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Tucker-tensor algorithm for large-scale Kohn-Sham density functional theory calculations
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In this work, we propose a systematic way of computing a low-rank globally adapted localized Tucker-tensor
basis for solving the Kohn-Sham density functional theory (DFT) problem. In every iteration of the self-consistent
field procedure of the Kohn-Sham DFT problem, we construct an additive separable approximation of the Kohn-
Sham Hamiltonian. The Tucker-tensor basis is chosen such as to span the tensor product of the one-dimensional
eigenspaces corresponding to each of the spatially separable Hamiltonians, and the localized Tucker-tensor basis
is constructed from localized representations of these one-dimensional eigenspaces. This Tucker-tensor basis
forms a complete basis, and is naturally adapted to the Kohn-Sham Hamiltonian. Further, the locality of this basis
in real-space allows us to exploit reduced-order scaling algorithms for the solution of the discrete Kohn-Sham
eigenvalue problem. In particular, we use Chebyshev filtering to compute the eigenspace of the Kohn-Sham
Hamiltonian, and evaluate nonorthogonal localized wave functions spanning the Chebyshev filtered space, all
represented in the Tucker-tensor basis. We thereby compute the electron-density and other quantities of interest,
using a Fermi-operator expansion of the Hamiltonian projected onto the subspace spanned by the nonorthogonal
localized wave functions. Numerical results on benchmark examples involving pseudopotential calculations
suggest an exponential convergence of the ground-state energy with the Tucker rank. Interestingly, the rank of
the Tucker-tensor basis required to obtain chemical accuracy is found to be only weakly dependent on the system
size, which results in close to linear-scaling complexity for Kohn-Sham DFT calculations for both insulating
and metallic systems. A comparative study has revealed significant computational efficiencies afforded by the
proposed Tucker-tensor approach in comparison to a plane-wave basis.
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I. INTRODUCTION

Electronic structure calculations within the Kohn-Sham
density functional theory (DFT) [1,2] have been very suc-
cessful in providing significant insights into a wide range
of materials properties over the past decade by enabling
quantum-mechanically informed studies on ground-state ma-
terials properties. The Kohn-Sham approach to DFT is based
on the key result by Hohenberg and Kohn [1] that the
ground-state properties of a materials system can be described
by a functional of electron density, which to date remains
unknown. However, Kohn and Sham [2] addressed this
challenge in an approximate sense by reducing the many-body
problem of interacting electrons to an equivalent problem of
noninteracting electrons in an effective mean field governed by
the electron density. This effective single-electron formulation
encompasses an unknown exchange-correlation term that in-
cludes the quantum-mechanical interaction between electrons,
which is modeled in practice, and the widely used models
have been successful in predicting a range of properties across
various materials systems.

However, the computational complexity of traditional
approaches of solving the Kohn-Sham problem scales as
O(M N2), where M denotes the number of basis functions and
N specifies the system size (number of atoms or number of
electrons). This enormous computational cost associated with
Kohn-Sham DFT calculations, approaching cubic scaling as
M ∝ N , has restricted the size and complexity of accessible
materials systems. Thus, to enable accurate large-scale DFT

calculations, it is desirable to develop computational methods
employing a systematically improvable and complete basis,
but which is also effective as that it can accurately capture the
electronic structure using a small number of basis functions
(small M). In addition, it is also desirable to develop computa-
tional methods that exhibit reduced-order scaling with system
size. To this end, this work develops an algorithm to construct
an efficient, yet complete, basis that is systematically adapted
to the Kohn-Sham Hamiltonian and combines this approach
with reduced-order scaling methods for the solution of the
Kohn-Sham problem to develop a computationally efficient
methodology for large-scale Kohn-Sham DFT calculations.

Among the complete basis sets employed in DFT calcula-
tions, the plane-wave basis [3–5] is the most widely used, and
is naturally suited for the computation of bulk-properties of
materials. Although the plane-wave basis provides variational
convergence in the ground-state energy with exponential
convergence rate, the computations are restricted to periodic
geometries with periodic boundary conditions. Furthermore,
the plane-wave basis functions are extended in real space, and
this limits the scalability of numerical implementations on
parallel computing architectures. The other widely employed
basis sets include the atomic-orbital-type basis functions [6–8],
which are reduced-order basis functions that provide good
accuracy with relatively few basis functions. However, these
basis sets do not constitute a complete basis and may not
offer systematic convergence for all materials systems. Also,
in some cases, parallel scalability across processors is limited
due to the nonlocality of these basis functions. Recent efforts
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have also focused on developing adaptive reduced-order basis
functions [9,10], which offers a promising direction to develop
computationally efficient large-scale DFT calculations.

Over the past few decades, systematically improvable real-
space techniques for DFT calculations have been an active area
of research. Some notable developments include discretization
techniques based on finite difference discretization [11,12],
wavelet basis [13,14], and finite element basis [15–19].
Among the real-space techniques, the finite element basis—
a piecewise polynomial basis—has desirable features such
as admitting general geometries and boundary conditions,
locality of the basis functions that supports development of
reduced-order scaling methods via localization, and good
parallel scalability. However, the number of basis functions
M required to achieve chemical accuracy is usually larger
in comparison to plane-wave basis and atomic-orbital basis.
Thus it is desirable to develop a basis that is systematically
improvable and complete such as plane waves, wavelets, or
finite elements, has locality in real space such as wavelets and
finite elements, is efficient such as atomic-orbital type basis,
and exhibits good parallel scalability.

In addition to developing efficient basis functions, many
efforts in the past decade have focused on developing algo-
rithms for the solution of Kohn-Sham equations that have a
reduced computational complexity. We refer to [20,21] for
a comprehensive review of these methods. These methods
usually exploit the locality [22] in representing the wave
functions directly or indirectly, by either computing the
single-electron density matrix (divide and conquer method
[23–25], Fermi-operator expansion type techniques [26–30],
density-matrix minimization [31,32], subspace projection type
methods [33,34]), or representing the density matrix in terms
of localized Wannier functions (Fermi-operator projection
method [35,36], orbital minimization approach [37,38]).
While these methods have been successful in achieving linear-
scaling complexity for materials systems with a band gap,
the computational complexity can deviate significantly from
linear scaling for metallic systems with vanishing band gaps.
The development of reduced-order scaling techniques which
can handle both insulating and metallic systems in a unified
framework is still an active area of research [26,27,29,30,34].

In this work, we exploit low-rank tensor-structured ap-
proximations [39,40] to develop a Tucker-tensor algorithm
for solving the Kohn-Sham equations. This constitutes con-
structing a complete, yet efficient localized Tucker-tensor basis
that is adapted to the Kohn-Sham Hamiltonian, and using
subspace-projected localization techniques for the solution of
Kohn-Sham equations in the Tucker-tensor basis. This work
has been inspired by recent studies on a posteriori numerical
analysis of the computed electronic structure of materials
systems [41], which revealed that tensor-structured approx-
imations based on canonical and Tucker type representations
[42–44] can provide low-rank approximations to the electronic
structure of a wide range of materials systems. Further, a
recent study [45] has shown that the Tucker rank required
to approximate the computed electronic structure of materials
is only weakly dependent on the system size, thus providing a
useful direction to exploit the low-rank Tucker approximation
for developing reduced-order scaling algorithms for DFT
calculations.

