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Analysis in temporal regime of dispersive invisible structures designed from transformation optics
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A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal
regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived
for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting
amplitude principle applies with transient fields decaying as the power −3/4 of the time. The quality of the cloak
is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is
supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of
dispersion.
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In 2006, Pendry et al. [1] and Leonhardt [2] designed an
invisibility cloak for electromagnetic radiation by blowing up
a hole in optical space and hiding an object inside it. These
proposals have been validated by microwave experiments
[3]. However, these metamaterials are subject to an inherent
frequency dispersion which may affect the quality of the
optical function designed in time harmonic regime. Hence,
there is a renewed interest in the propagation in dispersive
media, originally investigated by Brillouin [4]. The effect of
dispersion has been addressed in the cases of the flat lens [5–9]
and cylindrical invisibility cloaks [10–13].

In this Rapid Communication, a regularized version of
Pendry’s transform [14] is implemented for the design of the
simplest possible system of invisible layers. With this trans-
form, infinities are avoided in the material parameters of the
cloak which consists of two homogeneous anisotropic slabs.
Frequency dispersion is introduced, which is a required model
for metamaterials whenever the permittivity (or permeability)
is lower than that of vacuum (i.e., when the phase velocity is
greater than c or negative). The effect of dispersion is analyzed
with electromagnetic sources with sinusoidal time dependence
that are switched on at an initial time. Such an illumination
has been originally used by Brillouin [4] in homogeneous
dispersive media, and more recently in the case of the negative
index flat lens [5–7].

The originality of our approach is to consider a simple
invisibility system made of two layers allowing analytic
calculations. Indeed, the invisible nature of the system leads
to a simple expression of the transmitted field, since there is
no reflection at the interfaces. Also, the absence of branch
cut in the integral expression of the time dependent field in
multilayered structures is exploited. The method is presented
in detail and the derivation of the transient regime shows that
the electromagnetic field includes contributions generated by
the singular values of the permittivity and permeability (zeros
and infinities). An explicit expression of the transient fields is
obtained for long times, which is similar to the one obtained by
Brillouin [4] for wave fronts (forerunners). Next, the limiting
amplitude principle is considered to show that cloaking can
be addressed in temporal regime after the transient regime.
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These results are supplemented with numerical simulations in
the case of a two-dimensional cylindrical layered cloak, where
the presence of additional modes is confirmed in the transient
regime.

We start with the definition of a system of invisible layers.
Let x = (x1,x2,x3) be a Cartesian coordinate system in the
space R3. At the oscillating frequency ω, the electric field
amplitude E(x) is governed in free space by the Helmholtz
equation

−∇ × ∇ × E(x) + ω2μ0ε0 E(x) = 0, (1)

where ε0 and μ0 are the vacuum permittivity and permeability.
The invisible layered structure is then deduced using the
coordinate transform x → x′ (see Fig. 1):

x ′
1 = a

α
x1, 0 � x1 � α,

x ′
1 = a + b − a

b − α
(x1 − α), α � x1 � b,

x ′
1 = x1, x1 � 0, b � x1,

(2)

where 0 < a < α < b, x ′
2 = x2, and x ′

3 = x3 being invariant.
The effect of this geometric transform is to map the layer
0 � x1 � α onto the layer 0 � x ′

1 � a (denominated as layer
A), and the layer α � x1 � b onto a � x ′

1 � b (denominated
as layer B). Note that such a geometric transform, adapted
from [15], regularizes the original transform for an invisibility
cloak proposed in [1]. The corresponding transform is applied
to the Helmholtz equation (1):

−∇′ × 1

μ(x ′
1)

∇′ × E′(x′) + ε(x ′
1) ω2μ0ε0 E′(x′) = 0, (3)

where the relative permittivity and permeability are both equal
to the tensor ν ≡ ε = μ (as in [8]) taking constant values in
each layer:

ε(x ′
1) = μ(x ′

1) = ν(x ′
1) = νa if 0 � x ′

1 � a,

ε(x ′
1) = μ(x ′

1) = ν(x ′
1) = νb if a � x ′

1 � b, (4)

ε(x ′
1) = μ(x ′

1) = ν(x ′
1) = 1 if x ′

1 � 0 , b � x ′
1.

