23].
In Figs. 2(a) and 2(b), the effective parameters (ne and Ze)
obtained using one implementation of the CPA-based method
[7], an improved version of the Maxwell-Garnett method
(open black circles), the boundary EMT [23,24] (solid blue
triangles), and the layer EMT (solid red line) are compared. In
this calculation, we consider a PC composed of a square lattice
(a = b) of cylinders with rc = 0.2a embedded in a vacuum.
We fix the angular frequency at ω = 0.02πc/a and vary the
relative permittivity of the cylinder εc. Parameters are chosen
such that condition nek0rc � 1 is satisfied as shown in the

(a)

(b)

Boundary EMT

0
e

c
n
k
r

en

Boundary EMT

eZ

cε

Layer EMT

Layer EMT

FIG. 2. (a) Effective refractive index and (b) effective relative
impedance as a function of the relative permittivity of the cylinders
(εc). The angular frequency and the radius of the cylinder (rc) are
0.02πc/a and 0.2a, respectively, where c is the speed of light in
a vacuum and a is the length of the square unit cell. The open
black circles, solid blue triangles, and solid red line show the results
calculated using the conventional CPA-based method, the boundary
effective media theory (BEMT), and our layer EMT, respectively. The
inset in (a) shows nek0rc as a function of εc.

inset in Fig. 2(a), where we plot nek0rc as a function of εc over
the parameter range we considered. As nek0rc � 1, the CPA
method and the boundary EMT should work well, which is also
confirmed as these two methods show exactly the same results
in Figs. 2(a) and 2(b). As said before, the layer EMT depends
on the angle of incidence. For a meaningful comparison with
other EMT methods, we consider the case kp = 0 (normal
incidence). The effective parameters obtained with our layer
EMT in Figs. 2(a) and 2(b) show exactly the same results as
the abovementioned two methods. So we can conclude that our
layer EMT satisfies the condition of giving the same results as
other formulations in the low frequency limit.

B. Beyond the low frequency limit with kp = 0

Next, we go beyond the low frequency limit while still
keeping kp = 0. We discuss the properties of the EMTs over
a large frequency range where the condition nek0rc � 1 is
not guaranteed for some frequency ranges. In this case, the
parameters of the square lattice PC are given by εc = 10, rc =
0.18a. We study the frequency dependence of the effective
parameters and then compare them with other methods.
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(a) (b)

ω
a/

2π
c

X 0cos( )en k a

Layer EMT

Boundary EMT

CPA

Layer KKR

FIG. 3. (a) Band dispersion along the �X direction. (b) Purple
line, red line, green triangles, and blue line show cos(nek0a) calculated
with the CPA method, our layer EMT, the layer KKR method, and the
boundary EMT, respectively. The dashed vertical black lines enclose
the region where |cos(nek0a)| � 1, which corresponds to the passband
region. In both (a) and (b), green and white backgrounds represent
the passband and gap region, respectively. The relative permittivity
and the radius of the dielectric cylinder are εc = 10 and rc = 0.18a,
respectively, where a is the length of the square unit cell.

First, let us start with the effective refractive index (ne). To
avoid choosing the branch in Eq. (18), here, we plot cos(nek0a)
instead of ne. The purple line, red line, green triangles, and
blue line in Fig. 3(b) represent the results calculated using the
CPA-based method [7], our layer EMT, the layer KKR method
[13–15], and the boundary EMT [23,24], respectively. Here,
we use Eq. (7) of Ref [7] when applying the CPA-based
method. The layer KKR method is only used inside the
band gap region as a complement to the boundary EMT as
the boundary EMT cannot be applied inside the band gap
(no eigenstate exists inside the band gap). In Fig. 3(b), the
boundaries of the region where |cos(nek0a)| � 1 are marked by
two black dashed lines. When |cos(nek0a)| > 1, the imaginary
part of ne is not zero, and this corresponds to the frequency
inside the band gap. We plot the band dispersion (solid black
lines) along the �X direction in Fig. 3(a), which can serve as
criteria on whether one EMT behaves well or not in predicting
the band edge frequencies. From this point of view, our layer
EMT gives good predictions on the band edge frequencies,
while the CPA method fails as the k vector moves away
from the zone center. This is because the CPA formulae are
derived under the assumption |nek0a| � 1, and this condition
is not satisfied near the first band gap. The CPA method
[7] and the boundary EMT [22,23] show resonance behavior
for the effective relative permittivity (permeability) at the
lower (upper) edge of the first band gap. Near the resonance
frequency, when the relative permittivity and permeability
have the same sign, ne is a large real number, and this
causes cos(nek0a) to oscillate quickly near the band edge.
This oscillation behavior comes from the artificially chosen
boundary in the CPA method and the boundary EMT, which
does not exist in the full wave simulation. This oscillation
behavior is also absent with our layer EMT method. For each
frequency inside the highest pass band [around ωa/(2πc) =