The key challenge in this work is to develop a systematic
procedure for computing the Tucker-tensor basis adapted to
the Kohn-Sham eigenvalue problem in order to efficiently
represent the a priori unknown Kohn-Sham wave functions.
To this end, for every self-consistent field (SCF) iteration of a
DFT calculation, we compute a spatially additive separable
approximation of the Kohn-Sham Hamiltonian and solve
for the 1D-eigenfunctions of the separable one-dimensional
Hamiltonians. Using a localization procedure [46], we con-
struct a one-dimensional nonorthogonal localized basis span-
ning the eigenspaces of the corresponding one-dimensional
Hamiltonians. We then construct the Tucker-tensor basis using
the tensor product of these one-dimensional localized basis
functions. The discrete Kohn-Sham eigenproblem is subse-
quently computed by projecting the continuous problem onto
the space spanned by this Tucker-tensor basis, where all the
operations are conducted using tensor-structured algorithms.
The eigenspace corresponding to the occupied states of the
discrete Kohn-Sham Hamiltonian is computed by Cheby-
shev filtering followed by the computation of nonorthogonal
localized wave functions (represented in the Tucker-tensor
basis) spanning the eigenspace. The relevant quantities such
as the density matrix, the electron-density, and the band
energy are computed via Fermi-operator expansion of the
subspace-projected Hamiltonian onto the space spanned by
the nonorthogonal localized wave functions.

The proposed Tucker-tensor approach constructs a lo-
calized tensor-structured basis adapted to the Kohn-Sham
Hamiltonian in every SCF iteration and consequently deviates
significantly from the usual fixed spatial basis sets currently
employed in DFT calculations. The complexity estimates
suggest that the proposed algorithm scales linearly with system
size if the discretized matrices in the localized Tucker-tensor
basis and the localized wave functions are sufficiently sparse
(realized for large-scale materials systems). Even in the case
where the sparsity is not realized, like relatively smaller
materials systems, reduced-order scaling with system size is
obtained if the Tucker-rank remains only weakly dependent
on the system size.

In order to assess the accuracy and performance of the
proposed Tucker-tensor algorithm, we conduct benchmark
pseudopotential calculations on both metallic and insulating
systems. In all our benchmark studies, we observe an ex-
ponential convergence in the ground-state energy with the
Tucker rank. Further, we find that the number of Tucker-
tensor basis functions required to obtain chemical accuracy
grows sublinearly with the system size, both for metallic and
insulating systems. Interestingly, the Tucker rank, and hence
the number of Tucker-tensor basis functions, was insensitive
to significant perturbations in the electronic structure—such
as those resulting from introducing random vacancies in a
nanocluster. The computational time for these benchmark
calculations suggests a close to linear-scaling complexity
with respect to the system size for both metallic and in-
sulating systems, which is closely related to the sublinear
dependence on the number of Tucker-tensor basis functions
with the system size. In the limit of very large system sizes,
the required number of Tucker-tensor basis functions will scale
linearly with system size. However, a sufficient increase in
the system size renders the matrices involved in the proposed
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algorithm sparse, owing to the locality in the Tucker-tensor
basis and the wave functions, which in turn results in a linear-
scaling computational complexity of the proposed approach.
A comparative study of the proposed approach on modest-size
benchmark calculations suggests that the number of Tucker-
tensor basis functions required to achieve chemical accuracy
is about five times lower than the number of plane-wave basis
functions, and offers about a three to fourfold computational
speedup compared to plane-wave discretizations.

The remainder of this article is organized as follows. We
begin by recalling some fundamentals of tensor-structured
techniques in Sec. II, followed by the real-space formulation
of the Kohn-Sham density functional theory in Sec. III.
We then discuss the proposed Tucker-tensor algorithm for
Kohn-Sham DFT in Sec. IV followed by the numerical results
on benchmark problems in Sec. V. We conclude with an
outlook on future developments in Sec. VI.

II. LOW-RANK TENSOR APPROXIMATIONS

Tensors, when represented efficiently by a small number of
parameters, have significant advantages in terms of reducing
the storage and computational costs in a variety of applications.
For convenience, we recall here some fundamental concepts
of the tensor-structured methods and refer to [39,42–44] for
a comprehensive review. For convenience, we restrict our
presentation here to tensors of order three.

Let A be a real-valued tensor of order three,

A = (
ai1i2i3

) ∈ V, (1)

where (i1,i2,i3) ∈ ×3
k=1Ik with nonempty finite index sets I1,

I2, I3 ⊂ N, and V := ×3
k=1Vk with Vk := R|Ik |.

The simplest decomposition of a given tensor is the
canonical decomposition [44], given by a linear combination
of rank-1 tensors

A ≈ A(R) =
R∑

i=1

civ
(1)
i ⊗v

(2)
i ⊗v

(3)
i , (2)

where {v(k)
i }Ri=1 is a set of orthonormal vectors for k =

1,2,3. The parameter R in the decomposition is called the
canonical rank of the tensor approximation. The storage cost
of the tensor A in the canonical representation is O(R n),
where n := maxk=1,2,3 |Ik| denotes the univariate grid size.
However, the computation of this decomposition is a NP-hard
and ill-posed problem [47]. Fast and stable algorithms for
reducing arbitrary full-size tensors to the canonical format
with controlled accuracy are lacking.

On the other hand, robust algorithms for the representation
of the full-size tensors in the rank-structured Tucker-tensor
format are available, and thus this is the preferred tensor-
structured format in this work. The rank (r1,r2,r3)-Tucker
representation (approximation) of A is given by

A(r) =
r1∑

l1=1

r2∑
l2=1

r3∑
l3=1

βl1l2l3v
(1)
l1

⊗v
(2)
l2

⊗v
(3)
l3

. (3)

In Eq. (3), for each k ∈ {1,2,3}, {v(k)
lk

}1�lk�rk
constitutes an

orthonormal basis of Tk := span1�lk�rk
v

(k)
lk

with dimTk = rk .
The coefficients tensor β := (βl1l2l3 ) ∈ Rr1×r2×r3 is called the

core tensor. As shown in Ref. [41], the Tucker approximation
error of the electronic structure of molecular systems decays
exponentially with increasing Tucker rank r := maxk=1,2,3 rk .
Further, the overall storage cost of A(r) is bounded by r3 +
3rn. Since usually r � n, this leads to an impressive data
compression [41,45]. Furthermore, A(r) can be computed from
A by a minimization procedure,

A(r) := argmin
A∈Tr

‖A − A‖2
F , (4)

where ‖A‖F =
√

tr(AT A) is the Frobenius norm. One method
for solving the minimization problem in Eq. (4) is the
alternating least squares (ALS) algorithm [44], and we refer
to [40,43] for other algorithms.

The Tucker-tensor approximation discussed above becomes
unattractive in higher dimensions due to the exponentially
growing memory requirements for storing the core tensor
when dealing with larger dimensions. This has motivated
alternative tensor-structured formats like tensor trains (TT)
[48,49], wherein a d-dimensional tensor A = (ai1i2i3...id ) is
approximated as

A ≈
∑

α1,α2,··· ,αd−1,αd

G
(1)
i1α1

G
(2)
α1 i2 α2

. . . G
(d)
αd id

, (5)

where auxiliary indices αk vary from 1 to rk and rk are
called compression ranks or simply TT ranks. The basic
arithmetic and storage involved in the TT approach is linear
in dimension d and polynomial in r = maxk rk . We also note
that more-general tensor decomposition approaches like the
hierarchical tensor representation [50–52] and tree tensor
network states [53,54] have been proposed to reduce the
computational complexity and storage costs of the tensor-
structured representations.

In this work, as explained in Sec. IV, we focus on
developing a methodology to compute a Tucker-tensor basis
that effectively represents the single-electron wave functions
spanning the occupied eigenspace of the Kohn-Sham Hamil-
tonian. We restrict ourselves in this work to the Tucker-tensor
format since the single-electron wave functions are functions
in a three-dimensional space where the Tucker-tensor format
is efficient. Furthermore, the underlying representation of the
Tucker-tensor format provides a convenient way of computing
the Galerkin projection of the continuous Kohn-Sham problem
into the computed Tucker-tensor basis as discussed subse-
quently.

