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Elasticity limits structural superlubricity in large contacts
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Geometrically imposed force cancellations lead to ultralow friction between rigid incommensurate crystalline
asperities. Elastic deformations may avert this cancellation but are difficult to treat analytically in finite and
three-dimensional systems. We use atomic-scale simulations to show that elasticity affects the friction only after
the contact radius a exceeds a characteristic length set by the core width of interfacial dislocations beore. As
a increases past beore, the frictional stress for both incommensurate and commensurate surfaces decreases to a
constant value. This plateau corresponds to a Peierls stress that drops exponentially with increasing bqe but

remains finite.
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Friction is omnipresent but large gaps remain in our
understanding of its atomic origins and our ability to control
it to reduce energy loss or improve braking. One fascinat-
ing phenomenon observed at nanometer scales is structural
lubricity, a state of ultralow friction that results from the
systematic cancellation of forces across an interface between
solids that have no common periodicity [1-3]. Experiments
have observed this cancellation between identical crystalline
surfaces that are rotated to become incommensurate [2,4-7],
different crystalline surfaces [8,9], and between amorphous
and crystalline surfaces [9,10]. Superlubricity has been sug-
gested to underlie the mechanism of solid lubrication by plates
of graphite and MoS, [3,11], and to have the potential to lower
friction in a range of applications.

Theoretical treatments of superlubricity have usually con-
sidered the limit of rigid solids illustrated in Figs. 1(a) and 1(c).
If surfaces share no common period, then atoms sample all
relative positions with equal probability in the thermodynamic
limit. The resulting energy is translationally invariant and there
is no friction. For finite systems the cancellation is incomplete.
The frictional stress (force per unit area) scales as a power
of the contact radius a for incommensurate and amorphous
surfaces, approaching zero as a increases [9,12,13].

The elastic compliance of the surfaces has the potential
to dramatically alter superlubricity because atoms move to
preferentially sample low energy configurations [Figs. 1(b)
and 1(d)]. If elasticity leads to multiple metastable states,
there can be finite friction [14—16]. The one-dimensional (1D)
case corresponds to the well-studied Frenkel-Kontorova chain
model [14]. The infinite chain shows a nonanalytic transition
from zero to finite friction with increasing compliance, but
finite chains have friction associated with dislocations (soli-
tons) at the chain ends [14]. Several groups have investigated
the two-dimensional (2D) case of a compliant monolayer on a
rigid substrate [17-20], but there have been comparatively
few studies of frictional contacts where compliant three-
dimensional objects interact at a two-dimensional interface.
It has been suggested that dislocations at the interface could
lead to friction [21,22], but Miiser found that incommensurate
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interfaces became unstable to interdiffusion before the friction
force becomes finite [23]. Friction due to internal elasticity at
incommensurate interfaces has only been observed for a very
compliant system with just a few contacting atoms that could
lock in multiple metastable states [24].

In this Rapid Communication we study the scaling of
friction with compliance and contact size for circular con-
tacts between incommensurate or commensurate crystals.
An efficient Green’s function method allows us to vary the
radius a from less than a nanometer to a fraction of a
micrometer. The studies show that there is a transition as a
exceeds the core width b, of interfacial dislocations. For
a < beore the frictional stress Tgic 1S consistent with previous
results for rigid surfaces, dropping to zero with increasing
a for incommensurate surfaces and remaining constant for
commensurate surfaces. For a > b.y. compliance leads to
new behavior. At intermediate a/bcore, Tric 1S controlled by
dislocation nucleation near the edge of the contact where there
is a diverging stress in continuum theory [25]. At large a/bcore,
Tric Saturates at a finite value that is related to the Peierls stress
for dislocation motion. There is never true superlubricity with
zero friction. However, the Peierls stress drops exponentially
to zero as b increases and the friction in large contacts may
be extremely small.

We consider the simplified geometry of a circular disk
interacting with a semi-infinite elastic substrate. This mimics
the islands studied by Dietzel et al. [9] or contact between a
sphere and flat substrate. Separate simulations for the latter
geometry exhibit the same behavior reported below. The disk
is rigid and the substrate has shear modulus G and Poisson
ratio v. This case can be mapped to contact of two compliant
objects in continuum theory [26].