(a) (b) (c)

ω
a/

2π
c

X ( )Re eZ ( )Im eZ

Layer EMT
Retrieval
CPA

Layer EMT

CPA
Boundary EMT

FIG. 4. (a) Band dispersion along the �X direction. (b) Open
black circles, solid blue triangles, and red line show the real part of
the effective impedance [Re(Ze)] calculated using the CPA method,
BEMT, and our layer EMT, respectively. (c) Open black circles,
solid blue triangles, and red line show the imaginary part of the
effective impedance [Im(Ze)] calculated using the CPA method, the
retrieval method, and our layer EMT, respectively. The dashed vertical
black line in (c) represents Im(Ze) = 0. In (a)–(c), green and white
backgrounds represent the passband and gap regions, respectively.
The relative permittivity and the radius of the dielectric cylinder are
εc = 10 and rc = 0.18a, respectively, where a is the length of the
square unit cell.

0.7] in Fig. 3(a) [also in Fig. 4(a)], there are two eigenstates
for positive k corresponding to the quasilongitudinal and
transverse dipole modes [31]. Because the longitudinal dipole
mode couples poorly with the incident wave, we keep only
the transverse dipole mode to obtain the effective parameters
when using the boundary EMT. In Fig. 3(b), we choose not
to show the results obtained from the CPA method and the
boundary EMT inside the band gaps for the following reasons.
First, the boundary EMT works only inside the pass band
because one needs to obtain the eigenfield distribution [22,23]
when applying the boundary EMT, and there is no state inside
the band gap. Secondly, ne obtained from the CPA method
is a large imaginary number inside the first band gap, and
this means |cos(nek0a)| is huge inside the first band gap. The
imaginary part of ne tells the decay length inside the band gaps,
which can also be obtained using the layer KKR method. When
applying the layer KKR method, we obtain the eigenvalues of
the transfer matrix [32] of one layer for each frequency, and
we only keep the branch which decays most slowly, i.e., the
eigenwave vector with the smallest complex part. The results
are shown with green triangles in Fig. 3(b). Our layer EMT
is consistent with the layer KKR method inside the first band
gap, while it deviates a little inside the second band gap. This
deviation is due to the fact that we ignore all the higher order
diffraction terms in our study, and this approximation becomes
progressively less accurate when the frequency is high enough.

Let us now discuss the effective impedance (Ze). In
Figs. 4(b) and 4(c), we show the real and the imaginary part of
Ze, respectively. As a comparison, we also show the effective
parameters obtained from the CPA method, the boundary EMT
method, and the retrieval method. As proved in the last section,
Ze is purely imaginary inside the band gap and purely real
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FIG. 5. (a) Projected band along the interface direction (�̄X̄) of
the PC with parameters εc = 12.5 and rc = 0.22a for a square array of
cylinders embedded in a vacuum, with green representing pass bands
and white representing band gaps. (b) Imaginary part of the effective
surface impedance for the same PC. Blue for Im[Ze(ω,kp)] < 0,
green for Im[Ze(ω,kp)] = 0, and red for Im[Ze(ω,kp)] > 0. The
purple triangular region in (b) represents the region where higher
order diffraction terms are not all decaying waves. The numbers of
bandgaps are labeled in orange.

