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Minimal model for charge transfer excitons at the dielectric interface
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A theoretical description of the charge transfer (CT) exciton across the donor-acceptor interface without the
use of a completely localized hole (or electron) is a challenge in the field of organic solar cells. We calculate
the total wave function of the CT exciton by solving an effective two-particle Schrödinger equation for the
inhomogeneous dielectric interface. We formulate the magnitude of the CT and construct a minimal model of
the CT exciton under the breakdown of inversion symmetry. We demonstrate that both a light hole mass and a
hole localization along the normal to the dielectric interface are crucial to yield the CT exciton.
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Charge transfer (CT) excitons are a key to resolving a
long-standing exciton dissociation problem in organic solar
cells [1–3]. Although several effects such as interface dipole
[4–6], disorder [7–9], carrier delocalization [10,11], effective
mass [12], and entropy [13–16] have been investigated to
understand why the CT exciton efficiently dissociates into
free carriers at the dielectric interface, the physics behind
the dissociation remains under debate. The CT exciton has
been modeled as a pair composed of a mobile electron in
the acceptor and a completely localized hole in the donor or
vice versa [4,5,11,12,16–18]. However, such a treatment partly
ignores the spatial correlation between carriers [1]. To compute
the total wave function of the CT exciton is a theoretical
challenge. Raos et al. proposed an exciton tight-binding model
without using the localized particle approximation [19]. In
contrast, a natural extension of the standard hydrogen model
would also be useful in understanding the origin of the CT.

In this Rapid Communication, we construct a mini-
mal model of the CT exciton described by a two-particle
Schrödinger equation for an inhomogeneous system having
a local dielectric constant ε(r) (r is the position). One of
the main results is that the carrier localization along the
normal to the dielectric interface enhances the magnitude of
the CT. This is complementary to the previous finding that the
carrier localization parallel to the interface lowers the exciton
dissociation probability [3,11].

We first present a two-particle Schrödinger equation for an
inhomogeneous dielectric medium Hψ(re; rh) = Eψ(re; rh),
where re and rh are the electron and hole positions, respec-
tively. The Hamiltonian is given by

H = − �
2

2me

∇2
e − �

2

2mh

∇2
h + U (re; rh), (1)

where me and mh are the electron and hole masses, respec-
tively. The first and second terms are the kinetic energies of the
electron and hole, respectively. The third term is the Coulomb
potential energy between the electron and the hole, which may
be decomposed into three terms:

U (re; rh) = −e2

4π
√

ε(re)ε(rh)
G(re; rh) + Vim(re) + Vim(rh),

(2)
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where e is the elementary charge. The first term is the direct
interaction energy between particles at re and rh and the
second and third terms are the image potential (IP) energies of
particles at re and rh, respectively. The set of Eqs. (1) and (2)
is a general expression describing the two-particle kinetics in
any dielectric. Below, we will derive Eq. (2).

Let us consider an electrostatic potential acting on r caused
by a creation of a point source charge Qs placed at the position
rs . Such a potential φ(r; rs) is determined by solving the
Poisson equation

∇ · [ε(r)∇φ(r; rs)] = −Qsδ(r − rs). (3)

By noting the following relation

∇ · [ε(r)∇φ(r; rs)] =
√

ε(r)∇2[
√

ε(r)φ(r; rs)]

−
√

ε(r)[∇2
√

ε(r)]φ(r; rs), (4)

one can rewrite the Poisson equation as follows:

∇2[
√

ε(r)φ(r; rs)]

= −Qsδ(r − rs)√
ε(rs)

+ [∇2
√

ε(r)]φ(r; rs). (5)

If we regard the two terms on the right-hand side (rhs) of
Eq. (5) as a source charge for the potential

√
ε(r)φ(r; rs), we

obtain a self-consistent equation

φ(r; rs) = �0(r; rs) − 1

4π
√

ε(r)

∫ ∇2√ε(r ′)
|r − r ′| φ(r ′; rs)d r ′,

(6)

where

�0(r; rs) = Qs

4π
√

ε(r)ε(rs)
G0(r − rs) (7)

and G0(r − rs) ≡ 1/|r − rs |. This is simply written as

φ(r; rs) = Qs

4π
√

ε(r)ε(rs)
G(r; rs), (8)

where

G(r; rs) = G0(r − rs) +
∫

d r ′G0(r − r ′)p(r ′)G(r ′; rs),

(9)

and p(r) = −∇2√ε(r)/[4π
√

ε(r)]. The electrostatic poten-
tial energy between the point charge Q at the position r and
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the source charge Qs at the position rs is given as Qφ(r; rs).
The second term on the rhs of Eq. (9) contributes to the induced
potential caused by the presence of the spatially varying ε. The
limit r → rs of the induced potential yields the IP [20,21]

Vim(rs) = Q2
s

8πε(rs)
[G(rs ; rs) − G0(rs − rs)]. (10)

Consequently, by setting Q = −Qs = −e, r = re, and rs =
rh, we obtain the potential energy, i.e., Eq. (2).