Atoms on both surfaces form a square lattice with nearest-
neighbor spacing d, corresponding to (001) surfaces of fcc
crystals. The nearest-neighbor direction of the substrate is
rotated by an angle 6 relative to that of the disk. At 6 =
0 the system is commensurate with all atoms in phase.
Rotating the system out of alignment by an angle 0 creates
an incommensurate contact that is similar to a twist grain
boundary (Fig. 1). Similar results were obtained with surfaces
made incommensurate by changing the lattice constant.

The interaction of the substrate surface atoms with the rigid
disk is represented by a simple sinusoidal force in the x-y
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FIG. 1. (a), (b) Grayscale plot of traction in the sliding direction
and (c), (d) enlarged view of atomic positions (blue) and energy
minima of the substrate potential (gray) for incommensurate crystals
with & = 0.03 rad, A ~ 33d, and a = 62d. In (a), (c) the substrate is
effectively rigid, G/tmax = 256, and all atoms advance together. The
traction forces alternate in sign and sum to nearly zero. In (b), (d) the
substrate is compliant, G/Tm.x = 1, and sliding occurs through the
motion of dislocations between regions that have locked in registry
(see the movie in the Supplemental Material [33]).

plane of the substrate as in the Frenkel-Kontorova chain and
two-dimensional Peierls-Nabarro model [14,27],

F(x,y) = Tnaxd[sin@rx/d)% + sin@ry/d)§l, (1)
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for r < a, where 1« represents the maximum local frictional
stress or traction. The competition between bulk deformation
and interfacial slip can be characterized by a core width beore =
dG [ Timax. For all cases studied, b.ore €qualed the distance from
the center of an interfacial edge dislocation to the line where
the stress drops to Tmax/2.

The displacement of substrate atoms is calculated with a
Green’s function technique that describes the linear response
of a semi-infinite substrate [28-30]. The results presented
below are for the commonly studied case of an isotropic
substrate with v = 0.5, but other interactions gave equivalent
results [31]. The substrate is displaced quasistatically and the
energy minimized after each step using LAMMPS [32]. The
static friction is determined from the maximum force between
the surfaces during sliding. Normalizing by contact area gives
the macroscopic frictional stress ;.. Results are shown for
sliding at 6/2 to the x axis, but other sliding directions give
similar scaling.

Figure 1 contrasts the behavior of rigid and compliant
substrates for an incommensurate case of & = 0.03 rad. For the
stiff case, substrate atoms remain on an ideal rotated square
lattice and atoms are equally likely to be above or between
atoms of the disk. The force resisting sliding oscillates as the
registry changes with a characteristic period A ~ d /6 at small
angles. The cancellation in forces for a > A leads to structural
superlubricity [1-3].

For rigid incommensurate lattices with a circular contact
area, the static friction stress has an upper bound that decreases
as a power of a, Tgic ~ Tmax(a/d) 3% at large a [6,9,13,23].
Figure 2(a) shows the static friction stress of a contact with 6 =
25°. When the shear modulus G is large, the friction follows
the predicted rigid scaling shown by the dashed line. Elasticity
is unimportant since beore = dG/Tmax 1S much greater than
a. Note that there are special radii where the cancellation of
forces is nearly exact and the friction is anomalously small
compared to the power law fit. To minimize fluctuations, these
special radii are not included in Fig. 2(b).
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FIG. 2. Static friction stress vs contact radius for the values of b.q. /d indicated by symbols in the legend. (a) For incommensurate contacts
Tie decreases as a~>/? (dashed line) and then saturates at a plateau that decreases with increasing beor. (b) Scaling by beore and Tic (beore)
shows that rigid scaling holds for a < b and 7y saturates for a >> b.o. The rotation angles are (a) 25° and (b) 3.4° to illustrate that similar

behavior occurs for all incommensurate surfaces. (¢) For commensurate (6 = 0°) surfaces g, is constant at a < b.q and then drops as a

to a plateau value that decreases with increasing bore-
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For the compliant case shown in Figs. 1(b) and 1(d),
misregistry becomes localized into dislocation cores. Between
dislocations the surfaces lock together to effectively resist
sliding. As has been observed in the simpler case of 1D
systems [14] and suggested for 2D systems [21,22], sliding
occurs through dislocation motion along the interface rather
than rigid translation of the entire surface. Contact produces
an initial network of misfit dislocations. In the case shown,
there were three horizontal dislocations separated by A at
locations where the force changes sign in the rigid case.
The Supplemental Material [33] shows how these dislocations
evolve during sliding. Sliding produces a nonuniform stress
distribution with singularities near the edge of the contact [26],
as discussed below. This causes the dislocations to curve as
they move and nucleates new dislocations at the contact edge.
Figure 1(b) shows a snapshot from steady state sliding. As
sliding continues, the dislocations move inwards towards the
central ellipse and annihilate while new dislocations nucleate
at the edge. The number of dislocations at the peak force
corresponding to static friction increases with a/bcoe.-