inside the pass band; we plot the band dispersion (solid black
line) along the �X direction in Fig. 4(a) as a reference. The
green background represents the pass band frequency range.
The frequencies where the surface impedance changes from
purely real to purely imaginary or vice versa are consistent
with the band edge frequencies. For the pass band regions, Ze

obtained with the boundary EMT and the layer EMT are almost
exactly the same, while that obtained with the CPA method
shows deviation close to the band edge. In particular, the CPA
method finds that Ze is still a real number for some frequencies
inside the first band gap [Fig. 4(b)]. This is also because the
CPA method works well only when |nek0a| � 1, and this
condition is not always satisfied [see Fig. 3(b), cos(nek0a) ≈ 1
only in limited frequency ranges]. Since the boundary EMT
does not work inside the band gaps, we use a retrieval method
to show the validity of Ze inside the band gaps. Since Ze

tells the reflection phase of a semi-infinite system inside the
band gap (reflection amplitude is one), we can calculate the
reflection phase to verify our layer EMT. We calculate the
reflection phase of a thick enough system (the majority of the
incident wave is reflected back) inside the band gaps with full
wave simulation using COMSOL and then retrieve the surface
impedance, and the results are shown with a green triangle.
Our EMT agrees well with the results retrieved from full wave
simulation.

C. EMT for kp �= 0

Now we will show that this layer EMT can still be applied
when kp �= 0. Here, we just compare the projected band
structures along the �̄X̄ direction calculated with full wave
simulation and our EMT, and the corresponding results are
shown in Figs. 5(a) and 5(b), respectively. The parameters of
the square lattice PC are given by εc = 10, rc = 0.18a. Taking
advantage of the fact that Ze is purely imaginary inside the

band gaps and purely real inside the passband, in Fig. 5(b),
we plot Im(Ze) as a function of ω and kp. Here, red, blue,
and green represent Im(Ze) > 0, Im(Ze) < 0, and Im(Ze) = 0,
respectively. Red and blue represent band gaps, and green
represents passband. The purple triangular region at the top
right of Fig. 5(b) is the region where not all the higher order
diffraction terms (gm �= 0) are decaying waves, and in this
region, the assumptions to build the layer EMT fail. Close
to the purple triangle, the role of higher order diffraction
modes becomes important, and the effective impedance is
not good. Apart from those regions and for the majority of
the region under consideration, our effective impedance gives
the salient features of the projected band structure. More
importantly, in addition to the projected band structure, the
effective impedance provides additional information for the
band gaps. Now we have two different band gaps, red and
blue, corresponding to gaps with Im(Ze) > 0 and Im(Ze) < 0,
respectively. This classification of band gaps is related to
the Zak phases of bulk bands [33,34], and it has important
implication in predicting the existence of surface states, which
we will discuss later.

D. Transmission spectra compared with full wave simulation

To further check the validity of the layer EMT, we calculate
the transmission spectrum (including both amplitude and
phase) of a PC slab of finite thickness consisting of eight
columns of cylinders inside the vacuum. Here, we consider
three different incident angles (θ ):θ = 0◦ for Figs. 6(a) and
6(b), θ = 30◦ for Figs. 6(c) and 6(d), and θ = 60◦ for Figs. 6(e)
and 6(f). Panels (a), (c), and (e) show the amplitude, and
panels (b), (d), and (f) show the phase. The parameters of the
square lattice PC are given by εc = 10, rc = 0.18a. The dashed
red line and solid blue line show, respectively, the results
calculated with our layer EMT and full wave simulation.
Purple represents the region where higher order diffraction
waves are not all decaying waves. Our layer EMT shows
perfect agreement with the full wave transmission spectra
when the working frequency is not too high or the incident
angle is small. We note in particular that both the amplitude
and phase are predicted correctly by the layer EMT up to
the first gap for a rather high incident angle of 60°. When
neither of these two conditions is well satisfied (near the purple
region), the roles of the higher order diffraction terms become
important, and thus our EMT is not accurate.

