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Charge-noise-insensitive gate operations for always-on, exchange-only qubits
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We introduce an always-on, exchange-only qubit made up of three localized semiconductor spins that offers
a true “sweet spot” to fluctuations of the quantum dot energy levels. Both single- and two-qubit gate operations
can be performed using only exchange pulses while maintaining this sweet spot. We show how to interconvert
this qubit to other three-spin encoded qubits as a resource for quantum computation and communication.

DOI: 10.1103/PhysRevB.93.121410

Semiconductor qubits [1,2] are a leading candidate technol-
ogy for quantum information processing [3]. Spins can have
extremely long quantum coherence due to a decoupling of
spin information from charge noise in many materials, and
they are small, enabling high density. But these strengths pose
a challenge for control as microwave pulses generally result in
slow gates with a significant potential for crosstalk to nearby
qubits. The exchange interaction, on the other hand, provides a
natural and fast method for entangling semiconductor qubits:
It can be used to perform two-spin entangling operations
with a finite-length voltage pulse or to couple spins with
a constant interaction. Exchange also provides a solution
to the control problem by allowing a two-level system
to be encoded into the greater Hilbert space of multiple
physical spins. Following work on decoherence free subspaces
and subsystems (DFS) [4–6], many multi-spin-based qubits
have been proposed and demonstrated with various desirable
properties for quantum computing: As examples, 2-DFS (also
referred to as “singlet-triplet”) [7–10], 3-DFS (also referred
to as “exchange-only”) [11–14], or 4-DFS qubits [15] of
various implementations are possible. The DFS gives some
immunity to global field fluctuations, but, more importantly, it
allows for gate operations via a sequence of pairwise exchange
interactions between spins with fast, baseband voltage control
on the metallic top gates, obviating the need for rf pulses.
However, charge noise likely limits gate fidelity [16,17]
as charge and spin are coupled while spins undergo
exchange.

The effects of charge (or other) noise on memory or
gate fidelity can be suppressed to a certain extent by taking
advantage of natural or engineered “sweet” spots: a spot in
parameter space where critical system properties are minimally
affected by certain environmental changes. Sweet spots have
been an effective tool to increase the coherence of supercon-
ducting qubits [18,19] and more recently have been applied to
exchange-only qubits [20–24]. For example, in the “resonant
exchange” (RX) qubit—an encoded qubit made out of three
quantum dot qubits with “always-on” exchange interactions
and a much higher chemical potential for the middle dot
than the outer dots—a partial sweet spot is maintained while
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microwave control allows for single-qubit operations [20,21]
“resonant” with the gap of the three-spin system. The first
derivative of the RX qubit frequency vanishes for one of the
two detuning parameters that are affected by charge noise.
For two-qubit gates, the RX qubit offers a relatively large
transition dipole matrix element for two-qubit dipole-dipole
coupling, either directly or through a resonator [20]. Doherty
et al. [25] have shown how to perform two-qubit gates between
RX qubits with the exchange interaction. Unfortunately, a full
sweet spot for an RX qubit (where the first derivative with
respect to both detuning parameters goes to zero) is outside of
the (111) singly occupied regime; there, higher-order effects
limit the coherence of the qubit [23]. A full sweet spot for
a three-spin qubit was found for a symmetric triple quantum
dot (TQD) [22], but in that case one needs to move away
from this sweet spot to perform a full set of single-qubit gate
operations.