III. THE KOHN-SHAM DENSITY FUNCTIONAL THEORY

In Kohn-Sham density functional theory (DFT) [2,55], the
variational problem of evaluating the ground-state properties
of a given materials system consisting of Ne electrons and
Na atomic nuclei located at R = (Rj )1�j�Na is equivalent
to solving the nonlinear eigenvalue problem for N > Ne/2
smallest eigenvalues(− 1

2∇2 + Veff(�,R)
)
ψi = εiψi, i = 1,2, . . . ,N, (6)

where εi and ψi denote the eigenvalues and the corresponding
eigenfunctions (canonical single particle wave functions) of
the Hamiltonian, respectively. In the present work, for the
sake of simplicity, we discuss the formulation in a nonperiodic
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setting restricting ourselves to spin-independent Hamiltonians.
However, the present discussion as well as the ideas proposed
subsequently can easily be generalized to periodic or semiperi-
odic materials systems and spin-dependent Hamiltonians.

The electron density—a central quantity in DFT—at any
spatial point x = (x1,x2,x3) in terms of the canonical wave
functions is given by

�(x) = 2
N∑

i=1

f (εi,μ)|ψi(x)|2, (7)

where f (ε,μ) ∈ [0,1] is the orbital occupancy function, and
μ represents the Fermi energy which is computed from the
constraint that the total number of electrons in the system is Ne.
In ground-state DFT calculations, it is common to represent f

by the Fermi distribution f (ε,μ) = 1/(1 + exp[(ε − μ)/σ ]),
which tends to a Heaviside function as the parameter σ ↘ 0.

In Eq. (6), the effective single-electron potential in the
Hamiltonian is given by

Veff(�,R) := δExc

δ�
+ δEH

δ�
+ Vext(R)

= Vxc(�) + VH(�) + Vext(R). (8)

In the above, Exc represents the exchange-correlation energy
that accounts for quantum-mechanical interactions between
electrons, and we adopt the widely used local density approxi-
mation (LDA) [56,57]. The Hartree energy, EH, represents the
classical electrostatic interaction energy between the electrons
and is given by

EH(�) := 1

2

∫
R3

∫
R3

�(x′)�(x)

|x − x′| dx′ dx = 1

2

∫
R3

VH(�)�(x) dx.

(9)
Finally, Vext(R) denotes the external electrostatic potential
corresponding to the nuclear charges. In this work, we adopt
the commonly used pseudopotential approach, where only
the valence-electron wave functions are computed. The pseu-
dopotential, which provides the effective nuclear electrostatic
potential Vext(R) for the valence electrons, is commonly
represented by the operator Vext = Vloc + Vnl, where Vloc

is the local part and Vnl is its nonlocal part. Using the
norm-conserving Troullier-Martins pseudopotentials [58] in
the Kleinman-Bylander form [59], the action of these operators
on a Kohn-Sham wave function in real space is given by

Vloc(x,R)ψ(x) : =
Na∑

J=1

V J
loc(x − RJ )ψ(x),

Vnl(x,R)ψ(x) : =
Na∑

J=1

∑
lm

CJ
lmϕJ

lm(x − RJ )
V J
l (x − RJ ),

(10)

where


V J
l (x − RJ ) := V J

l (x − RJ ) − V J
loc(x − RJ ),

CJ
lm : =

∫
ϕJ

lm(x − RJ )
V J
l (x − RJ )ψ(x) dx∫

ϕJ
lm(x − RJ )
V J

l (x − RJ )ϕJ
lm(x − RJ ) dx

.

In the above, V J
l (x − RJ ) denotes the pseudopotential com-

ponent of atom J corresponding to the azimuthal quantum
number l, V J

loc(x − RJ ) is the corresponding local potential,
and ϕJ

lm(x − RJ ) is the corresponding single-atom pseudo-
wave-function with azimuthal quantum number l and magnetic
quantum number m.

For given positions of nuclei, the system of equations
corresponding to the Kohn-Sham eigenvalue problem is

Hψi = εiψi,

2
N∑

i=1

f (εi,μ) = Ne, �(x) = 2
N∑

i=1

f (εi,μ)|ψi(x)|2, (11)

where

H := ( − 1
2∇2+Vxc(�)+VH(�)+Vloc(x,R)+Vnl(x,R)

)
.

(12)
As the HamiltonianH depends on �, which in turn is computed
from the eigenfunctions of H, the system of equations in
Eq. (11) is solved by a self-consistent field (SCF) iteration
in a suitable basis. Upon self-consistently solving the Kohn-
Sham eigenvalue problem, the ground-state energy is given
by

Etot = 2
N∑

i=1

f (εi,μ)εi + Exc(�) −
∫
R3

Vxc(�)� dx

− 1

2

∫
R3

�VH(�) dx + 1

2

Na∑
I,J=1
I �=J

ZIZJ

|RI − RJ | .

Therein, the last term on the right denotes the nuclear-nuclear
repulsive energy EZZ with ZI denoting the valence charge of
the I th nucleus.

IV. TUCKER-TENSOR ALGORITHM FOR DFT

We now present a Tucker-tensor algorithm for the solution
of the Kohn-Sham equations that has reduced computational
complexity in comparison to conventional approaches. In
every cycle of the SCF iteration, the proposed algorithm
provides a prescription to compute a nonorthogonal locally
adapted Tucker-tensor basis using a separable approximation
of the Hamiltonian. The Kohn-Sham eigenvalue problem
is subsequently solved by projecting the problem onto the
span of this computed Tucker-tensor basis, and by com-
puting the eigenspace corresponding to the occupied states
using Chebyshev filtering techniques. Let �(n) denote the
input electron density to the nth SCF iteration and Hn ≡
H(�(n)(x),R) be the corresponding Hamiltonian. The proposed
Tucker-tensor algorithm consists of the following key steps
with specific details discussed subsequently. (1) Construct
a separable approximation of the Hamiltonian by using one
of two proposed competing variational methods (outlined
below),

Hx + Hy + Hz ∼ Hn. (13)

(2) Compute rd one-dimensional eigenfunctions for Hx , Hy ,
Hz represented on a finite element grid, and subsequently
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employ a localization procedure to evaluate nonorthogo-
nal localized basis functions spanning the eigensubspaces
in each spatial dimension. (3) Compute a nonorthogo-
nal localized Tucker-tensor basis TL := (T L

ijk)1�i,j,k�rd
as

the tensor-product of the one-dimensional localized basis
functions of step 2. (4) Compute the projection Hn

h of Hn

onto TL. (5) Employ Chebyshev filtering to compute the
approximate occupied eigensubspace of Hn

h corresponding
to the lower end of the eigenspectrum comprising of oc-
cupied states and a few unoccupied states above the Fermi
energy. Subsequently, localize the Chebyshev filtered wave
functions by utilizing a nonorthogonal localization procedure
as described in Ref. [34]. (6) Project Hn

h onto the occupied
eigensubspace of Hn

h represented by the localized Chebyshev
filtered wave functions. Employ a Fermi-operator expansion of
this subspace-projected Hamiltonian to compute the relevant
quantities of interest such as the density matrix, the output
electron-density and the ground-state energy. Then proceed
with the SCF iteration.

We now begin to discuss various details of the proposed
algorithm. Let the domain be cuboidal, i.e., � = ×3

k=1 ωk with
one-dimensional bounded real sets ωk , and enclose the com-
pact support of the Kohn-Sham wave functions. We discretize
ωk by using isoparametric 1D finite elements, and represent
functions on ωk by using finite element basis functions—the
piecewise polynomial functions constructed from the finite
element discretization [60]. We denote by nk (for k = 1,2,3)
the dimension of the finite element space discretizing ωk , or,
in other words, the number of finite element basis functions in
each spatial dimension k. In the present work, we use a higher-
order finite element discretization with polynomial degree
p > 2. We note that, while the ideas presented in this work are
equally applicable to any basis, the choice of the finite element
basis is motivated by the locality of the basis and its adaptive
capability.