The derivation of Eqs. (1) and (2) paves the way to study
two-particle properties in inhomogeneous dielectric media. All
the two-particle problems can be reduced (i) to construct a
model of ε(r) that captures the underlying physics and (ii) to
solve the two-particle Schrödinger equation. The locality of
ε(r) is justified when the length scales in question exceed the
spread of maximally localized Wannier functions [22,23]. The
present work does not use the ab initio approach to determine
ε(r), but rather uses a model to simplify the physics.

For a homogeneous system (p → 0), Eq. (1) is clearly
reduced to a standard effective mass equation for bulk semi-
conductors. For an inhomogeneous system, both the center
of mass motion and the relative motion cannot be separated
because φ(r; rs) in Eq. (8) is no longer a function of r − rs .
To explore the physical meaning of Eq. (8), we rewrite it as
follows,

φ(r; rs) = �0(r; rs) +
∞∑

n=1

φ(n)(r; rs), (11)

where

φ(n)(r; rs) =
∫

d rn

ρ(n)(rn; rs)

4π
√

ε(r)ε(rn)
G0(r − rn), (12)

with the nth (n � 1) order induced charge

ρ(n)(rn; rs) = 4πε(rn)p(rn)
∫

d rn−1

× ρ(n−1)(rn−1; rs)

4π
√

ε(rn)ε(rn−1)
G0(rn − rn−1) (13)

and ρ(0)(r0; rs) = Qsδ(r0 − rs). Figure 1 indicates how a
charge at r interacts with a source charge at rs via the induced
potential (dashed) as well as the bare Coulomb potential
(solid): The (n − 1)th (n � 1) order charge density ρ(n−1) at
rn−1 produces the nth-order induced charge density ρ(n) at rn

r
 rs

r3r2

 r1

Image

Induced

Bare Coulomb

(r)

FIG. 1. Schematic illustration for the electrostatic potential at
r by the presence of the source charge at rs . Solid and dashed
lines indicate the contribution from the bare Coulomb and induced
potential, respectively. The dotted line indicates the IP contribution
to the position rs .

given by Eq. (13), which yields the nth-order induced potential
φ(n) at r given by Eq. (12). A similar interpretation can also
be applied to the physical meaning of IP in Eq. (10). All these
treatments are exact in static electrodynamics. Although the
time evolution of the induced charge and/or potential can be
studied in the framework of the linear response theory [24–28],
such a problem is out of scope of this Rapid Communication.

Based on the formulation above, we next study the CT
exciton problem. We consider a dielectric interface, in which
the dielectric constant varies only along the normal to the
interface [29]. The magnitude of the dielectric constant is
given by

ε(z) = εin + εout

2
−

(
εin − εout

2

)
tanh

(
z

w

)
, (14)

where εin and εout are the bulk dielectric constants in the inner
and outer regions, respectively: limz→−∞(+∞) ε(z) = εin(out).
The parameter w determines the smoothness of the dielectric
constant variation near z = 0: The limit w → 0 gives a step
function. The density-functional theory approach has shown
that the dielectric constant changes monotonically around the
semiconductor interface, while a slight deviation from the
monotonic curve appears due to the presence of the atomic
nuclei but vanishes in each bulk region [23]. The use of
Eq. (14) would be enough to construct a CT exciton minimal
model. In this case study, we set εin = 5ε0, εout = 3ε0 (ε0 is
the dielectric constant of vacuum), which are typical values
of organic semiconductors, and w = a0/4 that corresponds to
the transition region width of a0 = 4πεin�

2/(m0e
2)(�2.64 Å)

around z = 0 [see the inset of Fig. 3(a)]. The energy unit is set
to be E0 = e2/(8πεina0) = 1/25 Ry. We set me = 0.8m0 by
referring to the electron mass of pentacene [17,18].

Figure 2 shows the z dependence of �0 and φ in the presence
of a hole at zh = 0: The former is simply given by Eq. (7)
with a replacement of Qs by +e, while the latter are obtained
by solving Eq. (6) self-consistently (i.e., exactly). Due to the
small difference between εin and εout, the potential energy
difference between them is also small. This fact also holds
for the other hole position zh. The inset of Fig. 2 shows the
z dependence of IP given by Eq. (10). As a charged particle
approaches the interface from the outside, Vim(z) decreases in