In this Rapid Communication, we show that there exists
a full sweet spot for an exchange-only qubit and we can
implement full single- and two-qubit gate operations on this
sweet spot with only dc voltage pulses to control the tunneling
elements. We will call this qubit the “always-on, exchange-
only qubit” (AEON), since both exchange interactions in an
AEON qubit are kept on for logical gate operations while
remaining on the sweet spot. This is possible since the sweet
spot is independent of the tunneling elements. The idea of
tuning the tunneling barrier directly to control the exchange
interaction (as opposed to changing the relative energy-level
detuning between two dots), which was the original idea of
QD spin qubits [1], has been successfully demonstrated in
recent experiments in Si/SiGe [24] and GaAs/AlGaAs [26] QD
devices. The exchange operation via gate tuning the tunneling
barrier near the symmetric operating point (SOP) of the
detuning led to much better coherence than the conventional
control of the exchange interaction. Here we show that a
similar approach is possible during simultaneous control of
exchange interactions in a three-spin exchange-only qubit.
This is especially useful for implementing two-qubit logical
gates in a single exchange pulse [25] which requires the qubits
to have exchange interactions on to keep a finite energy gap. We
also discuss how one can convert an AEON qubit into an RX
qubit to take advantage of some of practical advantages of the
RX qubit, e.g., initialization/readout and for dipole coupling
to resonators. The AEON qubit also smoothly converts to the
traditional 3-DFS qubit.
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FIG. 1. (a) Triple quantum dot system with parameters for the
Hubbard model. (b) Schematic diagram for the energy levels of the
TQD device. Each QD is singly occupied and the dashed blue lines
indicate the energy of a second electron if the dot is doubly occupied
by a tunneling from a neighboring dot. Ũi is the associated Coulomb
energy change due to the double occupancy, including both intra-
and interdot Coulomb interactions. ε and εM are the two detuning
parameters. (c) An array of always-on, exchange-only qubits as
described in this Rapid Communication. All single- and two-qubit
gate operations can be achieved while maintaining the sweet spot.

Model. We consider a TQD system as illustrated in Fig. 1,
described by a Hubbard Hamiltonian

Ĥ =
3∑

i=1

∑
σ

εic
†
iσ ciσ +

3∑
i=1

Uin̂i↑n̂i↓ + 1

2

∑
i �=j

Vij n̂i n̂j

+
∑
〈i,j〉

∑
σ

tij (c†iσ cjσ + H.c.), (1)

where n̂i = n̂i↑ + n̂i↓ and n̂iσ = c
†
iσ ciσ . Only a linear TQD

with t31 = 0 will be considered. We define new parameters
for the orbital energies of the QDs: ε̄ = (ε1 + ε2 + ε3)/3, ε =
(ε1 − ε3)/2, εM = ε2 − (ε1 + ε3)/2, and tunneling elements
t12 = tl and t23 = tr . ε̄ just shifts the global energy reference
and does not affect the qubit operations. There are two
independent detuning parameters that are affected by the
charge noise. ε is the detuning between dot 1 and dot 3, and
εM is the detuning of dot 2 with respect to the average of
the other two dots [see Fig. 1(b)]. The tunneling elements
tl and tr are also susceptible to charge noise, but it is
thought that the fluctuations in tunnel couplings are not the
dominant source of dephasing, compared to the fluctuation
in the detunings [17,24,26]. Therefore, we define sweet spots
when the derivative of the qubit energy vanishes with respect
to the detunings ε and εM .

The exchange-only qubit consists of three singly (or total
spin-1/2) occupied QDs. The exchange interaction arises by
virtually occupying one of the dots through tunneling and the
relevant charge configurations are (111), (201), (102), (120),
(021), (210), and (012), where the digits signify the number
of electrons in each dot. Two configurations, (210) and (012),
are not tunnel coupled to (111) and contribute only higher-
order corrections and can be neglected. We focus on the low-
energy manifold with Stot = 1/2. With a uniform external field,
Zeeman splitting allows us to further limit the subspace with
Sz

tot = 1/2.

The two encoded qubit states are |0〉Q =
−(1/

√
3)|T0〉13|↑〉2 + √

2/3|T+〉13|↓〉2 and |1〉Q = |S〉13|↑〉2

as for the RX qubit [20]. For typical QD devices
where Ui � Vij � tl,tr in the resonant TQD regime
where |ε|,|εM | 	 Ui , we can perform a Schrieffer-Wolff
transformation [27] to obtain a Heisenberg-type effective
Hamiltonian in the encoded qubit subspace [28],
Ĥeff = −(Jl + Jr )/4 σ̂z − √

