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A three-terminal Josephson junction biased at opposite voltages can sustain a phase-sensitive dc current
carrying three-body static phase coherence, known as the “quartet current.” We calculate the zero-frequency
current noise cross correlations and answer the question of whether this current is noisy (like a normal current in
response to a voltage drop) or noiseless (like an equilibrium supercurrent in response to a phase drop). A quantum
dot with a level at energy ε0 is connected to three superconductors Sa , Sb, and Sc with gap �, biased at Va = V ,
Vb = −V , and Vc = 0, and with intermediate contact transparencies. At zero temperature, nonlocal quartets (in
the sense of four-fermion correlations) are noiseless at subgap voltage in the nonresonant dot regime ε0/� � 1,
which is demonstrated with a semianalytical perturbative expansion of the cross correlations. Noise reveals the
absence of granularity of the superflow splitting from Sc towards (Sa,Sb) in the nonresonant dot regime, in spite
of finite voltage. In the resonant dot regime ε0/� � 1, cross correlations measured in the (Va,Vb) plane should
reveal an “anomaly” in the vicinity of the quartet line Va + Vb = 0, related to an additional contribution to the
noise, manifesting the phase sensitivity of cross correlations under the appearance of a three-body phase variable.
Phase-dependent effective Fano factors Fϕ are introduced, defined as the ratio between the amplitudes of phase
modulations of the noise and the currents. At low bias, the Fano factors Fϕ are of order unity in the resonant dot
regime ε0/� � 1, and they are vanishingly small in the nonresonant dot regime ε0/� � 1.
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I. INTRODUCTION

The Josephson effect and multiple Andreev reflections
(MARs) appear to be well established at present time in
two-terminal setups [1–4], especially with respect to the
clearcut break-junction experiments [5,6]. Less is known about
three terminals. A few recent works [7–15] dealt with su-
perconducting nanoscale devices with three superconductors
Sa , Sb, and Sc biased at Va , Vb, and Vc = 0, instead of
superconducting weak links with only two terminals. It was
established by Cuevas and Pothier [7] on the basis of Usadel
equations that the third terminal Sc can be viewed qualitatively
as having the same effect as an rf source, producing what
was coined [7] as “self-induced Shapiro steps.” Later, Freyn
et al. [8] rediscovered those voltage resonances and identified
in the adiabatic regime the emergence of intermediate states
involving correlations among four, six, eight,... fermions
(the so-called quartets, sextets, octets,...). The condition for
appearance of a coherent dc current at a (p,q) resonance is
p(Va − Vc) + q(Vb − Vc) = 0. Nonlocal quartets correspond
to (p,q) = (1,1), nonlocal sextets to (p,q) = (1,2) or (2,1),
nonlocal octets to (p,q) = (1,3), (2,2) or (3,1),... For tunnel
contacts and at low bias, allowing an adiabatic approximation,
the dc current at a (p,q) resonance is given by

I c
p,q sin[p(ϕa(t) − ϕc(t)) + q(ϕb(t) − ϕc(t))]

= I c
p,q sin[p(ϕa(0) − ϕc(0)) + q(ϕb(0) − ϕc(0))], (1)

where the last identity is valid only at a (p,q) resonance
p(Va − Vc) + q(Vb − Vc) = 0 at which the nonlocal Joseph-
son effect becomes time independent, and the critical current
I c
p,q can be calculated at equilibrium. It turns out that the

microscopic process of four-fermion exchange produces a
π -shifted current-phase relation for the quartets [9] instead of
a standard “0” junction. A fully nonequilibrium calculation for
the current at voltage resonance was carried out by Jonckheere
et al. [9]. Correlations among pairs and quasiparticles were
also obtained in this paper in the form of phase-sensitive MARs
(ph-MARs). The recent Grenoble experiment on metallic junc-
tions by Pfeffer et al. [15] provided evidence for phenomena
compatible with quartets. However, this experiment could not
firmly establish whether the anomaly is due to the quartet
mechanism or the oscillations of populations. This question
is somehow marginal: Both effects can appear simultaneously
because of crossover between those two limiting cases. A more
relevant question is that of reconsidering synchronization in a
phase-coherent mesoscopic sample.

It is shown here that noise experiments in three-terminal
Josephson junctions should provide complementary character-
ization of those phase-coherent processes, similarly to Cooper
pair splitting in three-terminal normal metal-superconductor-
normal metal setups [16–27]. A well-understood mechanism
for noise in voltage-biased normal-fermionic junctions is
partition noise. A well-known intuitive picture envisions a
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(noiseless) incoming beam of regularly spaced fermionic wave
packets. Each wave packet incoming on the barrier is transmit-
ted with probability T and reflected with probability 1 − T .
The randomness of the transmission process produces noise in
the transmitted signal. The noise at arbitrary transmission T is
proportional to T (1 − T ), to the charge of the carriers, and to
the voltage.

However, this physical picture for partition noise does not
apply to equilibrium superflows of Cooper pairs in response to
different phases on different leads (in the absence of applied
voltage), because a superflow is collective and nongranular.
The calculations presented in the main body of our paper are
based on a previous article by Cuevas et al. [4], which turned
out to be successful in establishing the noise of MARs in a
two-terminal setup. In particular, a dc Josephson current is
noiseless at zero temperature.