-3

-2

-1

0

-e
φ(

z)
/E

0

-3 -2 -1 0 1 2 3
z/a0

φ
Φ

-0.4

0.0

0.4

V
im

(z
)/

E
0

-1.5 0.0 1.5

FIG. 2. Self-consistent (solid) and zeroth-order (dashed) solu-
tions to the Poisson equation given by Eq. (6). Both solutions
are asymmetric with respect to z = 0. Inset: The IP energy given
by Eq. (10).
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the vicinity of the interface, increases in the transition region,
and takes a maximum at z � −0.25a0. In the limit of z →
−∞, Vim(z) approaches zero. A similar spatial variation of
the IP has been reported in a semiconductor interface model
[29]. The IP around a metal-vacuum interface has been studied
by a fully quantum mechanical method [28]. The IP variation
for z > 0 is also similar to that in the vacuum region at the
metal-vacuum interface. This fact supports the validity of the
present model. In this study, φ − �0 and Vim(z) are small
enough to be neglected in the first approximation.

Motivated by the result above, we retain the zeroth-order
potential �0 given in Eq. (7) only for the Coulomb interaction
between an electron at re and a hole at rh. This yields the
two-particle Hamiltonian

H = − �
2

2M
∇2

R − �
2

2μ
∇2

r̃ − e�0

(
R + mh

M
r̃; R − me

M
r̃
)

,

(15)

where M = me + mh and μ = memh/M are the total and
reduced masses, respectively. R = (mere + mhrh)/M and
r̃ = re − rh are the center of mass and the relative coordinates,
respectively.

To solve the two-particle Schrödinger equation
H	(R; r̃) = E	(R; r̃), we use the variational approach
and define the ground state trial function as

	(R; r̃; aρ,az,z0) = 1

(2π )3/2
ei(KxX+KyY )eimθ̃

× ξ (Z; z̃)ψ(r̃ ,z̃; aρ,az,z0), (16)

with

ξ (Z; z̃) = 1(
πσ 2

z

)1/4 exp

[
−1

2

(
Z − me

M
z̃ − zh

σz

)2
]

(17)

and

ψ(r̃ ,z̃; aρ,az,z0)

= 1√
πa2

ρaz

exp

⎡
⎣−

√(
ρ̃

aρ

)2

+
(

z̃ − z0

az

)2
⎤
⎦. (18)

We used the Cartesian coordinates R = (X,Y,Z) and cylindri-
cal coordinates r̃ = (ρ̃,θ̃ ,z̃) for the center of mass and the rela-
tive coordinates, respectively. Due to the homogeneity parallel
to the xy plane and the rotational symmetry around the z axis,
the wave function is characterized by the wave numbers Kx and
Ky and the angular momentum m, respectively [see Eq. (16)].
In the following, we set m = 0. We assumed that the hole
amplitude has a Gaussian distribution which is localized at z =
zh and has an extent of σz along the z direction [see Eq. (17)].
The function ψ in Eq. (18) has three variational parameters:
aρ and az determine an extent of the electronic wave function
along the ρ̃ and z̃ directions, respectively; z0 determines the
z coordinate of the center of the electron density distribution.
This trial function satisfies the normalization condition∫

d R
∫

d r̃|	(R; r̃; aρ,az,z0)|2 = 1. (19)

When the values of me, mh, zh, and σz are given, the
equation that should be solved is explicitly written as[

− �
2

2μ
∇2

r̃ − e2

4π |r̃|
∫


(Z; z̃)dZ

]
ψ(r̃) = Eψ(r̃), (20)

with


(Z; z̃) = |ξ (Z; z̃)|2√
ε
(
Z + mh

M
z̃
)
ε
(
Z − me

M
z̃
) , (21)

where E = E − �
2(K2

x + K2
y )/(2M) − Eloc with Eloc =

�
2/(4Mσ 2

z ) + �
2m2

e/(4μM2σ 2
z ) that arises from the hole

localization. Note that the standard virial theorem −V/T = 2,
where T and V are the expectation values of the first and
second terms in the brackets in Eq. (20), respectively, is
not satisfied at the dielectric interface because �0 is no
longer a function of re − rh, as mentioned. Instead, the
relation −(V + δV )/T = 2 should be satisfied where δV is
defined as

δV =
∫

d r̃
e2|ψ(r̃)|2

4π |r̃| lim
L→1

[
∂
(LZ; Lz̃)

∂L

]
. (22)

Here, L is a scaling parameter. The use of Eq. (16) gives a ratio
of −(V + δV )/T = 2.00 ± 0.01 for the considered systems.