The constant values in layers A and B are given by

νa,b =
⎡
⎣ν⊥

a,b 0 0
0 ν

‖
a,b 0

0 0 ν
‖
a,b

⎤
⎦, (5)
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FIG. 1. Coordinate transform for invisible layers. Left: Change
of coordinate x1 → x ′

1. Center: Free space before coordinate trans-
form. Right: invisible set of homogeneous anisotropic layers after
coordinate transform.

where the components parallel and perpendicular to the plane
interfaces, respectively, denoted by the superscripts ‖ and ⊥,
are

ν⊥
a = 1/ν‖

a = a/α, ν⊥
b = 1/ν

‖
b = (b − a)/(b − α). (6)

The transformed Helmholtz equation (3) can be reduced
to a set of two independent scalar equations using the
symmetries of the geometry, namely, the invariances under the
translations and rotations in the plane (x ′

2,x
′
3). After a Fourier

decomposition from (x ′
2,x

′
3) to (k′

2,k
′
3), Eq. (3) becomes

∂

∂x

1

ν‖(x)

∂U

∂x
(x) − k2

ν⊥(x)
U (x) + ω2

c2
ν‖(x)U (x) = 0, (7)

for U (x), the (Fourier transformed) electric field component
along direction (−k3,k2). Here, x denotes x ′

1, k2 equals k2
2 + k2

3
(with k2 = k′

2 and k3 = k′
3), c = 1/

√
ε0μ0 is the light velocity

in vacuum, and functions ν‖(x) and ν⊥(x) are the components
of ν(x) parallel and perpendicular, respectively, to the plane
interfaces. Notice that, since ε = μ, the second scalar equation
derived from the Helmholtz equation is fully identical to (7),
except that U (x) should be the (Fourier transformed) magnetic
field component along direction (−k′

3,k
′
2) [or (−k3,k2)].

In this Rapid Communication, the system is analyzed using
a transfer matrix formalism [16]. Equation (7) is formulated
as

∂

∂x
F (x) = −iM(x)F (x), (8)

where

F =
[

U
i

ν‖
∂U

∂x

]
, M =

⎡
⎣0 ν‖

ω2

c2
ν‖ − k2

ν⊥ 0

⎤
⎦. (9)

The transfer matrices Ta and Tb, associated with layers A and
B, defined by F (a) = TaF (0) and F (b) = TbF (a), are given
by

Ta = exp[−iM0α], Tb = exp[−iM0(b − α)], (10)

the matrix M0 being the value taken by the matrix M(x) in
vacuum, i.e., when ν‖(x) = ν⊥(x) = 1. This implies that the
transfer matrix TbTa = exp[−iM0b], associated with layers
A and B, is exactly the same as that of a vacuum layer of
thickness b. Hence the system of layers A and B is invisible
to any incident field.

Nevertheless, as pointed out by Veselago when he in-
troduced negative index materials [17], causality principle

and passivity require that permittivity and permeability be
frequency dispersive when they take relative value below unity
[18,19]. According to this requirement, frequency dispersion
is introduced in the components of νa and νb with value below
unity, assuming the simple Drude-Lorentz model [19]:

ν⊥
a (ω) = 1 − �2

a

ω2 − ω2
a

, �2
a = α − a

α

(
ω2

0 − ω2
a

)
,

ν
‖
b (ω) = 1 − �2

b

ω2 − ω2
b

, �2
b = α − a

b − a

(
ω2

0 − ω2
b

)
.