Let us come back to three-terminals superconducting
junctions, which contain both ingredients of applied voltages
and dc-supercurrent of pairs [8]. Three-body static phase
coherence is present in both the pair current (quartets or
multipairs) and the quasiparticle current (multiple Andreev
reflections, MARs). One expects that noise cross correlations
may help to separate the underlying microscopic processes.
A natural question arises in view of the discussion above
on the noise of a normal or superconducting flow: Is the
phase-sensitive current noiseless or noisy? This question is
the subject of the present paper.

The notion of “quartets” is now discussed from a different
perspective. Focusing on the case Va − Vc = −(Vb − Vc), the
appearance of a Josephson-like dc current between, on the
one hand, Sc, and on the other hand the pair (Sa,Sb), signals
the existence of static phase coherence between the three
superconductors, despite the presence of nonzero voltages, in
the absence of static phase coherence between two conductors
only. The three-body coherence manifests itself in the relevant
“quartet” three-body phase variable ϕQ = ϕa + ϕb − 2ϕc, that
is in principle controllable with superconducting loops. In
general, the dc current is a periodic function of the variable
ϕQ. The latter form suggests that instead of exchanging single
Cooper pairs as in a SNS or SIS junction (I is an insulating
barrier), the exchange “currency” to establish static phase
coherence between Sc and (Sa,Sb) is an electronic quartet.
This macroscopic point of view is valid irrespective of the
nature of the junction and of the parameter regime, close or far
from equilibrium.

Two distinct pictures for the notion of “quartets” are then
envisioned. Notion A corresponds to the restrictive sense of
four-fermion correlations, as those appearing in the adiabatic
regime [8]. The (more general) notion B is that of a currency
exchanged to establish three-body static phase coherence,
characterized by the “quartet phase” ϕQ. It will be shown that
the resonant dot regime �/� ∼ 1 and ε0/� � 1 leads to finite
phase-sensitive noise for the quartets according to B. (The
parameter ε0 is the quantum dot energy level with respect to the
chemical potential of lead Sc.) By contrast, nonresonant-dot
quartets (for ε0/� � 1) corresponding to A will be shown
to be noiseless once the current cross correlations will be
normalized to the currents. A gate voltage can be used to cross
over from the nonresonant (ε0/� � 1) to the resonant dot

(ε0/� � 1) regimes, and thus to control the value of the noise
in the quartet mode.

Further technical introductory material is presented in
Sec. II. It will be shown in Sec. III on the basis of semianalytical
calculations that the nonresonant-dot quartet current looks like
an equilibrium dc Josephson current in the sense that it is
noiseless. Section IV demonstrates by numerical calculations
that finite noise and noise cross correlations are produced in
the resonant dot regime, depending on the three-body phase
variable ϕQ mentioned above. It will be concluded in Sec. V
that an anomaly in the noise or in the noise cross correlations
may be observed in future experiments with resonant quantum
dots. Moreover, the anomaly in the noise is predicted to
disappear as the quantum dot energy level is made nonresonant
by applying a gate voltage, because of a crossover towards a
collective nongranular flow of Cooper pairs in the presence of
finite voltages.

II. EXPRESSION OF THE NOISE IN TERMS OF KELDYSH
GREEN’S FUNCTIONS

A. Expression of the noise

Three superconducting leads Sa , Sb, and Sc biased at Va =
V , Vb = −V , and Vc = 0 are connected to a common region
(insulating or nonresonant quantum dot). The method used
here is taken from the papers by Cuevas et al. [3,4] on the
current and noise of a two-terminal superconducting contact
(see the Appendix).

The kernel of current-current correlations between termi-
nals ak and al (ak,al ∈ {Sa,Sb,Sc}) is given by

Kak,al
(τ,τ ′) = 〈δIak

(τ + τ ′)δIal
(τ )〉, (2)

where δIak
(τ ) is the current fluctuation of terminal ak at time τ .

Because of the explicit time dependence of the Hamiltonian,
the current-current correlations Sak,al

(τ,τ ′) depend on both
times τ and τ ′, not only on τ − τ ′. The noise correlations are
given by [4]

Sak,al
(τ ) = �

∫
dτ ′Kak,al

(τ,τ ′). (3)

The kernel given by Eq. (2) is expressed in terms of the Keldysh
Green’s functions Ĝ+,− and Ĝ−,+, for instance:

K̂a,b(τ,τ ′) = e2

�2
Tr

{
	̂β,b(τ )τ̂3Ĝ

+,−
b,a (τ,τ ′)	̂a,α(τ ′)τ̂3

× Ĝ
−,+
α,β (τ ′,τ ) (4)

+	̂b,β (τ )τ̂3Ĝ
+,−
β,α (τ,τ ′)	̂α,a(τ ′)τ̂3Ĝ

−,+
a,b (τ ′,τ ) (5)

−	̂β,b(τ )τ̂3Ĝ
+,−
b,α (τ,τ ′)	̂α,a(τ ′)τ̂3Ĝ

−,+
a,β (τ ′,τ ) (6)