E. Relations with other EMTs

Our approach is different from the dynamic EMTs [18,19],
which are also developed for 2D lattices of cylinders. The
multipoles in dynamic EMTs are obtained through the integral
of the polarization current, which can in principle work
for arbitrary polarization current. On the other hand, we
only need the polarizabilities of the monopole and dipole
moments of a cylindrical scatter in our approach. Hence,
we just relate the polarizabilities with the Mie coefficients
and obtain the polarizabilities analytically. Dynamic EMTs
are intended to describe the bulk properties of 2D PCs,
and as such, the multiple scattering method is employed to
obtained the effective permeability and effective permittivity
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FIG. 6. Amplitude and phase of the transmitted waves through
eight columns of cylinders with the incident angles of incident waves
given by θ = 0◦ for (a) and (b), θ = 30◦ for (c) and (d), and θ = 60◦

for (e) and (f). The parameters of the PC used are given by εc = 10,
rc = 0.18a, and square lattice. The dashed red line and solid blue line
show the results calculated with our EMT and full wave simulation,
respectively. Purple rectangle covers the region where higher order
diffraction terms are not all decaying waves.

in the periodic PC, while our work focuses on describing
the surface properties of PCs and predicting the existence
of surface states, and so the multiple scattering technique
is employed to obtain an incident angle-dependent effective
surface impedance. As the dynamic EMT is concerned with
bulk properties, some form of field averaging needs to be
performed inside the unit cell of an infinite periodic system,
and the “effective” parameters are relevant for Bloch modes
traveling inside the PC. No field averaging is required in our
method. Our approach obtains the effective surface impedance,
which tells how a finite PC slab behaves when it is in contact
with the external world (e.g. how it reflects an incident wave or
whether surface/interface modes can be formed at a truncated
surface). Effective parameters from EMTs have also been
derived using the layer-KKR method [20–22]. These EMTs are
developed for PCs consisting of 3D scatters. While the local
effective permittivity and permeability tensors in these EMTs
are obtained through least-squares fits of data points [21,22],

we are more interested in developing closed forms of the
effective parameters to obtain the effective surface impedance,
which is relevant for a slab and are explicitly incident wave
vector dependent, and we made no attempt to formulate a
local effective medium for the bulk. More importantly, both
dynamic EMTs and EMTs based on layer-KKR are intended
to describe the bulk properties of PCs, while our work focuses
on describing the surface/interface properties of PCs and
predicting the existence of surface states.

IV. APPLICATION

We have compared the layer EMT with well-established
EMTs, like the CPA method, the boundary EMT, and full
wave simulations. In this section, we will discuss some of
the possible applications of the effective impedance we have
built. As Ze describes the surface properties of a PC, it has
important implications in predicting the existence of surface
states between PCs or between a PC and a homogenous
material like the vacuum.

It is well-known that it is difficult to create a surface
state localized at the surface of a truncated dielectric PC
without “decorating” the top layer of the PC [3]. Here, we
will use this effective impedance to explain the reason why
the surface state does not form easily at the PC/air interface.
While our explanation will be focused on the transverse
magnetic (TM) polarization (the electric field parallel to the
axis of the cylinders), the argument can be easily extended
to the transverse electric (TE) polarization. As the surface
state decays exponentially inside the vacuum, it must be
outside the light cone, requiring kp > k0, where kp is the
wave vector parallel to the surface and k0 is the wave
vector inside the vacuum. According to our definition, the
kp-dependent effective surface impedance of the vacuum is

given by −Ez/Hy = √
μ0/

√
(1 − k2

p/k2
0)ε0 [the surface is

assumed to be along the y direction as in Fig. 1(a)], which
is a negative imaginary number when kp > k0. The necessary
and sufficient condition for the existence of a surface state is
[33–35]