3(Jl − Jr )/4 σ̂x , where Jl

(Jr ) is the exchange interaction between dots 1 and 2
(dots 2 and 3), given by Jl = 2t2

l (Ũ1 + Ũ ′
2)/fl(ε,εM )

and Jr = 2t2
r (Ũ2 + Ũ3)/fr (ε,εM ). Here fl(ε,εM ) =

Ũ1Ũ
′
2 − (Ũ1 − Ũ ′

2)(ε − εM ) − (ε − εM )2 and fr (ε,εM ) =
Ũ2Ũ3 − (Ũ2 − Ũ3)(ε + εM ) − (ε + εM )2. Ũi’s are the
Coulomb interaction energy changes when the ith dot is doubly
occupied by tunneling of an electron from an adjacent dot. Ũ2

is for tunneling from the right dot, i.e., (120) configuration,
and Ũ ′

2 is for tunneling from the left dot, i.e., (021)
configuration. They are given by the Coulomb interaction
parameters Ui’s and Vij ’s as Ũ1 = U1 − V12 − V23 + V13,
Ũ2 = U2 + V12 − V23 − V13, Ũ ′

2 = U2 − V12 + V23 − V13,
and Ũ3 = U3 − V12 − V23 + V13.

Sweet spot and single-qubit operations. The sweet spots,
where the energy gap is insensitive to the charge noise in detun-
ing parameters up to first order, can be determined by setting
∂E01/∂ε = ∂E01/∂εM = 0, where E01 =

√
J 2

l + J 2
r − JlJr .

Then we obtain the sweet spot

ε = 1
4 (−Ũ1 + Ũ ′

2 − Ũ2 + Ũ3), (2)

εM = 1
4 (Ũ1 − Ũ ′

2 − Ũ2 + Ũ3). (3)

Alternatively, the sweet spot can be obtained from the con-
ditions ∂Jl/∂ε = ∂Jl/∂εM = ∂Jr/∂ε = ∂Jr/∂εM = 0, since
the energy gap E01 is a function of Jl and Jr . Note that this
sweet spot does not depend on the tunneling tl and tr and
that we can implement single-qubit operations by tuning tl
and tr while staying on the sweet spot. At the sweet spot,
Jl = 8t2

l /(Ũ1 + Ũ ′
2) and Jr = 8t2

r /(Ũ2 + Ũ3).
Figure 2 shows numerical results by exactly solving

the Hubbard Hamiltonian, Eq. (1). We used parameters
U1 = U3 = U = 1 meV, U2 = 0.8U , V12 = V23 = 0.1U ,
V13 = 0.05U . The Zeeman energy was obtained using
GaAs material parameters with Bext = 0.5 T. Note that
the results of this work would apply equally well to
silicon quantum dots or other possible semiconductor
systems. With these parameters the sweet spot is ε = 0 and
εM = 0.05U . In addition to the states with Stot = Sz

tot = 1/2
that comprise the subspace, there are two more low-energy
states |Q〉 = (|↑1↑2↓3〉 + |↑1↓2↑3〉 + |↓1↑2↑3〉)/

√
3 and

|Q+〉 = |↑1↑2↑3〉. But these states do not interact with any
states in the subspace and can be neglected. We calculated
the energy spectrum and the sweet spot for tl = tr (solid
curves) corresponding to a rotation around the ẑ axis, and tl =
(
√

6 + √
2)tr/2 (dashed curves) corresponding to a rotation

around the n̂ = −(x̂ + ẑ)/
√

2 axis, which, in combination
with the Pauli Z gate, can be used to implement the Pauli X

gate [22,29], X = Rn̂(π )ZRn̂(π ), where Rn̂(π ) is a π rotation
around n̂ and Z is the Pauli Z gate which is a π rotation around
the ẑ axis. Figure 2(a) shows the energy spectrum as a function
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FIG. 2. Always-on exchange-only qubit (AEON) with tl = tr = t

(solid curves) and tl = (1 + √
3 − √

2)t and tr = (1 − √
3 + √

2)t
(dashed curves) with t = 0.02U . (a) Energy spectrum of the TQD
device as a function of ε with fixed εM = 0.05U . The sweet spots
indicated with green stars in (b) both correspond to ε = 0. Similarly,
(d) shows the energy spectrum as a function of εM with fixed ε = 0.
The sweet spots in (e) both correspond to εM = 0.05U , as was shown
in (f). The blue dashed lines in (c) and (f) are guides for the zero
derivative. The independence of the sweet spot on tl and tr is crucial
to the implementation of a full set of logical gates on the sweet spot.

of ε with fixed εM = 0.05U . The energy difference between
the two-qubit states |0〉Q and |1〉Q shows a minimum at the
sweet spot ε = 0, marked with green stars [Fig. 2(b)] and the
derivative vanishes there [Fig. 2(c)]. As a function of εM , the
energy spectrum at fixed ε = 0 is in Fig. 2(d) and the qubit
energy [Fig. 2(e)] and its derivative [Fig. 2(f)] shows that the
sweet spot εM = 0.05U does not change for different tl and tr .