−	̂b,β (τ )τ̂3Ĝ
+,−
β,a (τ,τ ′)	̂a,α(τ ′)τ̂3Ĝ

−,+
α,b (τ ′,τ ) (7)

+(τ ↔ τ ′)}, (8)

where the trace “Tr” is a summation over the Nambu labels.
Latin labels a, b, c are used for the tight-binding sites in the
superconducting leads, and Greek labels α, β, and γ are used
for the insulating region. The label x will be used in Sec. IV
for a zero-dimensional quantum dot (see also the Appendix).
Notations like 	̂a,α or 	̂α,a have the meaning of the hopping
amplitude for crossing the interface SaI in the direction
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a → α or α → a, respectively. The Keldysh Green’s functions
in Eqs. (4)–(7) are given by

Ĝ
+,−
i,j (τ,τ ′) = i

(〈c+
j↑(τ ′)ci↑(τ )〉 〈cj↓(τ ′)ci↑(τ )〉

〈c+
j↑(τ ′)c+

i↓(τ )〉 〈cj↓(τ ′)c+
i↓(τ )〉

)
(9)

and

Ĝ
−,+
i,j (τ,τ ′) = −i

(〈ci↑(τ )c+
j↑(τ ′)〉 〈ci↑(τ )cj↓(τ ′)〉

〈c+
i↓(τ )c+

j↑(τ ′)〉 〈c+
j↓(τ )cj↓(τ ′)〉

)
. (10)

The gauge is such that the tunnel terms (purely diagonal in
Nambu) are time dependent:

	1,1
ak,αk

(t) = 	1,1
ak,αk

exp(iVak
t/�) (11)

	2,2
ak,αk

(t) = 	2,2
ak,αk

exp(−iVak
t/�), (12)

with 	1,1
αk,ak

(t) = [	1,1
ak,αk

(t)]∗, and 	2,2
αk,ak

(t) = [	2,2
ak,αk

(t)]∗. The
expression for the noise kernel is conveniently Fourier trans-
formed.

B. Adiabatic limit

Of particular interest is to show that the noise vanishes
in the adiabatic limit. The adiabatic limit corresponds to very
small applied voltage, whatever interface transparencies. Then,
the phases evolve slowly in time and the Keldysh Green’s
functions are approximated as being parameterized by the
quasistatic phase variables ϕa,b,c. Fourier transforming from
the time difference τ − τ ′ to frequency ω leads to the following
expression for the Keldysh Green’s functions:

Ĝ+,−(ω) = nF (ω)[GA(ω) − GR(ω)] (13)

Ĝ−,+(ω) = (nF (ω) − 1)[GA(ω) − GR(ω)], (14)

where nF (ω) is the equilibrium Fermi distribution function
at zero temperature, and at energy ω. Those expressions are
easily deduced from the corresponding Dyson equations for
the Keldysh Green’s function, which, in a compact notation,
take the following form:

Ĝ+,− = (Î + ĜR	̂)ĝ+,−(Î + 	̂ĜA) (15)

= (Î + ĜR	̂)nF (ĝA − ĝR)(Î + 	̂ĜA) (16)

= nF (Î + ĜR	̂)(ĝA − ĝR)(Î + 	̂ĜA) (17)

= nF {(Î + ĜR	̂)ĜA − ĜR(Î + 	̂ĜA)} (18)

= nF (GA(ω) − GR(ω)). (19)

Going from Eq. (16) to Eq. (17), it was used that the voltages
are identical in all leads, from what it is deduced that the
occupation number nF ≡ nF (ω) can be factored out. It is no-
ticed that the noise kernel [see Eqs. (4)–(7)] involves products
between Eqs. (13) and (14). Again, the Fermi occupation
numbers factor out, and the product nF (ω)(1 − nF (ω)) is
vanishingly small at zero temperature: the current-current
(cross-)correlations are vanishingly small in the adiabatic
limit.

The next step, considered in the following Sec. III, is
to show that the quartet contribution to the noise cross
correlations is vanishingly small in the nonresonant dot limit,
for subgap voltages. The nonresonant dot limit corresponds

g   =0+−

g   =0+−g   =0+−

2Δ
b

2Δ
c

S b
ba

c1 2

α β

γγ
1 2

c

γ
1

γ
2

βα ba

Sa S
c

V =Va
V =−Vb

Sc V =0c

S
a

I
I

(a)

(b)

2Δ
a

S
b

V =−Vb

V =Va

+−Insulator−like (g   =0)

FIG. 1. The figure shows a setup in which three superconductors
Sa , Sb, and Sc biased at Va = V , Vb = −V , and Vc = 0 are connected
to a common insulatorlike region. Panels (a) and (b) correspond
respectively to space and energy representations for the butterfly
diagram, encoding nonresonant-dot quartets with a current Ic though
Sc set by Ic = I (0)

c sin ϕQ, with ϕQ = ϕa + ϕb − 2ϕc. On this figure,
the central region is equivalent to an insulatorlike region, used
to address the nonresonant dot regime in Sec. III. However, the
numerical calculations in the forthcoming Sec. IV deal with a setup
containing an embedded quantum dot (see Fig. 3).

to very low interface transparencies, whatever the applied
voltages.