Im[ZR(ω,kp)] + Im[ZL(ω,kp)] = 0, (20)

where ZR/ZL is the surface impedance of the system on
the right-/left-hand side of the interface. Thus, to create a
surface state, the PC must provide a region of (ω,kp) where
Im[Ze(ω,kp)] > 0, since the effective surface impedance of
a vacuum is a negative imaginary number. According to our
layer EMT, a conventional full photonic band gap [see, for
example, band gap II near ωa/(2πc) = 0.4 in Fig. 5(b)]
does not satisfy this condition. There is indeed a red region
where Im[Ze(ω,kp)] > 0 as shown in Fig. 5(b), gap III near
ωa/(2πc) = 0.45. However, usually this red region is above
the light cone for materials commonly used to make PCs. To
illustrate these statements, we increase the permittivity of the
cylinder, and thus the projected band shifts downward globally.
After a critical value of the permittivity, the projected gap with
Im[Ze(ω,kp)] > 0 [red region in Fig. 5(b)] becomes partially
outside the light cone. In Fig. 7, we show one example with
surface states existing between a perfect square lattice PC
and a vacuum, where the parameters of the cylinders are
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Layer EMT

FIG. 7. The surface wave between a PC and a vacuum. The
relative permittivity and the radius of the cylinder in the PC are
εc = 45 and rc = 0.18a respectively, where a is the length of the
square unit cell. Green represents the projected band structure of the
PC along the interface (�̄X̄) direction calculated using the full wave
simulation, yellow represents the light cone of a vacuum, and white
represents the common band gap. The red line calculated using full
wave simulation, which shows the dispersion of the surface states
inside this system, and the blue circles are obtained with layer EMT.

given by εc = 45, rc = 0.18a. The green color marks the
passband of the projected band structure of the PC along the
interface (�̄X̄) direction, and yellow shows the light cone.
The surface impedance of the PC inside the band gap near
ωa/(2πc) = 0.31 satisfies Im[Ze(ω,kp)] > 0. As said before,
there should exist an interface state inside this common gap
region which is confirmed (the red line in Fig. 7) with the
full wave simulation (we use finite-difference time-domain
(FDTD) [36]). For a comparison, we also solve Eq. (20)
numerically using our layer EMT, and the results are shown
with the open blue circles. The blue circles confirm the
existence of surface state and can also qualitatively predict
the dispersion of the surface state. It might be strange at first
sight that the dispersion of surface state predicted with our
layer EMT (open blue circles) terminates before it reaches
the bulk projected band. This is because the effects of the
higher interlayer diffraction orders become important when
kp becomes larger. This can also be seen by comparing
Figs. 5(a) and 5(b), where gap III extends to the BZ boundary
in Fig. 5(a), while it closes before reaching the BZ boundary
in Fig. 5(b). To recap, the effective impedance we obtained
provides an explanation why, usually, there is no surface state
between a dielectric PC and a vacuum.

Besides giving the projected band structures and classifying
the band gaps, Im[Ze(ω,kp)] can also be used to predict the
dispersions of the surface waves when the approximations we
took are well satisfied. In Fig. 8, we study the surface state
between a PC and a homogenous media. As the frequency
of the surface state depends on the way we truncate the
PC, here, we terminate the PC so that the outermost unit
cell of the PC is a complete unit cell near the boundary as
shown in Fig. 8(a) (the distance between the boundary of
the homogenous media and the closest cylinder is half the
lattice constant along the x direction). If the termination of the

ω
a/

2π
c

ω
a/

2π
c

ω
a/

2π
c

kpa/2π

Layer EMT

(c)

(b)

(d)

(a)

Layer EMT

Homogenous mediaa
a a/2

y

x

Layer EMT

FIG. 8. (a) Construction of an interface between a PC and a
homogenous media. The system is periodic along the y direction,
and the PC and the homogenous media are both semi-infinite along
the x direction. (b)–(d) The interface states and the projected band
structures between a PC and different homogenous medias. The
parameters of the PC are εc = 12.5 and rc = 0.22a, where a is the
length of square unit cell. The relative permittivity and permeability
of the homogenous media are given by ε2 = 1 − (0.86πc/ωa)2,
μ2 = 1 for (b), ε2 = 1, μ2 = 1 − (πc/ωa)2 for (c) and ε2 = 1,
μ2 = 1 − (0.4πc/ωa)2 in (d), respectively. Green represents the
passband of the PC along the interface (�̄X̄) direction, yellow
represents the region where the wave is propagating wave inside
the homogenous media, and the white represents common band gap
region. Red lines show the dispersions of the surface states calculated
using full wave simulation, and the open blue circles are calculated
using our EMT.