Given the input electron density to the nth SCF iteration,
�(n)(x), we begin by computing the local effective potential
on �,

V loc
eff (x) := Vxc(�(n)(x)) + VH(�(n)(x)) + Vloc(x). (14)

We note that the evaluation of VH [cf. Eq. (9)] involves the
computation of a 3D convolution integral. To this end, for
chosen rank r� ∈ N and x′ = (x ′

1,x
′
2,x

′
3), we first compute the

rank-r� Tucker-tensor decomposition of the density �(n)(x)
as

�(n)(x′) ≈
r�∑

i,j,k

σ
(n)
ijk �

(n)
i (x ′

1)�(n)
j (x ′

2)�(n)
k (x ′

3). (15)

Next, we approximate the kernel |x − x′|−1 by a series
of Gaussians (see Ref. [61], where also the values of
αp, βp are tabulated), and obtain for a rank parameter
T ∈ N,

1

|x − x′| ≈
T∑

p=1

αpe−βp(x1−x ′
1)2

e−βp(x2−x ′
2)2

e−βp(x3−x ′
3)2

. (16)

Thus the computation of VH(�(n)) reduces to the computation
of a series of 1D convolution integrals, as

VH(�(n)(x)) =
∫

�

�(n)(x′)
|x − x′| dx′

≈
T∑

p=1

αp

r�∑
i,j,k

σ
(n)
ijk

[ ∫
ω1

�
(n)
i (x ′

1)e−βp(x1−x ′
1)2

dx ′
1

×
∫

ω2

�
(n)
j (x ′

2)e−βp(x2−x ′
2)2

dx ′
2

×
∫

ω3

�
(n)
k (x ′

3)e−βp(x3−x ′
3)2

dx ′
3

]
. (17)

Upon evaluating VH , we compute V loc
eff given by Eq. (14).

Further, to aid the evaluation of terms arising in subsequent
computations, we compute the rank-rv Tucker-tensor decom-
position of V loc

eff , denoted by V̂ loc
eff (x). For the same reason,

by evaluating the rank-rv Tucker-tensor decomposition of
the atom-centered pseudopotential and pseudo-wave-function
components, we compute the tensor-structured approximation
of the nonlocal part of the pseudopotential operator and denote
this by V̂nl(x,R).

A. Separable approximation of Hn

We now explain step 1 of the Tucker-tensor algorithm in
more detail and present two methods to compute the additive
separable approximation of Hn. One of the proposed methods
is based on a rank-1 approximation of the eigenfunction
corresponding to the lowest eigenvalue of the Kohn-Sham
Hamiltonian, while the second method involves an additive
separable approximation of the Kohn-Sham potential Veff.
While the first method is applicable to both local and
nonlocal pseudopotentials, the latter is restricted to local
pseudopotentials, only.

a. Method I. Rank-1 decomposition of wave functions. We
start with the ansatz for the eigenfunction,

ψ(x) :=
3∏

k=1

ψk(xk), (18)

and denote by X the function space of all one-time (weakly)
differentiable rank-1 functions in �. The problem of comput-
ing the smallest eigenvalue of the Kohn-Sham Hamiltonian
[Eq. (12)] in the function space X is equivalent to the
variational problem

min
ψ∈X

L(ψ), (19)

with the Lagrangian

L(ψ) : = 1

2

∫
�

⎡⎢⎣ 3∑
p=1

|∂xp
ψp(xp)|2

3∏
q=1
q �=p

ψ2
q (xq)

+ 2
(
V̂ loc

eff (x) + λ
) 3∏

k=1

ψ2
k (xk)

+ 2
3∏

k=1

ψk(xk)V̂nl(x,R)
3∏

k=1

ψk(xk)

⎤⎥⎦ dx.
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Here, λ is a Lagrange multiplier corresponding to the constraint

3∏
k=1

∫
ωk

ψ2
k (xk) dxk = 1. (20)

Minimizers of (19) satisfy the Euler-Lagrange equations
δL(ψ)
δψk

= 0 for k = 1,2,3. Hence the minimizers ψk are the
solutions of the one-dimensional problems[

−1

2

d2

dx2
k

+ V loc
k (xk)

mk

+ V nl
k (xk)

mk

]
ψk(xk)

= −
(

λ + ak

2mk

)
ψk(xk), (21)

where we introduced the one-dimensional quantities

V loc
k (xk) : =

∫
ω̂k

V̂ loc
eff (x)

3∏
j=1
j �=k

ψ2
j (xj ) dx̂k,

mk : =
∫

ω̂k

3∏
j=1
j �=k

ψ2
j (xj ) dx̂k,

ak : =
∫

ω̂k

3∑
p,q=1

p �=q; p,q �=k

∣∣∂xp
ψp(xp)

∣∣2
ψq(xq) dx̂k,

V nl
k (xk)ψk(xk) : =

Na∑
J=1

∑
lm

γ J
lm νJ

lm F
J,k
lm (xk) with

F
J,k
lm (xk) : =

∫
ω̂k

ϕ̂J
lm(x−RJ )̂
V J

l (x−RJ )
3∏

j=1
j �=k

ψj (xj ) dx̂k,

γ J
lm : =

∫
ωk

F
J,k
lm (xk)ψk(xk) dxk,

(
νJ

lm

)−1
: =

∫
�

ϕ̂J
lm(x − RJ )̂
V J

l (x−RJ )ϕ̂J
lm(x−RJ ) dx,

with notations

dx̂1 := dx2 dx3, dx̂2 := dx1 dx3,

dx̂3 := dx1 dx2, ω̂k := X 3
j=1
j �=k

ωj.

In the above expressions, ̂
V J
l and ϕ̂J

lm denote the rank-rv

Tucker-tensor decomposition of 
V J
l and ϕJ

lm, respectively.
We note that the integrals involved in the above expressions
reduce to a product of integrals in one dimension owing to
the tensor-structured representation of all field quantities, thus
rendering the computational complexity of evaluating these
terms very low.

The minimizing functions ψk(xk) obtained from the self-
consistent solution of (21) are fixed to construct the one-
dimensional potentials V loc

k and V nl
k . The eigenfunctions of the

resulting one-dimensional Hamiltonians in Eq. (21) are then
used to construct the Tucker-tensor basis after localization, see
Sec. IV B below.

b. Method II. Weighted residual minimization. In this
method, which is restricted to local pseudopotentials, we

construct an additive separable approximation of V loc
eff by

solving the weighted residual minimization problem

min
V loc

k ∈L1(ωk) 1�k�3

∫
�

w(x)

[
V̂ loc

eff (x) −
3∑

l=1

V loc
l (xl)

]2

dx, (22)

where w(x) ∈ L2(�) represents a nonnegative weight func-
tion. We then construct the one-dimensional Hamiltonians
for k = 1,2,3 as Hk := − 1

2
d2

dx2
k

+ V loc
k (xk) resulting in the

one-dimensional eigenvalue problems

Hkξk,i = εk,iξk,i . (23)

The weight is chosen as w(x) :=|�(n)(x)|α with α :=1 to
penalize the error in the separable approximation of V̂ loc

eff (x) in
the vicinity of atoms where the electron density is higher in
comparison to the regions far away from the atoms.