III. STRONGLY NONRESONANT DOT REGIME

It is supposed in this section on perturbative calculations
in transparency that three superconducting leads Sa,Sb, and
Sc are connected to a (small) common insulating region (see
Fig. 1). This setup on Fig. 1 is equivalent to a strongly
nonresonant quantum dot (with ε0/� � 1) embedded in a
structure with three superconductors. The strongly nonreso-
nant regime ε0/� � 1 is addressed here with perturbation
theory in the junction transparency. The bare Keldysh Green’s
functions denoted by ĝ+,−

a,a , ĝ
+,−
b,b , and ĝ+,−

c,c are finite in the
superconducting leads, but the bare Keldysh Green’s function
is vanishingly small in the insulator, due to the absence of
density of states in this region [28]. An expansion of the current
and noise in powers of the tunnel amplitudes can be represented
schematically by diagrams. Of particular interest here is the
“butterfly diagram” for the quartets [8], which forms a closed
loop in space and in energy (thus leading to a dc term in the
current and noise). The microscopic process of quartets is the
lowest order coupling to the three-body phase variable ϕQ

(see Fig. 1). The calculation proceeds by expanding each term
contributing to the noise cross-correlations Sa,b [see Eqs. (4)–
(7)] to order 	8 according to the quartet butterfly diagram.
In addition, the Nambu labels for electrons and holes are
selected in such a way as to produce the correct electron-hole
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MÉLIN, SOTTO, FEINBERG, CAPUTO, AND DOUÇOT PHYSICAL REVIEW B 93, 115436 (2016)

conversions with respect to the quartet butterfly diagram
[see Fig. 1(b)]. For instance the “11” Nambu component of

the term (4) is given at order 	8 by the following three
terms:

	̂
1,1/0,1
β,b τ̂

1,1/1,1
3 ĝ

+,−/1,2/1,1
b,b 	̂

2,2/1,2
b,β ĝ

A/2,2/2,2
β,γ2

	̂2,2/2,2
γ2,c2

ĝA/2,1/2,2
c2,c1

	̂1,1/2,2
c1,γ1

ĝA/1,1/2,2
γ1,α

(20)

×	̂1,1/2,1
α,a ĝA,1,2/1,1

a,a 	̂2,2/1,0
a,α τ̂

2,2/0,0
3 ĝR/2,2/0,0

α,γ1
	̂2,2/0,0

γ1,c1
ĝ−,+/2,1/0,0

c1,c2
	̂1,1/0,0

c2,γ2
ĝ

A/1,1/0,0
γ2,β

+	̂
1,1/0,1
β,b τ̂

1,1/1,1
3 ĝ

R/1,2/1,1
b,b 	̂

2,2/1,2
b,β ĝ

R/2,2/2,2
β,γ2

	̂2,2/2,2
γ2,c2

ĝ+,−/2,1/2,2
c2,c1

	̂1,1/2,2
c1,γ1

ĝA/1,1/2,2
γ1,α

(21)

×	̂1,1/2,1
α,a ĝA/1,2/1,1

a,a 	̂2,2/1,0
a,α τ̂

2,2/0,0
3 ĝR/2,2/0,0

α,γ1
	̂2,2/0,0

γ1,c1
ĝ−,+/2,1/0,0

c1,c2
	̂1,1/0,0

c2,γ2
ĝ

A/1,1/0,0
γ2,β

+	̂
1,1/0,1
β,b τ̂

1,1/1,1
3 ĝ

R/1,2/1,1
b,b 	̂

2,2/1,2
b,β ĝ

R/2,2/2,2
β,γ2

	̂2,2/2,2
γ2,c2

ĝR/2,1/2,2
c2,c1

	̂1,1/2,2
c1,γ1

ĝR/1,1/2,2
γ1,α

×	̂1,1/2,1
α,a ĝ+,−,1,2/1,1

a,a 	̂2,2/1,0
a,α τ̂

2,2/0,0
3 ĝR/2,2/0,0

α,γ1
	̂2,2/0,0

γ1,c1
ĝ−,+/2,1/0,0

c1,c2
	̂1,1/0,0

c2,γ2
ĝ

A/1,1/0,0
γ2,β

, (22)

and similar expressions are obtained for all of the 28
terms contributing to the current-current cross correlations [see
Eqs. (4)–(7)]. Expressions like 	̂

τ1,τ2/n1,n2
a,α have the meaning

of traversing the interface SaI upon changing the Nambu
labels according to τ1 → τ2, and the labels of harmonics
according to n1 → n2. The hopping amplitudes do not change
the value τ2 = τ1 of the Nambu labels, but they increment
by n2 = n1 ± 1 the label of harmonics. On the contrary, the
anomalous bare Green’s function changes the value of the
Nambu labels, but the labels of harmonics are left unchanged
because of the choice of the gauge.