We first consider a hole as a trapped particle. This
corresponds to taking both the limit of an infinite hole mass
mh → ∞ and a strong localization σz → 0, which leads to
M → ∞, μ → me, and R → rh. This treatment may be valid
if one of the two phases is disordered [7–11]. Using Eq. (7),
we obtain[

− �
2

2me

∇2
r̃ − e�0(rh + r̃; rh)

]
ψ(r̃) = Eψ(r̃), (23)

the solution of which gives the binding energy. Figure 3(a)
(left) shows the zh dependence of z0 − zh. As the hole
approaches the interface from the region with εin to the region
with εout, z0 − zh first increases and reaches its maximum
value at zh � −0.2a0. Then, it gradually decreases within the
interface region and goes to zero. The deviation of z0 − zh

from zero indicates, by definition, the CT exciton. Figure 3(a)
(right) shows a ratio az/aρ as a function of zh. The ratio
deviates from unity largely around the edge of the transition
region (zh � ±0.5a0), indicating the presence of the elongated
(zh < 0) and shortened (zh > 0) exciton along the z direction
and implying that the anisotropy is a precursor of the CT
exciton. The behavior in zh > 0 can be understood as follows:
If the exciton is elongated along the z direction, the potential
energy gain decreases due to the high value of ε(z) in the region
of z < 0. Thus, this leads to a shrinkage of the exciton along the
z direction. In contrast, such a shrinkage enhances an exciton
kinetic energy, which in turn enhances the exciton extent
along the ρ direction to compensate for the kinetic energy
loss with the potential energy. Interestingly, we found that the
zh dependence of δV in Eq. (22) is strongly correlated with
that of az/aρ − 1 [see Figs. 3(a) and 3(b)]. Note that the virial
theorem in the present system is given by 2T + V = −δV .
Thus, it is reasonable to interpret −δV as an effective pressure
exerted on the system along the normal to the interface: If
δV is negative (positive), the effective pressure arising from
the inhomogeneity of ε(z) shortens (elongates) the electron
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FIG. 3. (a) zh dependence both of the values of z0 − zh (left) and az/aρ (right) for the dielectric interface. The trapped hole approximation
is assumed: mh/me → ∞ and σz → 0. Inset: The spatial profile of ε in Eq. (14). (b) δV in Eq. (22) as a function of zh. (c) The charge transfer
z0 − zh as a function of σz for zh = −0.2a0 and mh/me = 2. Inset: The charge transfer z0 − zh as a function of mh/me for zh = −0.2a0 and
σz = 0.01a0 [see Eq. (17)]. The thin solid line indicates the CT value in the limit of mh/me → ∞.

distribution along the z direction. Our model shows that the
inversion symmetry breakdown yields a finite value of CT and
serves as a minimal model of the CT exciton.

Next, we study the effects of both the finite hole mass
and the hole delocalization and solve the eigenvalue problem
given by Eq. (20). The inset of Fig. 3(c) shows the mh/me

dependence of z0 − zh in the case of zh = −0.2a0 and σz =
0.01a0. The CT value z0 − zh monotonically increases with
decreasing mh/me. The decrease in the hole mass leads to
a decrease in the relative mass μ, which causes a decrease
in the binding energy and an increase in the exciton size in
real space. The magnitude of the CT would be enhanced in
such a weakly bound exciton. Similar behavior has also been
reported in other models considering completely localized
carriers [4,5,11]. Figure 3(c) shows the σz dependence of
z0 − zh in the case of mh/me = 2. As σz increases (the hole
becomes delocalized), the magnitude of the CT decreases.
This is because the delocalization of the hole along the
normal to the interface leads to a localization of the electron

to gain the attractive Coulomb interaction energy, which
leads to generation of a tightly bound exciton and thus a
decrease in the magnitude of the CT. Our result suggests
that the carrier localization normal to the interface would
be another key to the exciton dissociation, while it has been
suggested that the carrier delocalization parallel to the interface
enhances the dissociation probability [11]. More investigation
about the relation between the carrier distribution and the
interface morphology [30] is desired.

In summary, we have studied the total wave function of the
CT exciton and found that the effects of the inversion symmetry
breakdown, the small ratio of mh/me, and the hole localization
are important in the CT exciton generation. In particular,
we expect that experiments can demonstrate the dissociation
probability enhancement by the carrier localization along the
normal to the interface.

This study is supported by a Grant-in-Aid for Young
Scientists B (No. 15K17435) from JSPS.
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dissociation so efficient at the interface between a conjugated
polymer and an electron acceptor?, Appl. Phys. Lett. 82, 4605
(2003).

[5] M. Wiemer, A. V. Nenashev, F. Jansson, and S. D. Baranovskii,
On the efficiency of exciton dissociation at the interface between
a conjugated polymer and an electron acceptor, Appl. Phys. Lett.
99, 013302 (2011).

[6] S. R. Yost and T. V. Voorhis, Electrostatic effects at organic
semiconductor interfaces: A mechanism for “cold” exciton
breakup, J. Phys. Chem. C 117, 5617 (2013).

[7] P. Peumans and S. R. Forrest, Separation of geminate charge-
pairs at donor-acceptor interfaces in disordered solids, Chem.
Phys. Lett. 398, 27 (2004).
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