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Reorientation of quantum Hall stripes within a partially filled Landau level
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We investigate the effect of the filling factor on transport anisotropies, known as stripes, in high Landau levels of
a two-dimensional electron gas. We find that at certain in-plane magnetic fields, the stripes orientation is sensitive
to the filling factor within a given Landau level. This sensitivity gives rise to the emergence of stripes away from
half-filling while orthogonally oriented, native stripes reside at half-filling. This switching of the anisotropy axes
within a single Landau level can be attributed to a strong dependence of the native symmetry-breaking potential
on the filling factor.
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Electronic analogs of liquid crystals, commonly termed
electron nematics or stripes, are believed to exist in a wide va-
riety of condensed-matter systems [1], such as ruthenates [2],
high-temperature superconductors [3,4], and heavy fermion
systems [5]. However, the most striking evidence for such
nematic phases [6–11] came from a clean two-dimensional
(2D) electron gas (2DEG) formed at the interface between
GaAs and AlGaAs, which is often the system of choice to
study quantized Hall effects [12,13].

One important parameter which is unique to a 2DEG is the
filling factor, ν = neh/eB, where ne is the electron density and
B is the magnetic field. Stripes in GaAs manifest themselves
in the resistance minima (maxima) in the easy (hard) transport
direction when ν is close to ν±

N ≡ 2N + 1 ± 1/2 (N � 2),
where + (−) describes spin-down (spin-up) branches of
the N th Landau level. While stripes exist in a finite filling
factor range [6,7,14–16], ν±

N − 0.1 � ν � ν±
N + 0.1, transport

studies have focused almost exclusively [17] at half-integer ν

where the anisotropy is the strongest.
In a purely perpendicular magnetic field, stripes orient along

< 110 > crystal direction with very few exceptions [18,19].
Despite nearly two decades of investigations, the origin of the
native symmetry-breaking potential responsible for this partic-
ular stripe orientation continues to remain elusive [19–21]. It
is well documented that an in-plane magnetic field B‖ provides
an external symmetry-breaking potential which competes with
and can overcome the native symmetry-breaking potential.
In particular, when applied along stripes (easy direction), B‖
can switch the anisotropy axes [19,22–27], aligning stripes
perpendicular to it [28]. There thus exists a characteristic in-
plane magnetic field Bc which renders 2DEG macroscopically
isotropic. This field is routinely used to quantify the strength
of the native symmetry-breaking potential [18,19,24,29].

In this Rapid Communication we report on transport studies
of stripes in a high-mobility 2DEG focusing on filling factors
away from half-filling. At certain B‖, we observe distinct
anisotropic phases which reside both at and away from half-
filling within a single Landau level. These stripe phases have
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orthogonal orientation, indicating that it is largely determined
by the filling factor. The observed reorientations of stripes
within a single Landau level implies strong sensitivity of
the native symmetry-breaking potential to the filling factor.
Indeed, the characteristic in-plane field Bc drops roughly sym-
metrically when ν deviates from half-filling in either direction.
This dependence on the filling factor is quite significant and
should be accounted for by theories attempting to identify the
origin of the native symmetry-breaking potential.

While similar results have been obtained from samples
fabricated from several different wafers, here we present the
data from one ∼ 4 × 4 mm square sample cleaved from a sym-
metrically doped, 30-nm-wide GaAs/AlGaAs quantum well.
Electron density and mobility were ne ≈ 2.9 × 1011 cm−2 and
μ ≈ 1.6 × 107 cm2/Vs, respectively [30,31]. Eight indium
ohmic contacts were fabricated at the corners and midsides
of the sample. The longitudinal resistances, Rxx and Ryy ,
were measured using a four-terminal, low-frequency lock-in
technique; the current (typically 50 nA) was sent through
the midside contacts and the voltage drop was measured
between the corner contacts. An in-plane magnetic field was
introduced by tilting the sample by angle θ about the x̂ axis,
i.e., B‖ = By = B sin θ . Unless otherwise noted, all the data
were acquired at T ≈ 20 mK.

In Fig. 1 we present Rxx (solid line) and Ryy (dotted line)
versus filling factor ν at different θ , from 0◦ to 12.2◦, as
marked. At θ = 0◦, the data reveal strong anisotropy near ν =
9/2 with Rxx � Ryy [see Fig. 1(a)]; i.e., stripes are oriented
along the ŷ direction. Near ν ≈ 4.28 and ν ≈ 4.72,Rxx and
Ryy reveal isotropic insulating states, reflecting the formation
of so-called bubble phases [6,7,32–35].