Two-qubit operations. Two-qubit gates between exchange-
only qubits require a long sequence of pairwise exchange
interaction pulses [11,12], if the pulses are applied in a serial
mode. Keeping the intraqubit exchange interactions always-on
allows for a much shorter sequence (a single pulse of an
interqubit exchange interaction) as was shown in Ref. [25],
and now we show that it can be implemented while staying on
the sweet spot.

Let us consider an array of exchange-only qubits as depicted
in Fig. 1(c). First, the position of the sweet spot in the parameter
space (ε,εM ) of each encoded qubit shifts because we need to
redefine the Coulomb interaction change Ũi due to double
occupancy to take into account the presence of additional
electron spins in different qubits. For example, Ũ1 = U1 −
V12 − V23 + V13 + V�,1 − V�,2, where V�,i is the sum of Vij

for all QD j belonging to a different qubit (e.g., V�,1 = V14 +
V15 + V16 + · · · ). Similarly, Ũ3 = U3 − V12 − V23 + V13 +
V�,3 − V�,2, Ũ2 = U2 + V12 − V23 − V13 + V�,2 − V�,3, and
Ũ ′

2 = U2 − V12 + V23 − V13 + V�,2 − V�,1. The sweet spot

conditions in Eqs. (2) and (3) remain the same with the above
adjusted Ũi’s.

The interqubit exchange coupling Jc between QDs 3 and 4
is given by

Jc = 2t2
c

[
1

U 3 + ε3 − ε4
+ 1

U 4 − ε3 + ε4

]
, (4)

where U 3 = U3 + V13 + V23 − V34 − V45 − V46 + V�,3 −
V�,4 and U 4 = U4 + V45 + V46 − V13 − V23 − V34 + V�,4 −
V�,3. To find the sweet spot for Jc, from ∂Jc/∂ε3 = ∂Jc/∂ε4 =
0, we obtain ε3 − ε4 = −(U 3 − U 4)/2. This can be satisfied
by tuning ε̄(A) and ε̄(B), while ε(A),ε

(A)
M ,ε(B),ε

(B)
M remain at

the sweet spots for qubits A and B. Similar to the intraqubit
exchange interactions, Jc is controlled by tuning the tunneling
tc which does not affect the sweet spot.

In the weak coupling regime where Jc 	 J (A),J (B), this
exchange coupling leads to a coupling Hamiltonian Ĥc =
δJz(σ̂zA + σ̂zB )/2 + Jzzσ̂zAσ̂zB + J⊥(σ̂xAσ̂xB + σ̂yAσ̂yB ),
where σ̂αA (σ̂αB) (α = x,y,z) is the Pauli operator for
qubit A (B) [25]. The coupling coefficients δJz, Jzz, and
J⊥ are all proportional to the exchange coupling Jc. For
the linear geometry in Fig. 1(c), δJz/Jc = Jzz/Jc = 1/36.
J⊥/Jc = −1/24 for J (A) � J (B) and 0 for |J (A) − J (B)| � Jc.

We can estimate the gate time for a controlled-phase
(C-phase) gate using this approach. The implementation of
a C-phase gate is simpler for J⊥/Jc = 0 (i.e., |J (A) − J (B)| �
Jc). For a typical exchange coupling strength of hundreds of
MHz for J (A)/h and J (B)/h for current QD devices [10,24],
for example, J (A)/h = 100 MHz and J (B)/h = 300 MHz,
we can use Jc � 10 MHz, and the controlled-Z (CZ) gate
can be obtained for

∫
Jzz(t)dt = π/4, which corresponds

to a gate operation time of a few hundred ns for a square
pulse. This is somewhat slow compared to the typical single
exchange pulse of a few ns, due to the requirement of small
Jc to prevent leakage errors, but a different geometry for
qubit-qubit coupling could help reduce the operation time [25].
For example, if we swap spins in QDs 2 and 3 and also swap
spins in QDs 4 and 5, the interqubit exchange coupling is
equivalent to the “butterfly” geometry in Ref. [25] and the
two-qubit CZ gate can be done in about 20 ns.