(11)

Under this assumption, the functions ν⊥
a (ω) and ν

‖
b (ω) take the

appropriate values for the invisibility at ω = ω0. Notice that
the resonance frequencies ωa and ωb must be smaller than the
operating frequency ω0 in order to ensure that the oscillator
strengths �2

a and �2
b are positive. For frequencies different

from ω0, the system has no reason to be invisible.
The effect of dispersion is analyzed using illumination with

sinusoidal time dependence oscillating at ω0 and switched on
at an initial time. Such a “causal” incident field, originally
used by Brillouin [4] and more recently in [5–7], is assumed
to be in normal incidence for simplicity. Hence the following
current source is considered:

S(x,t) = S0δ(x − x0)θ (t) sin[ω0t], (12)

where δ is the Dirac “function,” θ (t) the step function (equal
to 0 if t < 0 and 1 otherwise), and S0 the constant component
of the source parallel to the field component U (x).

In the domain of complex frequencies z = ω + iη, the
electric field radiated in vacuum by this source is

U0(x,z) = S0μ0c

2

ω0

z2 − ω2
0

exp[iz|x − x0|/c]. (13)

The positive imaginary part η has been added to the frequency
ω to ensure a correct definition of the Fourier transform with
respect to time of the source (12). The time dependent incident
field radiated in vacuum is, with z = ω + iη,

E0(x,t) = 1

2π

∫
R

dω exp[−izt]U0(x,z)

= −S0μ0c

2
θ (t − |x − x0|/c)

× sin[ω0(t − |x − x0|/c)]. (14)

The next steps are to compute the time dependent field
transmitted through the system, and to analyze the behavior
of the field when the time t tends to infinity. According to
the limiting amplitude principle, the solution should have an
asymptotic behavior corresponding to the time harmonic frame
oscillating at the frequency ω0. Let T (ω) be the transmission
coefficient of the system made of layers A and B. Then, the
time dependent electric field is, for x > b,

ET (x,t) = 1

2π

∫
R

dω exp[−iz(t − {x − b}/c)] U0(0,z)T (z).

(15)

At this stage, it is stressed that, for a fixed incident angle, the
transmission coefficient T (z) does not contain any square root
of the permittivities and permeabilities of the layered system
and of the complex frequency z. This remarkable property,
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which remains true for any multilayered structure, underpins
the present technique since it removes all branch cuts in the
evaluation of the integral of the transmitted field. This is an
advantage in comparison with the method used by Brillouin
for the analysis of wave propagation in dispersive media [4].
The expression of the transmitted field is thus given by the
sum of the contributions from all the poles in the function
f (z) under the integral in (15).

The poles of the factor U0(0,z) at z = ±ω0 [see Eq. (13)]
provide the contribution at the operating frequency ω0,

E
(0)
T (x,t) = −S0μ0c

2
θ (t − {x − x0 + α − a}/c)

× sin[ω0(t − {x − x0}/c)], (16)

corresponding to the time harmonic solution for which the
system is invisible. This contribution vanishes for times such
that ct is smaller than x − x0 + α − a = x + |x0| + α − a >

x + |x0|, instead of x − x0 = x + |x0|. This is not surprising
since the dispersion has not been taken into account in both
parallel permittivity and permeability ε

‖
a = μ

‖
a = ν

‖
a > 1 of

layer A: hence the corresponding delay (α − a)/c is retrieved
in the above expression.

The poles of the transmission coefficient are determined
from the expression

T (z) = exp[iz{α + (b − a)ν‖
b (z)}/c]. (17)

Next, replacing ν
‖
b (z) by the dispersive model (11) yields

T (z) = exp[iz(α + b − a)/c] exp

[
−i

z(b − a)

c

�2
b

z2 − ω2
b

]
.

(18)

Thus the transmission coefficient has two isolated singularities
at z = ±ωb. It is shown in the Supplemental Material [20] that
the residues associated with these singularities exist, and can
be estimated for large values of the relative time

τ = t − x − x0 + α − a

c
� β = (b − a)�2

b

2ω2
bc

. (19)

The resulting contribution E
(b)
T in the transmitted field is

E
(b)
T (x,t) ≈

τ/β→∞
− 2S0μ0πc

ω0ωb

ω2
b − ω2

0

θ (τ )
1√
τ/β

× J1(2ωbβ
√

τ/β) cos[ωb(τ + β/2)], (20)

where J1 is the Bessel function (see the Supplemental
Material). It is stressed that a similar behavior, given by the
Bessel function J1 with argument proportional to

√
τ , has

been highlighted by Brillouin [4] but for short relative time
τ (forerunners). In both cases, J1 is a consequence of the
dispersion given by the Drude-Lorentz model (11), but for
different frequency ranges: near the resonance frequencies
±ωb in the present case, and for the high frequencies in the case
considered by Brillouin (forerunners). Forerunners at τ → 0
can be also characterized here.