It is first shown that our expansion in the tunnel amplitude 	

is compatible with the vanishingly small value of the noise in
the adiabatic limit (see Sec. II). For this purpose, we collected
the only four terms at order 	8 containing only advanced or
only retarded Green’s functions, but no products between the
former and the latter. It is indeed those terms that encode the
adiabatic limit, because the current in this limit is expressed as
the sum or difference of terms that contain only advanced or
only retarded Green’s functions [see the form of the Keldysh
Green’s function in Eq. (19)]. Once those terms are identified,
it is easy to show for the harmonics labels that the Green’s

-25
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-10
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 0
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 0  0.5  1  1.5  2  2.5

lo
g 1

0[
-S

Q
,a

b(
0)

]

eV/Δ

eV/Δ-dependence of SQ,ab(0)

η/Δ=10-2

η/Δ=10-4
η/Δ=10-6

FIG. 2. Voltage dependence of the quartet contribution to the
current-current cross correlations, for the values of η/� shown on
the figure. The parameter η is a regulator introduced as the imaginary
part of the energy ω.

functions ĝ+,−
a,a and ĝ

+,−
b,b contain identical sets of harmonics

labels, meaning that those terms do not contribute to the
noise at zero temperature, because of a prefactor of the type
nF (ω + pω0/2)[nF (ω + pω0/2) − 1], where p is an integer.
The contribution of those “adiabatic” terms to the noise is
thus vanishingly small, in agreement with the discussion of
the adiabatic limit in Sec. II B.

Now, numerical results are presented for the perturbative
calculation in transparency, in which the 28 lowest-order
terms in the quartet contribution to the zero-frequency cross
correlations SQ,ab(0) are evaluated numerically at zero phase.
The voltage dependence of SQ,ab(0) is shown (in log scale)
in Fig. 2, for different values of η/� over four orders of
magnitude. The small parameter η � � corresponds to a
linewidth broadening introduced as the imaginary part to
the energy, and intended to regularize perturbation theory.
If eV/� > 1, the ϕQ = 0 cross correlations are negative and
large in absolute value, due to the fact that, in this voltage range,
extended electronlike states below the gap of Sa are coupled
by the quartets to extended holelike states above the gap of
Sb. As eV/� is reduced below unity, much smaller values of
SQ,ab are obtained, because SQ,ab is due to the residual density
of states inside the superconducting gap. Shoulders appear in
the voltage dependence of the cross correlations, due to the
gap edge singularities. Extrapolating to η/� → 0+ leads to
the conclusion that nonresonant-dot quartets do not contribute
to the current-current cross correlations at subgap voltage.

Quantum dot

Sc

SbSaϕ
Va Vb

ϕ
ba

Vc ϕc

Vg

FIG. 3. Schematics of a quantum dot connected to three super-
conductors Sa , Sb, and Sc at voltages Va , Vb, and Vc. A gate voltage
Vg is applied to the quantum dot.
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IV. QUANTUM DOT-SUPERCONDUCTOR
THREE-TERMINAL JOSEPHSON JUNCTION

A few results are known for the current-current cross corre-
lations in a three-terminal all-superconducting structure with
arbitrary interface transparencies. Phase-insensitive positive
cross correlations were discovered by Duhot, Lefloch, and
Houzet [10] in the incoherent regime. The phase-sensitive
thermal noise and noise cross correlations of a superconducting
structure at equilibrium was calculated by Freyn et al. [8] with
the Hamiltonian approach. Very recently, Riwar et al. [29]
provided a fully nonperturbative calculation of the noise of
a three-terminal Josephson junction biased at equal voltages.
In what follows, the junction is biased at opposite voltages,
therefore allowing for the emergence of a nonstandard quartet
mode, not present for equal voltages.

It is first recalled that a quantum dot is connected to
three superconducting leads Sa , Sb, and Sc biased at oppo-
site voltages Va = −Vb ≡ V , and Vc = 0 respectively. The
normal-state transparency of the contacts is controlled by
� = t2/W , where t is the hopping amplitude between the

dot and the superconductors in their normal state, and W

is the hopping term in the bulk of the superconductors (a
fraction of the bandwidth). It is supposed now that a single
energy level is within the superconducting gap window, and,
in addition, this energy level ε0 (controllable by a gate
voltage) is varied systematically, thus allowing to cross over
from nonresonant-dot quartets (for ε0/� � 1) to resonant-dot
quartets for ε0/� � 1, with different behavior of the noise in
both regimes.

It was established by Jonckheere et al. [9] that the current
has two components: with particle-hole symmetry, the current
Ic (due to multipairs generalizing quartets) is even in voltage
and odd in the phase ϕQ, and the current difference Ia − Ib

(due to ph-MARs) is odd in voltage and even in the phase
ϕQ. Figure 4 shows how Ic, the current difference Ia − Ib

and the cross correlations Sa,b vary in the parameter plane
(eV/�,ϕQ/2π ), for the experimentally relevant intermediate
�/� = 0.5. The current and noise exhibit a dependence on the
three-body phase variable ϕQ = ϕa + ϕb − 2ϕc. Panels a, c, e
and b, d, f of Fig. 4 correspond respectively to ε0/� = 0 and
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FIG. 5. The figure shows the sensitivity on the phase ϕQ of Ic (panels a, d, g, and j), Ia − Ib (panel b, e, h, and k), and Sa,b (panels c, f, i,
and l), for the voltages indicated on the figure. For clarity, the data on panel a, d, g, and j were shifted along the y axis according to the solid
red lines. No shift is applied to the other panels.