B. Construction of a 3D Tucker-tensor basis TL

The methods outlined in Sec. IV A provide a systematic
approach to constructing an additive separable approxima-
tion to the Kohn-Sham Hamiltonian. Solving the eigenvalue
problems [Eq. (21) for method I or Eq. (23) for method
II], we compute the eigenfunctions associated with the one-
dimensional Hamiltonians in each spatial dimension. We re-
mark that the one-dimensional eigenfunctions thus computed
form a complete basis for admissible functions on each ωk .
In the discrete numerical setting, we compute rd1 , rd2 , rd3

eigenfunctions corresponding to the lowest eigenvalues of the
one-dimensional Hamiltonians in x1, x2, x3 spatial directions,
respectively. For the sake of notational simplicity in presenting
our ideas, we assume rd1 = rd2 = rd3 =: rd . We denote by
(ξk,i)1�i�rd

the eigenfunctions in the direction k spanning the
spaceVrdk for k = 1,2,3. The three-dimensional Tucker-tensor
basis for the Kohn-Sham DFT problem can thus be constructed
as a tensor product given by

T := {Tabc}1�a,b,c�rd
:= {ξ1,aξ2,bξ3,c}1�a,b,c�rd

. (24)

However, the eigenfunctions (ξk,i)1�i�rd
have a global support

on ωk , thereby rendering the support of the corresponding
three-dimensional Tucker-tensor basis global on �. The global
nature of these functions results in dense matrices for the
Kohn-Sham DFT problem, which is not desirable. To this end,
we construct a localized representation of the Tucker-tensor
basis {Tabc}1�a,b,c�rd

by localizing the 1D eigenfunctions
(ξk,i)1�i�rd

around the atomic locations in each of the spatial
directions xk for k = 1,2,3. Various localization procedures
employing nonorthogonal localized functions [37,62–64] have
been proposed in the context of electronic structure calcula-
tions, which have better localizing properties than orthogonal
functions. In the present work, we adopt the weighted L2

localization technique proposed in E et al. [46] to construct
the localized 1D basis-functions spanning the eigenspace
Vrdk for k = 1,2,3. However, we note that other localization
procedures such as those proposed in Ref. [65] can also
be used. We obtain the localized basis by solving for each
k = 1,2,3 the minimization problem

argmin
φ∈Vrdk , ‖φ‖=1

∫
ωk

w(xk)|φ(xk)|2 dxk. (25)
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Here, w(xk) � 0 is chosen to be a smooth weighting function
of the form |xk − bIk

|2, and bIk
denotes a localization center.

Such a choice of w(xk) minimizes the spread of the basis-
functions from a localization center. In the present work, the
localization center bIk

is chosen to be the kth direction atom-
coordinate RIk

corresponding to the I th atom for k = 1,2,3.
Let rIk

denote the number of localized functions we desire
to compute at every atom-coordinate RIk

. Representing the
localized function as

φ(xk) =
rdk∑
i=1

αiξk,i(xk) ∈ Vrdk , (26)

the minimization problem in Eq. (25) is equivalent to solving
the generalized eigenvalue problem in each spatial direction k

for the smallest rIk
eigenvalues,

GIkα = λα, (27)

where for i,j = 1, . . . ,rdk

G
Ik

ij :=
∫

ωk

∣∣xk − RIk

∣∣2
ξk,i(xk) ξk,j (xk) dxk . (28)

In the present work, we choose rIk
corresponding to the I th

atom such that
∑

I rIk
= rdk

. We note that we can rewrite GIk

in Eq. (28) in matrix notation as

GIk = LT
b KIk

b Lb, (29)

where (·)T is the matrix transpose, the columns of the matrix
Lb correspond to the finite element nodal values of the
eigenfunctions {ξk,1(xk),ξk,2(xk), . . . ,ξk,rdk

(xk)}, and(
KIk

b

)
ij

:=
∫

ωk

∣∣xk − RIk

∣∣2
Ni(xk)Nj (xk) dxk, (30)

with Ni denoting the finite element basis function correspond-
ing to node i.

Upon solving Eq. (27) for each Ik , we represent the
computed localized one-dimensional functions spanning Vrdk

by (φk,i)1�i�rd
. Thus the three-dimensional localized Tucker-

tensor basis functions for solving the Kohn-Sham DFT
problem are constructed to be

TL := {
T L

abc

}
1�a,b,c�rd

:= {φ1,aφ2,bφ3,c}1�a,b,c�rd
. (31)

In practice, we use a truncation tolerance to achieve a compact
support for (φk,i)1�i�rd

, and consequently for {T L
abc}1�a,b,c�rd

.

C. Discrete Kohn-Sham eigenvalue problem

The projection of Hn onto ×3
k=1 V

rdk , denoted by Hn
h,

expressed in the localized Tucker-tensor basis TL is given by(
Hn

h

)
(ijk),(abc) :=

∑
p,q,r

〈
T L

ijk

∣∣T L
pqr

〉−1〈
T L

pqr

∣∣Hn
∣∣T L

abc

〉
. (32)

We note that it is convenient to approximate the Kohn-Sham
potential Veff [Eq. (8)] using a Tucker-tensor decomposition,
which reduces all integrals involved in Eq. (32) to products
of one-dimensional integrals, and is used in the present work.
The discrete Kohn-Sham eigenvalue problem in the localized
Tucker-tensor basis is given by the non-Hermitian standard
eigenvalue problem

H̃� i = εh
i � i , (33)

with H̃ := M−1H, where H denotes the discrete Hamiltonian
matrix with matrix elements HIJ and M denotes the overlap
matrix arising because of the nonorthogonality of the localized
Tucker-tensor basis functions with matrix elements MIJ for
subscripts I,J ∈ ×3

k=1{1, . . . ,rdk
}. By εh

i we denote the ith

eigenvalue corresponding to the discrete eigenvector � i in
Eq. (33) expressed in the localized Tucker-tensor basis TL.
The matrix elements MIJ and HIJ are given by

MIJ : =
∫

�

T L
I (x) T L

J (x) dx, (34)

HIJ : = 1

2

∫
�

∇T L
I (x)·∇T L

J (x)dx +
∫

�

T L
I (x)V̂ loc

eff (x)T L
J (x)dx

+
∫

�

T L
I (x)V̂nl(x,R)T L

J (x) dx, (35)

with V̂ loc
eff and V̂nl denoting the rank-rv Tucker-tensor decompo-

sitions of V loc
eff and Vnl, respectively. As a consequence of apply-

ing the Tucker-tensor decompositions V̂ loc
eff and V̂nl, the right-

hand sides of (34) and (35) reduce to a tensor-structured format
involving one-dimensional integrals. Thus the computational
complexity associated with the computation of the discrete
Hamiltonian and overlap matrix in Eqs. (34) and (35) is evalu-
ated to be O(r2

d n) + O(r6
d ) + O(r2

d r3
v n) + O(r6

d r3
v ), with n :=

maxk nk relating to the number of nodes in the one-dimensional
finite element mesh (univariate grid size). However, as we
use a localized Tucker-tensor basis, by exploiting the locality
in the basis functions, the computational complexity of
evaluating the matrix elements reduces to O(c1/3n) + O(c) +
O(c1/3r3

v n) + O(c r3
v ), where c denotes the maximum number

of nonzero entries in the matrices H and M. Finally, the inverse
overlap matrix M−1 involved in the computation of H̃ is eval-
uated using a scaled third-order Newton-Schulz iteration [66].

D. Computation of the DFT ground-state energy

a. Chebyshev filtered subspace iteration. An approximation
to the eigenspace of the discrete Kohn-Sham eigenproblem
in Eq. (33), spanned by N > Ne/2 lowest eigenfunctions, is
computed by using a Chebyshev-filtered subspace iteration
(ChFSI) technique [67]. We refer to Refs. [19,34] for the details
of its implementation in the context of finite element dis-
cretization. The ChFSI technique exploits the rapid growth of
Chebyshev polynomials in (−∞, −1) to magnify the relevant
eigenspectrum, and thereby providing an efficient approach
for the solution of the Kohn-Sham eigenvalue problem.