The asymptotic form J1(u) ≈ √
2/(πu) cos[u − 3π/4]

provides an explicit expression for long time τ � β. The

TABLE I. Relative permittivity values of the layered cloak from
inside (layer 1) to outside (layer 20).

Layer 1 2 3 4 5 6 7 8 9 10

ε/ε0 0.0012 8.0 0.02 8.0 0.07 8.0 0.12 8.0 0.18 8.0
Layer 11 12 13 14 15 16 17 18 19 20
ε/ε0 0.24 8.0 0.3 8.0 0.38 8.0 0.44 8.0 0.5 8.0

contribution in the transmitted field becomes

E
(b)
T (x,t) ≈

τ/β→∞
− 2S0μ0c

ω0ωb

ω2
b − ω2

0

√
π√

ωbβ
θ (τ )

× (τ/β)−3/4 cos[2ωbβ
√

τ/β − 3π/4]

× cos[ωbβ(τ/β + 1/2)]. (21)

This expression shows that this second contribution has
a first factor oscillating at the frequency ωb and a second
factor with more complex oscillating behavior with argument
�b

√
2(b − a)τ/c. The amplitude of this contribution

decreases like (ωbτ )−3/4, and thus the total transmitted
electric field

ET (x,t) ≈
τ/β→∞

−S0μ0c

2
θ (τ ) sin[ω0(τ + {α − a}/c)] (22)

tends to the field radiated in vacuum (14) for long enough time
τ , and cloaking is addressed. Hence the limiting amplitude
principle applies here, unlike for the perfect lens [5,7].

The situation where small absorption is included can be
considered: the resonance frequencies ±ωb are replaced by
±ωb − iγ with γ > 0 in (11) while �b remains positive. The
main change in the second contribution (21) is the presence of
the additional factor exp[−γ τ ], which makes the permanent
regime (purely oscillating at the operating frequency ω0) easier
to handle. Notice that the argument of the Bessel function,
2ωbβ

√
τ/β = �b

√
2(b − a)τ/c, is independent of ωb and

thus absorption has no influence on the behavior governed by
this function. Finally, it is stressed that the introduction of small
absorption affects the transmission coefficient at the operating
frequency ω0 by an attenuation of exp[−γ (b − a)/c], which
results in a signature of the invisible structure.

FIG. 2. Excitation of the system. Top: Causal current source with
sinusoidal time dependence. Bottom: Field radiated by the causal
source and illuminating the invisible layers.
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FIG. 3. Magnetic field in the presence of the cylindrical cloak when illuminated by a time harmonic plane wave (left) and by the causal
incident field given by Eq. (12) and Fig. 2 (right).

In oblique incidence, expressions are more complicated
since reflections occur at the different interfaces. However, the
term −k2/ν⊥

a in (9) leads to a singularity at the frequency ωp

for which ν⊥
a vanishes:

ν⊥
a (ωp) = 0, ωp = ±

√
ω2

a + �2
a. (23)

This singularity generates an additional contribution at the
frequency ωp, as well as the singularity at ωb. It is found
that both singularities ν → 0 and ν → ∞ lead to additional
contributions of the field in temporal regime. This result
confirms the well-known difficulties associated with cloak’s
singularities [15].

The analytical results are numerically tested in the case of
a cylindrical cloak designed using homogenization techniques
[21,22]. This cloak is a concentric multilayered structure of
inner radius R1 and outer radius R2 = 2R1, consisting of 20
homogeneous layers of equal thickness R1/20 and made of
nondispersive dielectrics (see Table I for the values of relative
permittivities, the relative permeability being unity).