ε0/� = 1, thus in the resonant dot regime. The values of the
current and noise cross correlations are large in the resonant
dot regime ε0/� � 1, which contrasts with the nonresonant
dot regime ε0/� � 1 (see the preceding Sec. III). The current

Ic, the current difference Ia − Ib and the cross correlations
Sa,b have a strong dependence on the quartet phase ϕQ in
the nonresonant dot regime ε0/� � 1. A weak dependence
on ϕQ of those quantities was obtained numerically for
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FIG. 6. The figure shows the sensitivity on normalized voltage eV/� of the logarithm of the phase Fano factors Fϕ,1 = δSa,b/δ(Ic) (panel
a) and Fϕ,2 = δSa,b/δ(Ia − Ib) (panel b), where the symbol δX has the meaning of δX = MaxϕQ

X(ϕQ) − MinϕQ
X(ϕQ). Panel c shows the

eV/�-dependence of the average Fano factor Fav,2 = Sa,b,av/Ic,av , where the subscript “av” denotes averaging over the phase ϕc.

ε0/� = 5 (not shown in Fig. 4), in a qualitative agreement with
Sec. III.

The current-current cross-correlations Sa,b are shown by
a color plot in Figs. 4(e) and 4(f) in the plane of the
variables (eV/�,ϕQ/2π ), for the same values ε0/� = 0
(panel e) and ε0/� = 1 (panel f). Positive and phase-sensitive
current-current cross correlations resonances emerge below
eV/� � 0.4. An experiment measuring cross correlations in
the (Va,Vb) plane should thus detect an additional contribution
to the cross correlations if the three-body phase variable
ϕQ becomes a relevant quantity at the quartet resonance
Va + Vb = 0 (with Vc = 0).

The color plots in Fig. 4 for Ic, Ia − Ib, and Sa,b are comple-
mented by conventional one-parameter plots (see Fig. 5) which
better illustrate the phase sensitivity of the currents and current-
current cross correlations. Let us first consider the multipair
current (Fig. 5 a, d, g, j), which is, as expected, odd in the
phase ϕQ. A strongly anharmonic behavior is clearly obtained
for ε0/� � 1 and eV/� � 1, with a quasiperiod doubling
as eV/� is reduced from eV/� = 0.6 to eV/� = 0.1 if
ε0/� = 0 [Fig. 5(a), pointing towards emerging octets at low
bias. Quasiharmonic and “0”-junction behaviors are recovered
for vanishingly small ε0/� = 0 and larger eV/�. In contrast,
for larger ε0/�, an harmonic behavior is obtained with a “π”-
junction character. Second, the quasiparticle current Ia − Ib

is, as expected, even in phase, and, contrarily to Ic, it has a
nonzero phase-averaged value [Figs. 5(b), 5(e), 5(h), 5(k)]. The
latter represents the “usual” phase-insensitive MARs, which
increases with eV/�. On the other hand, the phase modulation
represents the phase-MARs and it also displays anharmonic
behavior at small voltage. Third, the panels c, f, i, and l of
Fig. 5 represent the cross correlations Sa,b(ϕQ). As a new
result, one finds that, like the quasiparticle current, it is even
in phase, and it has a nonzero phase average. An especially
complex harmonic content is obtained in panel c. A general
trend is that negative current-current cross correlations are
obtained for ε0/� = 5, which become negligibly small as the
voltage is reduced below eV/� � 0.3 [see Fig. 5(l)]. This
behavior is consistent with the absence of current-current
cross correlations for the nonresonant-dot quartets at low
bias voltage (see Sec. III). Positive current-current cross
correlations emerge gradually as ε0/� is reduced, first for
the lowest bias voltage eV/� = 0.1 in a specific window of
the phase variable ϕQ if ε0/� = 1 [see Fig. 5(i)]. Positive
current-current cross correlations are obtained for the lowest

value ε0/� = 0 [see Fig. 5(c)], at low normalized bias voltage
eV/� = 0.1 ÷ 0.2 and in the full range of ϕQ.

A closer look at panels (a)–(l) of Fig. 5 reveals that
the current-current cross correlations correlate weakly with
the multipair current Ic, but the correlation is better with
the current difference Ia − Ib (corresponding to the physical
process of ph-MARs). One notices that “kinks” emerge in
Sa,b at ϕc = π/2 for ε0/� = 0.5 and eV/� = 0.1, 0.2 [see
Fig. 5(f)]. Those kinks in the cross correlations are to be put in
correspondence with similar features in Ia − Ib [ph-MARs, see
Fig. 5(e)], not present in Ic [multipair current, see Fig. 5(d)].
The same analogy between Sa,b and Ia − Ib is also visible for
ε0/� = 0 [see Figs. 5(a), 5(b), and 5(c)].