In each iteration of the SCF procedure, the action of a
Chebyshev filter on a given subspace is accomplished by
the recursive construction of the Chebyshev polynomial of
the discrete Hamiltonian together with its action on the
subspace. This involves matrix-vector multiplications between
the discretized Hamiltonian H̃ and the vectors obtained during
the course of the recursive iteration. We note that, if the
discretized Hamiltonian is sufficiently sparse and the vectors
obtained during the process of recursive iteration of the
Chebyshev filtering procedure are sparse, the computational
complexity of the relevant matrix-vector multiplications scales
as O(N ).
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b. Localization and truncation. Developing a localized
representation of the wave functions spanning the occupied
eigenspace is one of the key ideas that has been exploited
in developing reduced-order scaling algorithms [33,34], and
is also employed here. We use the algorithm developed in
Ref. [34] to construct a nonorthogonal localized basis of the
subspace spanned by Chebyshev filtered wave functions. We
recall the main ideas and present them in the context of
the Tucker-tensor basis for the sake of completeness. The
localized basis of the subspace spanned by the Chebyshev
filtered wave functions, henceforth referred to as the localized
Chebyshev filtered basis, is obtained by solving the generalized
eigenvalue problem for the nP smallest eigenvalues for every
atom P ,

WP α = λSα, (36)

where for l,m = 1, . . . ,N

WP
lm : =

∫
�

|x − RP |2 ψ
f

l (x) ψf
m(x) dx, (37a)

Slm : =
∫

�

ψ
f

l (x) ψf
m(x) dx, (37b)

and nP denotes the number of localized functions we desire to
compute at every atom centered at RP = (RPx1 ,RPx2 ,RPx3 ).
The number nP is chosen to be equal to the number of
occupied single atom orbitals corresponding to the P th
atom; α is a vector containing the coefficients corresponding
to the linear combination of Chebyshev filtered functions
{ψf

1 (x),ψf

2 (x), . . . ,ψf

N (x)}. The matrix WP can be recast in
matrix notation as

WP = LT KP L, (38)

where the columns of the matrix L correspond to the coeffi-
cients of the Chebyshev filtered wave functions expressed in
Tucker-tensor basis, and with

KP
IJ :=

∫
�

|x − RP |2 T L
I (x)T L

J (x) dx. (39)

Let K0 denote the matrix in Eq. (39) for a reference atom
located at R0. We note that the matrix KP for any P can be
represented in terms of K0 as

KP = K0 + |R0 − RP |2M + 2
3∑

k=1

(
R0xk

− RPxk

)
Bxk , (40)

where

K0 := (
K0

1,O2,O3
) + (

O1,K0
2,O3

) + (
O1,O2,K0

3

)
,

M := (O1,O2,O3) , Bx1 := (B1,O2,O3),

Bx2 := (O1,B2,O3) , Bx3 := (O1,O2,B3),

with the notation (X,Y,Z) := X ⊗ Y ⊗ Z,

and [with φk,i as in Eq. (31)](
K0

k

)
ij

:=
∫

ωk

(
xk − R0xk

)2
φk,i(xk)φk,j (xk) dxk,

(Ok)ij :=
∫

ωk

φk,i(xk)φk,j (xk) dxk, (41)

(Bk)ij :=
∫

ωk

(
xk − R0xk

)
φk,i(xk)φk,j (xk) dxk

for k = 1,2,3. Thus WP , for any atom P , can be evaluated as
a linear combination of five matrices independent of the atom
P , where the integrals involved in each of the matrices can
be evaluated as the product of one-dimensional integrals. We
note that the matrices K0

k , Ok , and Bk are sparse owing to the
locality of the Tucker-tensor basis TL, thereby rendering KP

sparse. Further, we truncate the wave functions involved in
the computation of L using a truncation tolerance, rendering
L sparse. Thus the computational complexity involved in the
construction of WP for all atoms P = 1, . . . ,Na scales as
O(N ). Using the eigenvectors α from the solution of the
eigenvalue problem in Eq. (36) for each atom P , the linear
combination of the Chebyshev filtered vectors is computed to
construct the nonorthogonal localized wave functions, which
span the Chebyshev filtered space. We refer to these localized
wave functions which span the Chebyshev filtered subspace as
the localized Chebyshev filtered wave functions, and denote
them in matrix form by �L. In practice, we achieve compact
support for these localized wave functions by introducing a
truncation tolerance.

c. Computation of the electron-density. To compute the
electron-density in a given self-consistent field iteration, we
first evaluate the projection of the Hamiltonian onto the space
spanned by the Chebyshev filtered wave functions represented
in the basis of the localized Chebyshev filtered functions,
which is given by Hφ = S−1�T

LH̃�L with S = �T
LM�L [34].

Furthermore, S−1 can be computed in O(N ) complexity if S
and S−1 are exponentially localized [68]. If the discretized
Hamiltonian H̃ and the matrix �L are sparse with a bandwidth
independent of N , Hφ can be computed in O(N ) complexity.

Following [34], the electron-density is given by (cf. Eq. (60)
in Ref. [34])

�(x) = 2 TT (x) M−1/2 �L f (Hφ) S−1 �T
LM−1/2T (x), (42)

where T T (x) = [T1(x), T2(x), T3(x), . . . , Tr3
d
(x)] and

f (Hφ) = 1

1 + exp
(Hφ−μ

σ

) , (43)

with μ being the chemical potential, σ = kBT , and kB the
Boltzmann constant. A Chebyshev polynomial expansion is
used to approximate f (Hφ) in Eq. (43), and if Hφ is sufficiently
sparse, f (Hφ) can be computed in O(N ) complexity [27].
Furthermore, the computation of the Chebyshev polynomial
expansion requires the evaluation of the Fermi energy μ, which
is achieved by using the constraint

2 tr(f (Hφ)) = Ne. (44)

Here, Ne is the number of electrons in the given system. The
Fermi energy can be efficiently computed with the methods
described in Ref. [27], which scale as O(N ). Finally, the band
energy required in computing the total energy of the system is
evaluated by

Eband = 2
N∑

i=1

f (εi,μ)εi = 2 tr(f (Hφ)Hφ). (45)
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V. NUMERICAL SIMULATIONS

In this section, we investigate the accuracy, performance,
and scaling of the proposed Tucker-tensor algorithm for the
solution of the Kohn-Sham equations. As benchmark examples
we conduct pseudopotential calculations on nonperiodic three-
dimensional materials systems representative of both metallic
and insulating systems. The benchmark metallic systems con-
sidered include aluminum nanoclusters of various sizes: single
aluminum atom, aluminum dimer, and nanoclusters containing
1 × 1 × 1 (14 atoms), 2 × 2 × 2 (63 atoms), 3 × 3 × 3 (172
atoms), 4 × 4 × 4 (365 atoms), and 5 × 5 × 5 (666 atoms)
face-centered-cubic (fcc) unit cells. The benchmark insulating
systems include methane molecule and alkane chains C8H18,
C16H34, and C33H68. The x, y, and z axes for the Tucker-tensor
calculations are chosen as the eigendirections of the moment
of inertia tensor of the atomic system computed using the
atomic locations and atomic masses of the various elements
in the materials system. This provides a systematic approach
of orienting the axis to align with the atomistic system and
improve the efficiency of the Tucker-tensor approach. In all our
simulations, we choose the ranks r�, rv , and the number T of
terms in the expansion in Eq. (17), such that the approximation
errors are higher-order compared to the discretization errors
of the finite-dimensional Tucker-tensor basis in Eq. (24). In
particular, we choose the ranks

r� = rv := 45, T := 35,

and the values of αn and βn are taken from Ref. [61]. Norm-
conserving Troullier-Martins pseudopotentials [58] have been
employed in the case of aluminum nanoclusters and alkane
chains for investigating the performance of method I in the
proposed Tucker-tensor algorithm, while bulk local pseudopo-
tentials [70] are employed for conducting a comparative study
between methods I and II. We use the n-stage Anderson mixing
scheme [69] on the electron density for the self-consistent
field iteration of the Kohn-Sham problem, and employed a
stopping tolerance of 10−7 in the square of the L2 norm of
electron density difference between successive iterations. The
Chebyshev filtered subspace iteration is used with a Chebyshev
polynomial degree of 25 for the computation of the eigenspace
associated with the occupied states. In our current Python
implementation, all the matrices expressed in the Tucker-
tensor basis are parallelized using MPI, and are executed on
a parallel computing cluster with the following specifications:
dual-socket eight-core Intel Core Sandybridge CPU nodes with
16 processors (cores) per node, 64 GB memory per node, and
40 Gbps Infiniband networking between all nodes for fast
MPI communications. However, the ALS algorithm [Eq. (4)]
employed in computing the Tucker-tensor decomposition of
the three-dimensional fields, is not parallelized, thus requiring
the various fields (�, VH, Veff) on the tensor-structured grid to
be stored locally on every compute node. This has limited the
size of the materials systems considered in the present study.