At θ = 5.7◦ [Fig. 1(b)], anisotropic states of orthogonal
orientation (e.g., along the x̂ direction) develop near ν ≈ 4.4
and ν ≈ 4.6, i.e., at the edges of the native stripe range found at
θ = 0◦. Like the native stripes, which reside near ν = 9/2 [36],
these reoriented anisotropic states are represented by high
peaks along one direction and deep minima along another,
albeit with Ryy � Rxx . As θ increases to 8.1◦ [Fig. 1(c)],
these reoriented anisotropic states take over a larger range of
ν, while the native anisotropy at ν = 9/2 becomes noticeably
weaker. At θ = 8.7◦ [Fig. 1(d)], stripes along the x̂ direction
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FIG. 1. Rxx (solid line) and Ryy (dotted line) vs ν at T = 25 mK and θ from (a) 0◦ to (e) 12.2◦, as marked.

occupy almost the whole filling factor range of the native
stripes, except near ν = 9/2, where the system becomes
isotropic. Finally, at θ = 12.2◦ we observe that the B‖-induced
reorientation of the native stripes is complete at all ν within the
native stripe range. The isotropic insulating states representing
bubble phases remain essentially unchanged.

Before proceeding with the more detailed data analysis, we
demonstrate that the evolution shown in Fig. 1 is not unique
to ν = 9/2. In Fig. 2 we show Rxx (solid line) and Ryy (dotted
line) at (a) 5 � ν � 6 and (b) 6 � ν � 7 measured at θ = 8.1◦
and 8.7◦, respectively. In both cases, the data show alternating
stripes orientation which is identical to that shown in Fig. 1(c).
We thus conclude that the sensitivity of the stripes orientation
to the filling factor is a generic feature of stripes in our sample;
it appears in both spin-up and spin-down branches and in
different (N = 2,3) Landau levels.

To further examine the evolution of the anisotropic states
with the tilt angle, we compute the resistance anisotropy
AR = (Rxx − Ryy)/(Rxx + Ryy) from the data shown in Fig. 1
and present the results in Fig. 3. At θ = 0 [Fig. 3(a)] we see
that AR ≈ 1 at all filling factors within a band 4.4 � ν � 4.6,
reflecting the native stripes orientation along the ŷ direction.
As the sample is tilted, this AR ≈ 1 band becomes narrower
[Figs. 3(b) and 3(c)], and eventually vanishes as the system
becomes isotropic at ν = 9/2 where AR ≈ 0 [Fig. 3(d)].
Concomitant with the narrowing of the AR ≈ 1 band (stripes
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FIG. 2. Rxx (solid line) and Ryy (dotted line) vs ν around
(a) ν = 11/2,θ = 8.1◦ and (b) ν = 13/2,θ = 8.7◦.

||ŷ), we observe the emergence of the AR ≈ −1 bands (stripes
||x̂), which germinate at the edges of the native stripe band
[Fig. 3(b)]. With increasing θ , these AR ≈ −1 bands expand
towards each other [Fig. 3(c)] and eventually merge at half-
filling [Fig. 3(d)]. At θ = 12.2◦ [Fig. 3(e)], the AR ≈ −1 band
occupies the whole range of the native stripes, 4.4 � ν � 4.6,
reflecting stripes orientation along x̂ direction.

Taken together, the data of Figs. 1–3 demonstrate that the
reorientation of stripes by B‖ depends sensitively on the filling
factor [37] and that at a certain fixed θ stripes orientation
can vary within a single Landau level. More specifically, we
establish that the reorientation first occurs at filling factors near
the onset of the native stripes, i.e., at ν ≈ 4.4 and ν ≈ 4.6, and
then the boundary, separating two orthogonal stripe phases,
propagates towards half-filling.

We next examine the evolution of the anisotropy with B‖
at different fixed filling factors in the vicinity of ν = 9/2.
In Figs. 4(a)–4(c), we present Rxx (filled circles) and Ryy

(open circles) as a function of By , at ν = 4.5, 4.46, and 4.43,
respectively. In all three cases, we find that the anisotropy
axes are switched when B‖ reaches a characteristic field Bc,
defined such that Rxx ≈ Ryy (cf. ↓). We further notice that Bc

decreases as ν deviates from half-filling. We summarize these
findings in Fig. 4(d) showing Bc as a function of ν. The dashed
and dash-dotted lines in Fig. 4(d) represent B‖ at θ = 8.1◦ and
θ = 5.7◦, corresponding to the situation of Figs. 1(c) and 1(b),
respectively. Two crossings of these lines with Bc is reflected
in the transport data as switching of the anisotropy axes during
the magnetic field sweep.

The characteristic field Bc reaches its maximum value
of about 0.43 T at ν = 9/2. As the filling factor deviates
from half-filling, Bc gradually decreases to ≈ 0.23 T at both
ν = 4.41 or ν = 4.59 [38]. The dependence of Bc on ν is
roughly symmetric about half-filling and can be reasonably
well described by a parabola (dotted line). This parabola
crosses zero at filling factors which are very close (within
0.01) to the onset of the native anisotropy [cf. Fig. 3(a)].