It is relevant both experimentally and theoretically to
compare the values of the cross correlations to the values
of the currents. It was found previously (see Fig. 4) that the
cross correlations become very small in the nonresonant dot
regime ε0/� � 1 and in the limit of low bias voltage eV/� �
1. However, the phase-sensitive current is also reduced if
ε0/� � 1, and the question arises of comparing the noise to
the current in the nonresonant dot regime at low bias voltage.
The quantity δSa,b is defined as the difference between the
maximum and the minimum (over the phase ϕQ) of Sa,b(ϕQ),
and a similar definition holds for δIc and δ[Ia − Ib]. A first
Fano factor is defined as Fϕ,1 = δSa,b/δIc, which is the value
of the amplitude of the oscillations of the cross correlations
normalized to the amplitude of the oscillations of the multipair
current Ic. [The symbol δX = MaxϕQ

X(ϕQ) − MinϕQ
X(ϕQ)

has the meaning of an amplitude phase variations.] The second
Fano factor is defined as the amplitude of the oscillations of
the cross correlations normalized to that of the phase-MAR
processes: Fϕ,2 = δSa,b/δ[Ia − Ib]. The voltage dependence
of log(Fϕ,1) and log(Fϕ,2) are shown in Figs. 6(a) and 6(b),
respectively. The different curves on each of those panels
correspond to the values ε0/� = 0, 0.5, 1, 5, and 10. The
spikes on panel b correspond to values of the voltage for
which the integral over energy ω of the current is very small,
therefore deteriorating the accuracy in the Fano factor Fϕ,2.
Indeed, it turns out that, for specific voltages, the amplitudes
of oscillations in Ia − Ib can become very small, because the
difference Ia − Ib goes to zero in the zero-voltage limit. The
data points shown on panels (a) and (b) of Fig. 6 correspond
to unsmoothed raw data that are however sufficient for the
purpose of discussing now the general trends. If ε0/� = 5,
10, the Fano factors Fϕ,1 and Fϕ,2 decrease drastically towards
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FIG. 7. Current-current cross correlations Sa,b(eV/�,ε0/�) for �/� = 0.5 (panel a). The cross correlations become negligible in the
nonresonant dot regime ε0/� � ε∗
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0/� decreases to zero as eV/� is reduced. Panel b shows the current-current cross

correlations Sa,b(ε0/�) for �/� = 0.5, and for the values eV/� = 0.1,0.3,0.5,0.7.

zero as eV/� is reduced. If ε0/� = 0, 0.5, 1 the Fano factors
Fϕ,1 and Fϕ,2 take much higher values of order 0.1 ÷ 1. In
addition, the Fano factor for the noise and current averaged
over the phases Fav,2 = Sa,b,av/[Ia,av − Ib,av] is shown on
panel c of Fig. 6, which also demonstrates a strong reduction of
|Fav,2| at low bias in the nonresonant dot regime. [The symbol
Xav = ∫

X(ϕQ)dϕQ/2π has the meaning of an average over
ϕQ.] In addition, a nontrivial change of sign is obtained in
Fav,2, which reflect the overall sign of Sa,b [see Fig. 4, Fig. 5,
and the forthcoming Fig. 7(b)].

The results presented in Fig. 6 demonstrate that, at low
bias voltage, the cross correlations Sa,b tend to zero faster than
the currents in the strongly nonresonant dot regime ε0/� �
1. The cross correlations Sa,b (in units of the currents) thus
become very small in the nonresonant dot regime, but not in
the resonant dot regime, suggesting that a gate voltage can be
used to monitor the value of cross correlations at the quartet
resonance Va + Vb = 0.

The crossover between the resonant and nonresonant dot
regimes is better visualized in Figs. 7(a) and 7(b). Figure 7(a)
shows in color scale the value of the cross correlations in
the plane (eV/�,ε0/�), for �/� = 0.5 and ϕQ = 0. The red
area in the top-left corner of Fig. 7(a) corresponds to the
nonresonant dot regime in which the cross correlations are
very small. The blue area corresponds to large negative cross
correlations. The positive cross correlations are restricted to
the bottom-left corner, as seen from panel (b) showing the
current-current cross correlations as a function of ε0/� for
different values of eV/�. At fixed eV/�, there is thus a
crossover value ε∗

0/� of the parameter ε0/� above which
the cross correlations are weak. The value of ε∗

0/� is strongly
reduced as the normalized voltage eV/� is reduced, which
appears to be compatible with the absence of current-current
cross correlations in the adiabatic limit (see Sec. II B).

V. CONCLUSIONS

To conclude, it is a relevant question to ask whether splitting
a supercurrent by quartets at resonant voltages produces
positive cross correlations at zero temperature. Splitting a
supercurrent at equilibrium or in the adiabatic limit does not