system is not at exactly the middle point of two columns of
cylinders while still not near the cylinders, we only need to
add an additional phase due to the shift of boundary relative to
our current termination when calculating the dispersion of the
surface waves. However, when the termination of the boundary
is near the cylinder, then higher order interlayer diffraction
terms will become important, which also shift the dispersion of
the surface wave. The system is periodic along the y direction,
and the PC and the homogenous media are both semi-infinite
along the x direction. The parameters of the square lattice PC
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are εc = 12.5, rc = 0.22a. In Figs. 8(b)–8(d), we show the
interface states inside band gaps I to III of Fig. 5, respectively.
Here, green represents the projected band of the PC along
the �̄X̄ direction calculated with full wave simulations. The
relative permittivity and permeability of the homogenous me-
dia are set to be ε2 = 1 − (0.86πc/ωa)2, μ2 = 1 in Fig. 8(b),
ε2 = 1, μ2 = 1 − (πc/ωa)2 in Fig. 8(c), and ε2 = 1, μ2 =
1 − (0.4πc/ωa)2 in Fig. 8(d), respectively. The light yellow
regions in Figs. 8(b) and 8(d) represent the passbands of the
corresponding homogenous material (light yellow denotes the
region where Im[Z2(ω,kp)] = 0 for this homogenous media).
We can solve Eq. (20) numerically, and the results are shown in
Figs. 8(b)–8(d) with the open blue circles. For comparison, we
also give the exact dispersions of the surface waves (the solid
red lines) computed with the FDTD method [36]. Near the �

point, the EMT predicts the frequencies of surface states quite
well; when kp becomes larger, as the interlayer high-order
diffraction terms become important, the blue circles deviate
progressively from the red line.

V. DISCUSSION AND EXTENSION

Here, we discuss some of the extensions of this kind of
layer EMT and also some possible limitations.

Our layer EMT can apply from 1D to 3D PCs. In this
paper, we focus on 2D PCs. Our layer EMT is the same as the
retrieval method when considering 1D PCs (see e.g. Koschny
et al. [10]) with a single mirror symmetric unit cell. In 3D,
for a nonmagnetic particle, the lowest excitation is the dipole
mode, and hence the transmission and reflection spectrum can
be obtained with a layer of the dipole array, and the effective
parameters are then retrieved also using Eqs. (17)–(19).

In all the examples above, we assume a square lattice;
here, we discuss the case when the cylinder array consists
of a rectangular lattice (a �= b). In the cases of a rectangular
lattice, the PCs are intrinsically anisotropic in the xOy plane,
and the effective permittivity and permeability (if they can
be defined) become matrixes. As the x and y directions are
the principle axes of the PC under consideration, there are
no off-diagonal terms for the permittivity and permeability
matrixes. For the TM polarization (the electric field parallel to
the axis of the cylinder) under consideration and in the region
where the PCs can be described with effective permittivity and
permeability, the effective properties of the PCs are described
by {μx,μy,εz}. The surface impedance in Eq. (17) and ne

in Eq. (18) are equivalent to Ze = √
μy/εz and ne = √

εzμy ,
respectively. Note here, for the rectangular lattice, we still need
to ignore all the higher interlayer diffraction orders, and this
approximation should be better if a > b, but will fail faster
if a < b.

While we have considered the TM polarization, the method
can be easily extended to the TE polarization (the magnetic
field parallel the axis of the cylinder). In this case, the
lowest excitations of the cylinder are one magnetic monopole
and two in-plane (xOy plane) electric dipoles. Because the
Maxwell equations without source have the same form if we
change {ε,μ, �E, �H } to {μ,ε, �H, − �E}, the effective parameters
can be obtained from this transformation with no additional
effort. The only differences are the excitation strengths of the
monopole and dipoles due to the exchange of ε and μ.