Comparison and conversion to other encoded 3-spin qubits.
For the RX qubit [20,21], the TQD device is tuned to be
in a regime where the (111) configuration is close to (201)
and (102) configurations for initialization and readout. This
implies that εM is relatively large, comparable to the on-site
Coulomb interaction U . The RX regime is shaded with gray
in Fig. 2(d). The sweet spot of the RX qubit is therefore only
insensitive to ε fluctuations and sensitive to εM variations in
the first order. A full sweet spot where the qubit frequency is
insensitive to both ε and εM is only possible outside of the
(111) configuration [23], which limits the qubit performance.
Furthermore, the sweet spot in the RX qubit depends on the
asymmetry of the tunneling elements tl and tr , requiring a
different method (i.e., microwave control) to implement full
single-qubit rotations.

In comparison, the sweet spot we suggest here in Eqs. (2)
and (3) for an AEON qubit is more general. It does not require
any symmetries in the parameters, and it does not depend on
changing tl and tr , allowing for full logical gate operations on
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TABLE I. Comparison between different types of exchange-only qubits.

Qubit type 3-DFS exchange-only [11,12] RX [20,21,25] AEON

QD levels General ε2 � ε1 � ε3 ε1 � ε2 � ε3

Coherence protection DFS DFS, partial sweet spot DFS, full sweet spot
Idle/memory All exchange couplings off Always-on coupling, fQ ∼ 0.5–2 GHz All exchange couplings off or always-on
Single-qubit gates Four fast pairwise pulses rf pulse Three fast simultaneous pairwise pulses
Two-qubit gates 18 fast pairwise pulses Dipole-dipole or single exchange pulse Single exchange pulse

the sweet spot by tuning the tunnel coupling between dots,
i.e., all-dc control. It is in a deep (111) regime where εi’s
are of similar values compared to the Coulomb interaction
energy Ui’s (resonant TQD regime). In this regime, increasing
ε leads to a (012) ground state, not a (102) ground state as
in the RX regime. [The two almost vertical lines in Fig. 2(a)
correspond to states with (012) and (210) configurations.] This
can be a problem for initialization or readout, since (012)
is not coupled to (111) by a single tunneling event and the
anticrossing between them is very small, that is, a long time
is needed to move from (012) to (111), but this is beneficial
for turning off any dipolelike coupling to external noise or
quantum systems. One way to do the initialization/readout for
an AEON qubit would be to initialize in the RX regime and
then move to the sweet spot in the resonant TQD regime, by
tuning εM . Readout can be done in a reverse order by moving
from the resonant TQD regime to the RX regime. Alternatively,
converting to the RX qubit can turn on coupling to a resonator
for beyond-nearest-neighbor quantum gates.

The original exchange-only qubit [11] was defined as the
singlet/triplet states of QDs 1 and 2, while we defined our qubit
states as the singlet/triplet states between QDs 1 and 3. The
sweet spot defined in Eqs. (2) and (3) is also a sweet spot for
the original exchange-only qubit and all exchange operations

can also be realized on the sweet spot by tuning the tunneling
tl and tr . Sometimes it is beneficial to work on one or the other
definition for the qubit states, and they can be easily converted
to and from each other by applying a swap operation between
QDs 2 and 3, which can be implemented by tuning Jl = 0 and
Jr �= 0. See Table I for a comparison between different types
of exchange-only qubits.

In summary, it was shown that there exists a sweet spot for
an always-on, exchange-only qubit in a linear array of three
quantum dots where the qubit energy is only second-order
sensitive to charge noise for both critical system parameters
representing changes in the dot energy levels, and that
all single- and two-qubit encoded gates (indeed, multiple
simultaneous exchange interaction gates) can be implemented
on this sweet spot. This generalized approach or specific qubit
proposal can be useful for coupling different types of QD spin
encoded qubits [30] since the exchange interaction enables
coupling between them and should also be realizable in other
spin qubit systems which offer tunable tunnel barriers, such
as impurity spins [2]. Another advantage of the sweet spot
operations studied here is that this allows for a true off state
for the encoded qubit by turning off the exchange interactions
while remaining on the sweet spot; this simplifies gate
operations and can be useful for storing quantum information.
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