produce noise, and our numerical calculations are consistent
with this limit of low bias voltage. It was shown by a semian-
alytical perturbative calculation in interface transparency that
the quartets are noiseless also in the nonresonant dot regime
in the limit of small interface transparencies, for arbitrary
voltage below the gap. Those perturbative calculations in
interface transparency took the full Keldysh structure into
account. However, phase-sensitive positive current-current
cross correlations are obtained numerically in the resonant dot
case. A quantum dot was connected to three superconductors
with an intermediate coupling �/� = 0.5. The resonant dot
regime was obtained if the quantum dot energy level ε0 is such
that ε0/� � 1 and the nonresonant dot regime corresponds
to ε0/� � 1. These phase-sensitive current cross correlations
correlate in a qualitative manner with the signal of phase-
sensitive MARs, which suggests a strong contribution from
the latter. Those phase-sensitive MARs correspond to the
transmission of a quasiparticle assisted by quartets or by mul-
tipairs. In this respect, a nonzero value for the phase-sensitive
component of current cross correlations in noise experiments
would imply that quartets or multipairs are present together
with quasiparticles. One can conclude that a cross-correlation
experiment should detect a gate-tunable anomaly at the quartet
resonance Va + Vb = 0. A strong phase sensitivity of the cross
correlations is predicted in the resonant dot regime ε0/� � 1,
and an absence of noise cross correlations is obtained in the
nonresonant dot regime ε0/� � 1. In an experiment, the width
in voltage (Va,Vb) parameter plane of the anomaly obtained
for ε0/� � 1 in the cross correlations is expected to correlate
to the Josephson anomaly in the average current, because both
anomalies originate from the appearance of the three-body
phase variable ϕQ = ϕa + ϕb − 2ϕc. It is noted finally that
phase-sensitive noise was already calculated and measured in
Andreev interferometers [30,31]. It is proposed here to go one
step further and measure an anomaly in the noise or in the
cross correlations of a three-terminal Josephson junction.
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APPENDIX: RECURSIVE GREEN’S FUNCTIONS IN ENERGY FOR THREE-TERMINAL STRUCTURES

This Appendix generalizes to three terminals the algorithm proposed by Cuevas, Martı́n Rodero and Levy Yeyati [3,4] in
which the current of MARs was evaluated in a two-terminals structure. All numerical calculations for the three-terminal junction
were realized on the basis of this method.

The Green’s functions Ĝn,m(ω) depend on one energy ω and two integers n and m (the harmonics of half the Josephson
frequency). The Dyson equation takes the form

Ĝn,m = K̂n,nĜn,m + K̂ (0)
m,mδn,m + K̂n,n+2Ĝn+2,m + K̂n,n−2Ĝn−2,m, (A1)

where the dependence on ω is made implicit. The matrices K have three components, one for each of the terminals:

K̂
n,n
(a) =

(
g

1,1/n,n
x,x 	

1,1/n,n+1
x,a g

1,1/n+1,n+1
a,a 	

1,1/n+1,n
a,x 0

0 g
2,2/n,n
x,x 	

2,2/n,n−1
x,a g

2,2/n−1,n−1
a,a 	

2,2/n−1,n
a,x

)
(A2)

K̂
n,n+2
(a) =

(
0 g

1,1/n,n
x,x 	

1,1/n,n+1
x,a g

1,2/n+1,n+1
a,a 	

2,2/n+1,n+2
a,x

0 0

)
(A3)

K̂
n,n−2
(a) =

(
0 0

g
2,2/n,n
x,x 	

2,2/n,n−1
x,a g

2,1/n−1,n−1
a,a 	

2,2/n−1,n−2
a,x 0

)
. (A4)

Similar expressions are obtained for K(b)

K̂
n,n
(b) =

(
g

1,1/n,n
x,x 	

1,1/n,n−1
x,b g

1,1/n−1,n−1
b,b 	

1,1/n−1,n

b,x 0
0 g

2,2/n,n
x,x 	

2,2/n,n+1
x,b g

2,2/n+1,n+1
b,b 	

2,2/n+1,n

b,x

)
(A5)

K̂
n,n−2
(b) =
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0 g

1,1/n,n
x,x 	

1,1/n,n−1
x,b g

1,2/n−1,n−1
b,b 	

2,2/n−1,n−2
b,x

0 0

)
(A6)

K̂
n,n+2
(b) =

(
0 0

g
2,2/n,n
x,x 	

2,2/n,n+1
x,b g

2,1/n+1,n+1
b,b 	

2,2/n+1,n+2
b,x 0

)
. (A7)

and for K(c):

K̂
n,n
(c) =

(
g

1,1/n,n
x,x 	

1,1/n,n
x,c g

1,1/n,n
c,c 	

1,1/n,n
c,x g

1,1/n,n
x,x 	

1,1/n,n
x,c g

1,2/n,n
c,c 	

2,2/n,n
c,x

g
2,2/n,n
x,x 	

2,2/n,n
x,c g

2,1/n,n
c,c 	

1,1/n,n
c,x g

2,2/n,n
x,x 	

2,2/n,n
x,c g

2,2/n,n
c,c 	

2,2/n,n
c,x

)
(A8)

K̂
n,n+2
(c) = K

n,n−2
(c) = 0 (A9)

The matrix K̂ (0) is as follows:

K̂ (0)m,m =
(

g
1,1/m,m
x,x 0

0 g
2,2/m,m
x,x

)
. (A10)

Next, Eq. (A1) is solved by recursion: Ĝn−2,m = ẑ−
n−2,mĜn,m leads to

ẑ−
n,n+2 = (

Î − K̂n,n − K̂n,n−2ẑ
−
n−2,n

)−1
K̂n,n+2 (A11)

for n < m. On the other hand, Ĝn,m = z+
n,n−2Ĝn−2,m leads to

ẑ+
n,n−2 = (

Î − K̂n,n − K̂n,n+2ẑ
−
n+2,n

)−1
K̂n,n−2 (A12)

if n > m. For n = m, we find

Ĝm,m = (
Î − K̂m,m − K̂m,m+2ẑ

+
m+2,m − K̂m,m−2ẑ

−
m−2,m

)−1
K̂ (0)

m,m. (A13)
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