If we consider the inverted structure, i.e., air cylinders
embedded in a dielectric background, the problem becomes
different. At low frequency, the energy is concentrated inside
the dielectric background instead of the air cylinder. The field
distribution in this case cannot be approximately described
with only the monopole and dipoles at the cylinder, and
higher multipoles must be involved. One needs to add higher
multipoles, and then the reflection and transmission spectrum
can be obtained accordingly [19]. The proof in Appendix B
in this case is still valid as long as we only keep the lowest
order diffraction term. There are, however, some disadvantages
introduced by the dielectric background: the frequency at
which higher order diffraction terms are not all decaying waves
(purple region in Fig. 5) becomes lower, and the effective phase
space of our EMT is squeezed. For a similar argument and to
reduce the effect of higher order interlayer diffraction terms,
we set the boundary of the unit cell inside the lower dielectric
material where the higher diffraction orders decay faster. If
the dielectric cylinders in the 2D PC are replaced by objects
with other shapes, our layer EMT still works as long as the
scattering properties of the objects are well described with the
monopole and dipole excitations.

VI. CONCLUSION

We developed an angular-dependent impedance analyti-
cally based on the layer KKR method combined with the
retrieval method. We assume that the response of the cylinder
can be described with the monopole and the dipole excitations,
and we ignore all the higher order interlayer scattering terms.
This layer effective impedance works well in the low frequency
limit. The method is useful for determining the existence
of surface states for PCs without the need to go through
large-scale calculations. The imaginary part of the effective
impedance can be used to predict the projected band structure,
and it is valid for the majority region of the first BZ as long
as our assumptions are still valid. The imaginary part of the
surface impedance gives us a classification of band gaps, which
is gap with either the positive or negative imaginary part of the
surface impedance. This gap classification also explains why
it is difficult to find surface states between a PC and a vacuum.
In the last part of this paper, we show that this layer EMT can
be used to find the dispersions of surface states between PCs
and homogenous materials.
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APPENDIX A: PARAMETERS FROM RETRIEVAL

Now we will show that Ze is purely real or purely imaginary,
and cos(nek0a) is purely real if the system has no absorption
or gain, which is an important property for an EMT.

From Eqs. (15) and (16), we have

t − r = (1 − iM̃y/b)eikxa. (A1)
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From Eq. (11), we have

1 − iM̃y/b = ikx/b + 1/αM + F4

(1/αM + F4)
. (A2)

Among the regions we consider, all the diffraction terms
with nonzero gm are evanescent waves, so qm is purely
imaginary for m � 1, and with Eq. (10c),

Im[F4] =
(

k2
0

8
− kx

2b

)
. (A3)

As the cylinder has no gain or loss, αM contains only the
scattering loss, and

Im[1/αM ] = −k2
0/8. (A4)

Combining Eqs. (A3) and (A4), we have

Im[1/αM + F4 + ikx/b] = −Im[1/αM + F4]. (A5)

So the dominator and numerator on the left-hand side of
Eq. (A2) have the same real part and opposite imaginary part,
which means that

|1 − iM̃y/b| = 1, (A6)

(t − r)(t∗ − r∗) = 1. (A7)

As the system has no gain or absorption, so from the
conservation of the total energy, we have

|t |2 + |r|2 = 1. (A8)

Together with Eq. (A7), we have

t∗r + tr∗ = 0. (A9)

Equation (A9) is an important intermediate result based
on which we can prove our argument that the effective
parameters from retrieval are purely real or purely imaginary.
One important factor should be noted here that Eq. (A9) is
based on the condition that the cylinders are at the center
of the unit cell. When the cylinders are not placed at the
center of the unit cell, the effective parameters would not
be purely real or purely imaginary, even when there is no
absorption or gain in the system. In this case, the parameter
retrieval from one column of cylinders and those from two
columns of cylinders would be different. Then to obtain a set
of meaningful effective parameters, one needs several columns
of cylinders for retrieval and also prove that the effective
parameters converge as the number of columns increase. Based
on Eq. (A9), it is easy to show that