The left panel of Fig. 3 shows that the cylindrical cloak
works almost perfectly in time harmonic regime oscillating
at the frequency ω0 = 2πc/λ0, where λ0 = R2/2. Note that
a purely dielectric structure is used for this two-dimensional
(2D) cloak, and thus interfaces between different concentric
layers are subject to reflections producing effective dispersion.
Hence, it is expected to observe an effect of dispersion even if
all the dielectric layers are nondispersive [16]. The right panel

of Fig. 3 shows the longitudinal magnetic field amplitude when
the cloak is illuminated by the causal incident field given by
Eq. (12) and Fig. 2.

The cloaking effect appears to be of similar quality in both
panels of Fig. 3. We now analyze the magnetic field at short
times. In Fig. 4, cylindrical modes are excited in the multilayers
when the incident front wave reaches the cloak (left), what
produces a superluminal concentric wave (see [23] for a design
without supraluminal component). These modes can propagate
in the cloak faster than the front wave in vacuum since
the frequency dispersion is not introduced in the dielectrics,
especially those with index values below unity. The cylindrical
modes excited in the multilayers then radiate cylindrical waves
outside the cloak, as evidenced by the right panel in Fig. 4,
which explains the tiny perturbation of the field observed in
right panel of Fig. 3 (the field perturbation is smoothed down at
long times, in agreement with the analytical part). In addition,
Fig. 4 shows a picture of the transient part of the field produced
by the causal source. Here, we take benefit of the supra-luminal
propagation of the modes in the cloak to observe that the
radiated transient part is almost isotropic. We deduce that the
radial dependence of this transient part does not correspond
to the function J1 found by Sommerfeld and Brillouin [4],
and exhibited in the present Eq. (20). There is no contradiction
since the J1 dependence is clearly related to the Drude-Lorentz
model of the dispersion, while the transient field around
the 2D cloak is related to the effective dispersion produced
by the cylindrical multilayered geometry. Nonetheless, one

FIG. 4. Magnetic field in the presence of the cylindrical cloak when illuminated by the causal incident field at two time steps in the transient
regime. Cylindrical modes inside the cloak generate a supra-luminal concentric wave.

121114-4



RAPID COMMUNICATIONS

ANALYSIS IN TEMPORAL REGIME OF DISPERSIVE . . . PHYSICAL REVIEW B 93, 121114(R) (2016)

can conclude that both situations considered in this Rapid
Communication attest that the quality of cloaking deterio-
rates at short times under illumination by a causal incident
field.

In summary, a new method to analyze propagation of
electromagnetic waves in dispersive media has been proposed.
The major ideas are to consider a layered structure to eliminate
branch cuts, and an invisible structure (with ε = μ) to
eliminate reflections in normal incidence. In this situation, the
transient regime can be highlighted and, especially, an explicit
expression is obtained in the long time limit. As a result the
amplitude of the transient part decreases like (t − x/c)−3/4.
Hence the technique proposed in this Rapid Communication
brings new elements to the method used by Brillouin [4],
where wave fronts (forerunners) can be simply exhibited. The
analysis of the transient regime in the situation of the invisible
structure has shown that the singularities of the permittivity and

permeability generate additional contributions to the electric
field. However, in normal incidence, the contributions vanish in
the long time limit, thus cloaking is achieved after the transient
regime. Finally, numerical simulations for a two-dimensional
cylindrical layered cloak confirm the effect of dispersion,
which affects the quality of cloaking at short times when it
is illuminated by a causal incident field.

The proposed method opens new possibilities for investigat-
ing transient regime of dispersive systems, notably structures
designed from transformation optics like cloaks, carpets,
concentrators, and rotators. This method can be also applied
to optical systems moving at constant relativistic velocity [24]
and to other wave equations.

B.A., A.D., and S.G. acknowledge European research coun-
cil funding (ANAMORPHISM). G.A. and B.G. acknowledge
S. Enoch for his support.
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