Since Bc characterizes the competition between the native
symmetry-breaking potential and the effect of B‖ on the
orientation of stripes, the decrease of Bc away from half-filling
can be due to either a stronger effect of B‖ or a weaker
native symmetry-breaking potential at these filling factors.
However, since the effect of B‖ is predicted to have a very weak
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FIG. 3. Resistance anisotropy AR = (Rxx − Ryy)/(Rxx + Ryy) vs ν computed from the data in Fig. 1.

dependence on ν [25,26], the relationship between Bc and
ν must reflect a weaker native symmetry-breaking potential
away from half-filling. We note that the observed dependence
is quite significant; Bc decreases by nearly 50% as ν is changed
from 9/2 to 4.4 (or 4.6).

Finally, we examine the temperature dependence of the
anisotropic states away from half-filling. In Figs. 5(a) and 5(b)
we present Rxx (solid line) and Ryy (dotted line) measured at
θ = 8.5◦ and T = 56 and 109 mK, respectively. As seen in
Fig. 5(a), Ryy (Rxx) exhibits strong maxima (deep minima)
away from half-filling and the corresponding anisotropy
AR ≈ −1 (stripes ||x̂). At ν = 9/2, however, Ryy exhibits
a minimum, Rxx a maximum, and the anisotropy becomes
positive. As the temperature is raised, the Ryy peaks away
from half-filling quickly decay, while the resistances at the
corresponding Rxx minima become larger [see Fig. 5(b)]. As
a result, the anisotropy away from half-filling is significantly
reduced. Interestingly, the Ryy peaks also move towards each
other with increasing T and eventually merge into a single peak
at half-filling before disappearing at higher temperatures. This
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is illustrated in the inset of Fig. 5(b), which shows the filling
factors of the Ryy peaks as a function of temperature. The
merging of the Ryy peaks indicates that the anisotropy away
from half-filling disappears at a lower temperature compared
to that at half-filling.

An interesting question is why the filling factor dependence
of Bc has not been seen in previous experiments. We argue
that it is the significant native anisotropy away from half-
filling, see Fig. 3(a), that made possible a clear observation
of this behavior. Indeed, in the absence of an in-plane
magnetic field our data show an unusually wide Rxx peak
and a vanishingly small Ryy over a wide filling factor range,
4.4 � ν � 4.6; see Fig. 1(a). It is indeed this wide range
which allows significant anisotropy (of the opposite sign)
to develop away from half-filling at intermediate tilt angles
[see Figs. 1(b)–1(d) and 3(b)–3(d)]. In contrast, in early
studies [22,23] the native anisotropy rapidly decays away
from half-filling, as manifested by narrower resistance maxima
and minima, and only weak signatures suggestive of filling-
factor-driven reorientation were observed [see, e.g., Fig. 2 in
Ref. [22]].

There is both experimental and theoretical evidence that
weakening of the anisotropy away from half-filling is a result of
stronger effect of disorder. Indeed, in agreement with the the-
ory [39], pinning mode resonances in the ac conductivity [14]
revealed higher resonance frequencies away from half-filling.
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Although the sample in the present study has the mobility
comparable to (or even lower than) samples used in earlier
experiments, it is well established that the mobility alone is not
a good metric of the quality of the transport data [30,40–43].
We also notice that in contrast to early studies [22,23], which
utilized conventional single heterointerfaces, our experiments
exploit a double heterointerface of a so-called doping-well
design [30], which is known to produce better quality transport
data revealed in, e.g., larger gaps of the fragile ν = 5/2
fractional quantum Hall state [42–45].

In addition to weak anisotropy away from half-filling
there exists another argument as to why the phenomenon
reported here can be suppressed in more disordered samples.
Experiments on pinning mode resonances under B‖ [27]
suggest that the disorder favors stripes parallel to B‖. This
finding implies that due to stronger effect of disorder away
from half-filling [14,39], stripes at such filling factors would be
more difficult to reorient perpendicular to B‖. Thus, the effect
of disorder would lead to larger Bc away from half-filling
which may mask the ν dependence of the native symmetry-
breaking field observed in the present study.

In summary, we have studied anisotropic phases in high
Landau levels in tilted magnetic fields. We have demonstrated
the realization of anisotropic phases, distinct by their orthog-
onal orientation, which reside at and away from half-filling in

a single Landau level [46]. The boundaries separating these
states propagate towards each other and eventually merge
at half-filling with increasing B‖. The observed switching
of the anisotropy axes within a single Landau level can be
explained by a strong dependence of the native symmetry-
breaking potential on the filling factor. This conclusion is
corroborated by a monotonic decrease of the characteristic
in-plane magnetic field Bc as ν deviates from half-filling. The
experimentally observed dependence on the filling factor is
quite significant and should be taken into account by theories
attempting to identify the nature of the native symmetry-
breaking potential.
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