The computational complexity of the proposed subspace
projection algorithm relies on the locality of the Tucker-tensor
basis, the locality of the localized Chebyshev filtered wave
functions spanning the occupied space, and the dependence
of the rank rd on the system size. The truncation tolerances
employed in the various stages of the algorithm determine the
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Aluminum 1 atom: Method I
Aluminum 1 atom: Method II

FIG. 1. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: aluminum
atom.

sparsity of the matrices in our formulation (H̃,Hφ,�L,S,WP ).
In the present study, we use dense data structures for all the
matrices involved, since the truncation tolerances employed in
our simulations resulted in matrices with fraction of nonzero
entries greater than 2% for the materials systems studied.
The overhead cost of using a sparse data-structure at these
density fractions results in more computational inefficiencies
than treating the matrices as dense matrices.

In the present work, we employ the recently developed
real-space approach for Kohn-Sham DFT calculations using a
higher-order finite element basis [19,34] to provide reference
energies to assess the approximation errors in the ground-state
energies obtained with the proposed Tucker-tensor approach.
These reference energies are converged up to 0.1 meV in the
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Aluminum dimer: Method I
Aluminum dimer: Method II

FIG. 2. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: aluminum
dimer.
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FIG. 3. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: Aluminum
1 × 1 × 1 nanocluster

ground-state energy per atom with respect to discretization and
other numerical parameters.

A. Metallic systems

We first conduct a comparative study between the two
methods of constructing the separable Hamiltonian which
were proposed in Sec. IV A. To this end, we employ bulk
local pseudopotentials [70] to conduct simulations on three
benchmark examples consisting of a single aluminum atom,
aluminum dimer, and an aluminum nanocluster containing
1 × 1 × 1 (14 atoms) fcc unit cell with a lattice constant of
7.45 a.u. For each of these benchmark systems, the relative
error in ground-state energy is computed as a function of the
Tucker rank rd , and is plotted in Figs. 1–3. The results show that
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FIG. 4. Convergence of the ground-state energy with respect to
the Tucker rank for nonlocal pseudopotential using method I. Case
study: aluminum atom and dimer.
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FIG. 5. Convergence of the ground-state energy with respect to
the Tucker rank for nonlocal pseudopotential using method I. Case
study: aluminum nanoclusters.

both methods of computing the separable Hamiltonian provide
similar accuracies in the ground-state energies. Further, there
is an exponential convergence in the ground-state energy
for increasing Tucker ranks. We also note that the Tucker
rank required to achieve chemical accuracy (∼5 meV in the
ground-state energy per atom) is weakly dependent on the
system size: ∼25 for single atom, ∼30 for dimer, and ∼32 for
1 × 1 × 1 aluminum nanocluster.

We next employ method I for computing the separa-
ble Hamiltonian while using the norm-conserving Troullier-
Martins pseudopotentials [58] in the Kleinman-Bylander form
[59]. The convergence of the ground-state energy with the
Tucker rank is examined for the benchmark systems compris-
ing of single aluminum atom, aluminum dimer, and aluminum
nanoclusters containing 1 × 1 × 1 (14 atoms), 2 × 2 × 2 (63
atoms), and 3 × 3 × 3 (172 atoms) fcc unit cells with a
lattice constant of 7.45 a.u. Figures 4 and 5 show these
results which indicate an exponential rate of convergence
of the ground state energy with increasing Tucker rank.
Furthermore, the number of basis functions, r3

d , required to
obtain chemical accuracy in the ground-state energy, for the
case of nonlocal pseudopotentials, grows sublinearly with
system size asO(N0.22) for the range of systems studied—with
Tucker rank rd being ∼33 for single atom, ∼41 for dimer,

TABLE I. Ground-state energies per atom (eV) for various sizes
of aluminum nanoclusters computed with the proposed algorithm.

Al cluster Tucker rank Energy Ref. energy

1 × 1 × 1 45 −55.80965 −55.81430
2 × 2 × 2 49 −56.45924 −56.46504
3 × 3 × 3 53 −56.69260 −56.69669
4 × 4 × 4 57 −56.80104 −56.80561
4 × 4 × 4
with 5 vacancies 57 −56.76531 −56.76964
5 × 5 × 5 60 −56.87367 −56.87822
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FIG. 6. Computational CPU-time per SCF iteration for 1 × 1 × 1
to 5 × 5 × 5 fcc Al nanoclusters.

and around 45, 49, and 53 for 1 × 1 × 1, 2 × 2 × 2, and
3 × 3 × 3 aluminum nanoclusters, respectively. Moreover, we
obtained ground-state energies within chemical accuracy for
4 × 4 × 4 and 5 × 5 × 5 nanoclusters using the Tucker-tensor
basis with Tucker ranks of 57 and 60, respectively. We also
introduced 5 random vacancies in the 4 × 4 × 4 nanocluster
and found that the ground-state energy within chemical
accuracy is obtained with a Tucker basis of rank 57 even
for this system. The ground-state energies computed with the
proposed Tucker-tensor algorithm are tabulated in Table I, and
are within chemical accuracy of the reference energies. This
demonstrates the effectiveness of the computed Tucker-tensor
basis in accurately representing the electronic structure of
materials systems with varying sizes and complexity.

The computational CPU times per SCF iteration for each
of these systems is plotted against the number of electrons
in Fig. 6. All computational times reported in this study
denote CPU times in hours (CPU time = number of cores
× wall-clock time in hours). The scaling with the system
size for the aluminum clusters is found to be O(N1.2). It is
remarkable that we obtain close to linear-scaling complexity
even for metallic systems with the proposed Tucker-tensor
algorithm for the range of systems studied. Albeit using
dense data structures in our computations, we obtain close
to linear-scaling complexity due to the sublinear dependence

TABLE II. Comparison of the proposed Tucker-tensor approach
with plane-wave basis for a 3 × 3 × 3 FCC Al cluster. Reference
ground-state energy for this system is −56.69669 eV per atom.

Type of Number of Absolute error in
basis basis energy per Time
set functions atom (meV) (CPU hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell size 60 a.u.) 461,165 3.8 910

Tucker basis 148,877 4.1 360

TABLE III. Comparison of the proposed Tucker-tensor approach
with plane-wave basis for a 5 × 5 × 5 FCC Al cluster. Reference
ground-state energy for this system is −56.87822 eV per atom.

Number Absolute
Type of of basis error in energy Time
basis set functions per atom (meV) (CPU hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell size 80 a.u.) 1,093,421 4.3 8640

Tucker basis 216,000 4.6 2364

of the number of Tucker-tensor basis functions on the system
size. We expect that in the limit of very large system sizes, the
number of Tucker-tensor basis functions will grow linearly
with the system size. However, the increase in system size
renders the matrices involved in the proposed algorithm sparse,
owing to the locality in the Tucker-tensor basis and the
localized Chebyshev filtered wave functions. We note that the
complexity estimates for the proposed Tucker-tensor algorithm
(cf. Sec. IV) suggest linear-scaling complexity with system
size for the case of sparse matrices. Thus we expect the close
to linear-scaling computational complexity to also hold in the
limit of large system sizes.