Figure 2(a) reveals how compliance affects the static
friction. As G and by decrease, the friction deviates from
the rigid scaling at smaller and smaller a. At large a the shear
stress approaches a constant limiting value that increases as
beore decreases. Similar behavior is observed for all rotation
angles that produce an incommensurate interface.

The importance of b is illustrated by the rescaled data
for & = 3.4° in Fig. 2(b). The radius is normalized by b o and
the friction by the rigid prediction for @ = beore. For a < beore
the stress exhibits the power law scaling predicted for rigid
surfaces. For a > by dislocations can enter the contact and
the interface deforms to lock into local registry. The friction
is above the rigid prediction, dropping more slowly and then
saturating at large a/bcore. Given our limited simulation size
it is difficult to reach the asymptotic limit for b > 5d, but
the arguments below suggest that the saturating value drops
exponentially with increasing bcore.

Previous work on interfacial dislocations in circular con-
tacts between 3D solids [25,27,34] has focused on the
commensurate case, & = 0. Results for this special case are
shown in Fig. 2(c). Because all atoms are in phase in the
rigid limit, the shear stress is independent of a. As a becomes
larger than b.o, the friction drops below the rigid limit. The
initial decrease scales as a~!/2. As shown in a one-dimensional
model by Hurtado and Kim [25], this can be understood
from the fact that continuum theory predicts that a uniform
displacement in the contact produces a singular shear stress
at the edge of the contact. The stress within by of the edge
scales as (a /bmre)l/ 2 times the stress in the center. When this
edge stress reaches 7., a dislocation can nucleate at the
circumference and propagate across the interface, allowing
the whole contact to advance by d. Gao has observed this
regime [27] in two-dimensional simulations up to a/begre ~ 50
and Fig. 2(c) extends the scaling regime by more than an order
of magnitude.

At very large a/bco, many dislocations are stable in the
contact. In this limit one expects [34] that the shear stress
approaches the Peierls stress for dislocation motion Tpejeris. Our
simulations are large enough to access this regime, showing a
clear saturation at a force that decreases with increasing beore.-
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FIG. 3. Plateau stress for a/b.oe — 00 at the indicated rotation
angles (symbols) and the Peierls stress for edge dislocations in a
periodic system (solid line). There are significant error bars at large
beore Where it is difficult to reach full saturation. The top of each
error bar represents an upper bound corresponding to 7. at the
largest a studied (512-1024d). The bottom was estimated by linearly
extrapolating the tail of log-log plots as in Fig. 2 to ten times the
largest a studied.

The results shown in Fig. 2 suggest that for both
incommensurate and commensurate systems the shear
stress in large contacts approaches the Peierls stress for
dislocation motion. As shown in Fig. 1, dislocations make
a loop and thus change from an edge character at the
front and back, to screw dislocations at the sides. We
performed a set of simulations with periodic boundary
conditions to determine Tpejeris- The same compliant substrate
was used but the rigid periodic potential was stretched
or skewed to impose a single dislocation per unit cell
at the desired orientation. The stress on the top surface
was then increased to determine the Peierls stress
at which the dislocation moved. As predicted from
continuum theory [35,36], Tpeierls/ Tmax X €XP(—bcore/d) =
exp(—G/Tmax)- The solid line in Fig. 3 shows a fit to data
for an edge dislocation perpendicular to the sliding direction.
Stresses for other orientations were both larger and smaller,
but also show exponential scaling at large core widths.