Ze(ω,kp) is purely real or purely imaginary ⇔ ,

Im

[
(r + 1)2 − t2

(r − 1)2 − t2

]
= 0

Im[[(r + 1)2 − t2][(r∗ − 1)2 − (t∗)2]]

= 0

Im[(r − r∗)(1 − |r|2) + (t2r∗ − r(t∗)2)] = 0

Im[(r − r∗)|t |2 + (t2r∗ − r(t∗)2)] = 0

Im[(t − t∗)(t∗r + tr∗)] = 0

cos(nek0a) is purely real ⇔

(1 + t2 − r2)t∗ ∈ Reals

(t∗ + t) − r(t∗r + tr∗) ∈ Reals

Im(t∗r + tr∗) = 0

So Ze is purely real or purely imaginary, and cos(nek0a) is
purely real.

APPENDIX B: EQUIVALENT OF RETRIEVAL FROM ONE
COLUMN AND SEVERAL COLUMNS OF CYLINDERS

In this section, we will show that the effective parameters
retrieved from one column of cylinders and several columns
of cylinders are the same once the unit cell for retrieval has
inversion symmetry relative to the center of the unit cell. In
Fig. 9, we show a sketch of the idea of the retrieval method:
Fig. 9(a) is the real system, and Fig. 9(b) is the corresponding
equivalent system. The system is periodic along the y direction,
and here, for simplicity, we only show the sketch of retrieval
from one column of cylinders. Because we ignore all the
diffraction terms with gm �= 0, the relation between E

+(−)
L and

E
+(−)
R in Fig. 9(a) can be described by a transfer matrix, i.e.,(

E+
L (x = −a/2)

E−
L (x = −a/2)

)
= M1PC(a)

(
E+

R (x = a/2)
E−

R (x = a/2)

)
, (B1)

where M1PC(a) is a 2 × 2 matrix, the superscript 1PC
represents one column of cylinders, and a is the width of
the unit cell. When the unit cell of the real system is replaced
by the slab of effective media with the same width, as shown
in Fig. 9(b), the relation can be written as(

E+
L (x = −a/2)

E−
L (x = −a/2)

)
= M1e(a)

(
E+

R (x = a/2)
E−

R (x = a/2)

)
, (B2)

where M1e(a) is still a 2 × 2 matrix, the superscript le
represents effective media from one column of cylinders, and
a is the width of the slab. From the point of retrieval method,
we only need the reflection and transmission coefficients to be
the same, namely,

M1PC
11 = M1e

11 , M1PC
21 = M1e

21 . (B3)

a

,e eε μ

Unit cell

(a)

(b)

LE
−

LE
+

RE
+

RE
−

LE
−

LE
+

RE
+

RE
−

y
x

0 0,ε μ0 0,ε μ

0 0,ε μ 0 0,ε μ

FIG. 9. Sketch of the idea of the retrieval method, (a) the real
system and (b) the effective system. Both systems are periodic along
the y direction.
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For a unit cell with inversion symmetry relative to the center
of unit cell, one can have

M1PC
21 = −M1PC

12 . (B4)

which means that,

M1PC
12 = M1e

12 . (B5)

Then the transfer matrix in Eqs. (B1) and (B2) are exactly
the same, i.e.,

M1PC(a) = M1e(a). (B6)

So if we want to use the retrieval method with two columns
of cylinders, the transfer matrix reads

M2PC(2a) = M1PC(a)M1PC(a) = M1e(a)M1e(a) = M1e(2a).

(B7)

As the inversion symmetry still exists, from the retrieval
method, we still have

M2PC(2a) = M2e(2a). (B8)

Then combined with Eq. (B7), we have

M2e(2a) = M1e(2a). (B9)

So the effective parameters for 1- and 2-unit cells are the
same. For retrieval with more unit cells, the same argument
can be followed as above; so with the inversion symmetry, the
effective parameters retrieved from one column of cylinders
and several columns of cylinders are the same. For simplicity,
we only need to consider one column of cylinders for
retrieval.
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