Tables II and III show the comparison of computational
time and number of basis functions for the proposed algorithm
using Tucker-tensor basis and plane-wave basis (ABINIT

software [71]) for the computation of ground-state energy
of 3 × 3 × 3 and 5 × 5 × 5 aluminum nanoclusters to within
discretization error of less than 5 meV. The parameters used
in the Tucker-tensor calculations (domain size, SCF mixing
scheme and stopping tolerances) have also been used in the
plane-wave calculations for a consistent comparison. These
results show that the proposed Tucker-tensor approach requires
a 3–5 times lower number of Tucker-tensor basis functions
in comparison to the number of plane-wave basis functions.
The computational times for the proposed methodology and
the current nonoptimized implementation are also lower than
the plane-wave implementation in ABINIT by a factor of 2.5
in the case of 3 × 3 × 3 aluminum nanocluster and by a
factor of 3.7 in the case of 5 × 5 × 5 aluminum nanocluster.
Further optimization of our in-house code may lead to more

FIG. 7. Electron-density contours on the midplane of 4 × 4 × 4
fcc nanoclusters.
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the Tucker rank (rdx) for the insulating benchmark systems.

significant speedups than the factors reported here, and may
provide significant savings in the computational times for
large-scale DFT calculations. Figure 7 shows the electron-
density contours on the mid-plane of a 4 × 4 × 4 nanocluster
computed with the proposed Tucker-tensor approach.

B. Insulating systems

We consider three-dimensional alkane chains as our bench-
mark systems, including CH4 (methane), C8H18, C16H34,
and C33H68. We use norm-conserving Troullier-Martins pseu-
dopotentials [58], and method I for computing the separable
approximation of the Hamiltonian. We orient the alkane chains
along the x direction and use C-C and C-H bond lengths to
be 2.91018 and 2.0598 a.u. with the H-C-H and C-C-C bond
angles taken to be 109.470. Figure 8 shows the convergence
of the ground-state energy with increasing Tucker rank rdx .
For these simulations, we choose rdy = rdz = 46 for methane
and rdy = rdz = 55 for C8H18, C16H34 and C33H68. In the
case of alkane chains, the results indicate that the Tucker
rank required to achieve chemical accuracy in the ground-state
energy is—rdx ∼ 46 for CH4, rdx ∼ 55 for C8H18, rdx ∼ 68
for C16H34, and rdx ∼ 85 for C33H68. Furthermore, the number
of basis functions (rdxrdyrdz) grows sublinearly with the
system size as O(N0.3) for the range of systems studied.
The computed ground-state energies with their Tucker ranks
are tabulated in Table IV. The computational CPU times per

TABLE IV. Ground-state energies per atom (eV) for the various
insulating systems computed using the proposed algorithm.

Cluster Tucker rank(rdx) Energy Ref. energy

CH4 46 −43.73506 −43.73892
C8 H18 55 −58.77419 −58.77903
C16 H34 68 −60.49686 −60.50081
C33 H68 85 −61.43695 −61.44174
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FIG. 9. Computational CPU time per SCF iteration for the
insulating benchmark systems.

SCF iteration for these systems plotted against the number
of electrons are given in Fig. 9, and the scaling with system
size is found to be O(N1.05). Figure 10 shows the electronic
structure—isocontours of the electron density—of CH4 and
C8H18.

VI. SUMMARY

An algorithm for the solution of the Kohn-Sham problem
is presented that exploits the low-rank approximation of the
electronic-structure afforded by Tucker-tensor representations.
A systematic procedure is developed for computing a localized
Tucker-tensor basis adapted to the Kohn-Sham eigenvalue
problem. To this end, in every iteration of the self-consistent

FIG. 10. Isocontours of the electron density of CH4 and C8H18

computed with the proposed Tucker-tensor DFT algorithm.
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field procedure of the Kohn-Sham problem, a separable
approximation of the Kohn-Sham Hamiltonian is constructed,
and the localized Tucker-tensor basis is computed using the
eigenfunctions of the separable Hamiltonians in each spatial
dimension. The localized Tucker-tensor basis is subsequently
used to solve the Kohn-Sham eigenvalue problem by using
Chebyshev filtering and Fermi-operator expansion techniques
to compute the occupied eigenspace and the electron-density.
Numerical investigations on representative benchmark exam-
ples reveal an exponential convergence of the ground-state
energy with respect to the Tucker rank. In addition, the Tucker
rank required to obtain chemical accuracy in the computed
ground-state energies is found to only weakly depend on the
system size, with the number of Tucker-tensor basis functions
exhibiting a sublinear dependence on the system size for
the range of benchmark systems considered in this study.
Our benchmark studies suggest further that the proposed
algorithm exhibits a close to linear-scaling complexity with
system size for both insulating and metallic systems. This
reduced-order scaling is a result of combining the low-rank
Tucker-tensor basis with localization techniques, and consti-
tutes a promising direction for large-scale DFT calculations.
A comparative numerical study for 3 × 3 × 3 and 5 × 5 × 5
aluminum nanoclusters as benchmark systems shows about
a fivefold reduction in the number of basis functions and
about a three to fourfold computational speedup for the current
implementation of the proposed algorithm over the plane-wave
implementation in ABINIT. We note that there is much scope for

optimizing our current Python implementation, and thus the
computational efficiency afforded by the proposed algorithm
may potentially be much larger. Finally, in the present work,
we used a serial version of the ALS algorithm to compute
the Tucker-tensor decomposition of the three-dimensional
fields, thus limiting the sizes of the materials systems to
those systems where the data corresponding to all relevant
three-dimensional fields is accommodated in the memory
of a single compute node. Overcoming this limitation, and
developing an efficient and scalable parallel implementation
of all aspects of the proposed algorithm has the potential
to enabling DFT calculations on system sizes not accessible
heretofore.
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[52] W. Hackbusch and S. Kühn, J. Fourier Anal. Appl. 15, 706
(2009).

[53] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320
(2006).

[54] L. Grasedyck, D. Kressner, and C. Tobler, GAMM-Mitt 36, 53
(2013).

[55] R. M. Martin, Electronic Structure: Basic Theory and Practical
Methods (Cambridge University Press, Cambridge, 2011).

[56] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

[57] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[58] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[59] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).
[60] S. C. Brenner and L. R. Scott, The Mathematical Theory of

Finite-element Methods (Springer, New York, 2002).
[61] D. Braess and W. Hackbusch, On the Efficient Computation

of High-Dimensional Integrals and the Approximation by
Exponential Sums, Multiscale, Nonlinear and Adaptive Approx-
imation Vol. 39 (Springer, New York, 2009).

[62] P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968).
[63] J. Kim, F. Mauri, and G. Galli, Phys. Rev. B 52, 1640 (1995).
[64] P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin,

Phys. Rev. B 48, 14646 (1993).
[65] V. Ozolins, R. Lai, R. Calflisch, and S. Osher, Proc. Natl. Acad.

Sci. USA 110, 18368 (2013).
[66] B. Jansik, S. Host, P. Jorgensen, J. Olsen, and T. Helgaker,

J. Chem. Phys 126, 124104 (2007).
[67] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky,

Phys. Rev. E 74, 066704 (2006).
[68] E. Rubensson and P. Salek, J. Comput. Chem. 26, 1628

(2005).
[69] D. G. Anderson, J. ACM 12, 547 (1965).
[70] C. Huang and E. A. Carter, Phys. Chem. Chem. Phys. 10, 7109

(2008).
[71] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,

P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté,
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