Also shown in Fig. 3 are the saturation friction stresses for a
wide range of 6 and b¢ore. A striking conclusion is that similar
physics determines the saturating stress in both commensurate
and incommensurate contacts. In the limit of small 6 or small
beore, commensurate and incommensurate surfaces have simi-
lar shear stresses that scale with the Peierls stress for a single
edge dislocation. At larger 6 and bcore, Tgic 1S depressed and
results for each 0 seem to decay with a more rapid exponential.
In this limit, local locking into the § = 0 commensurate state
gives an intrinsic dislocation spacing A = d/6 that is smaller
than b.qr.. Interactions between nearby dislocations are known
to reduce the effective Peierls stress. The system can also
lock into a higher order commensurate state. Independent
simulations of these states in systems with periodic boundary
conditions show exponentially decaying frictional stresses that
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are similar to the results in Fig. 3. There is no friction in the
rigid limit (beore — 00), because our interfacial interaction
is purely sinusoidal with no harmonics [12]. More realistic
potentials lead to significant friction in the rigid limit.

Given the strong dependence of Peierls stress on bgp it is
interesting to consider typical values for real materials. For
contact between two identical solids, Eq. (1) should give a
simple model for interactions between lattice planes in the
bulk as well as at the interface. In this case, G/Tmax ~ 2mwh/d,
where / is the spacing between lattice planes. Our geometry
is consistent with the (001) surface of an fcc crystal and
thus G /tmax ~ 4.4. Experimental studies of the friction force
on islands may be able to reach scales where saturation
to the Peierls stress can be observed [9]. The core width
would be smaller and the Peierls stress much larger if the
interaction between solids was stronger than the internal
interactions. As noted by Miiser [23], such interfaces are
likely to be metastable against alloying. However, he found
no mixing on simulation time scales for systems that would
correspond to beore ~ d Where our calculated Peierls stress is
large.

The directional covalent bonding in silicon and diamond
can lead to large yield stresses and small dislocation core
widths beore ~ d [37,38]. As expected from Fig. 3, unpas-
sivated incommensurate surfaces of these materials sponta-
neously deform to form an interface with a yield stress that
is comparable to the bulk. Passivating the dangling covalent
bonds at the surface with hydrogen reduces 7,,,x to ~ 10 MPa,
which is characteristic of van der Waals interactions [39]. The
resulting beore ~ 10 wm and the corresponding Peierls stress
would be below the limit of detection in practical experiments.
Of course it is difficult to make crystalline surfaces of
diamond and silicon that are atomically flat on this scale.
For multiasperity rough contacts or disordered surfaces there
can be a new mechanism of elastic pinning beyond an elastic
correlation length determined by the competition between
elasticity and the strength of disorder [40—43]. One source of
disorder is the variation in phase and magnitude of friction
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forces from individual asperities such as those considered
here.

Large atomically flat surfaces are readily obtained for
layered materials such as MoS; and graphite. In these highly
anisotropic materials, the width of interfacial dislocations is
determined by the competition between stiff covalent bonds
within layers and the weak van der Waals interactions between
layers [44]. The value of b /d Will be so large that the Peierls
stress is negligible and this must contribute to the success of
these materials as solid lubricants.

The results presented above provide insight into the
competition between geometry, elasticity, and interfacial shear
stress in determining the friction of two-dimensional contacts
between crystalline three-dimensional solids. For small con-
tact radii we find the friction scales according to previously
derived rules for rigid solids. For commensurate surfaces there
is a constant frictional stress, while 7i. decreases as a power
of radius for incommensurate surfaces.

Elasticity becomes important when the radius exceeds
the width of edge dislocation cores, beore = dG/Tax- For
commensurate surfaces, nucleation at the circular contact
boundary leads to a universal decrease in stress as Tgic ~
(a/beore) "2, The friction stress then saturates at the Peierls
stress for dislocation loops to move across the interface.
The stress also saturates at large a /by for incommensurate
surfaces. Moreover, the Peierls stress is nearly the same for
commensurate and incommensurate systems at small b and
A. This result is in stark contrast to the rigid limit [1-3,9]. In
all cases studied the saturation stress drops exponentially with
G /Tmax- Thus there is no true zero friction state, but the friction
stress may be extremely small in stiff systems.

This material is based on work supported by the National
Science Foundation under Grant No. DMR-1411144 and
by the Deutsche Forschungsgemeinschaft (Grant No. PA
2023/2). Calculations were partially carried out at the Julich
Supercomputing Center (Project No. hfr13).
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