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Transport properties of bilayer graphene in a strong in-plane magnetic field
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A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating
the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport
properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation
direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic
fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting
into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials
and increases the corresponding conductance. Our results show that the chiral suppression of transmission at
normal incidence, reminiscent of bilayer graphene’s 27t Berry phase, is turned into a chiral enhancement when
the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal
incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential
barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic
field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition
from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident
angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the
magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to
motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice
deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an

in-plane pseudomagnetic field.
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I. INTRODUCTION

Since the experimental realization of graphene [1], a lot of
research has been done in order to understand its remarkable
electronic structure and transport properties. Notably, charge
carriers in graphene were shown, both theoretically [2] and
experimentally [3,4], to behave like ultrarelativistic particles
which lead to the introduction of the concept of pseudospin and
the observation of Klein tunneling [2]. It is also remarkable
that when multiple graphene sheets are stacked the low-energy
electronic structure completely changes, despite the very weak
van der Waals coupling between the graphene sheets. This is a
consequence of the fact that the stacked multilayer structures
still have a high symmetry and results in very different
transport properties such as anti-Klein tunneling for bilayer
graphene [5-7] and even more remarkable phenomena for
multilayers [8,9].

An in-plane magnetic field has no influence on the energy-
momentum relation of monolayer graphene but it does alter
the electronic properties of multilayer and specifically bilayer
graphene [10,11]. In contrast to a perpendicular magnetic
field, for which the influence on the transport properties of
both monolayer [12] and bilayer [13] graphene has been
investigated in much detail, an in-plane magnetic field breaks
the equivalence of the two layers of bilayer graphene and as
such decouples them at low energy.

In this work we investigate how an in-plane magnetic
field influences the electronic and transport properties of
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electrons in bilayer graphene that tunnel through potential
steps and barriers. We show that the results can be explained
by using the chiral properties of the charge carriers [2]. The
crucial effect of an in-plane magnetic field is that it changes
the parabolic low-energy spectrum of bilayer graphene into
two linear Dirac cones each corresponding to one of the
two graphene layers [11,14]. For magnetic fields oriented
parallel to the potential boundaries this leads to an additional
propagating mode that strongly affects the tunneling properties
by increasing the conductance and introducing Klein tunneling
at normal incidence and at strong enough magnetic fields,
reminiscent of the linear electron dispersion. Further, we find
that the transmission resonances that are due to confinement in
the barrier are morphed into antiresonances at large magnetic
fields. These features are visible in the conductance of the
system and in this way we provide a relation between empir-
ically verifiable quantities such as the conductance [15,16],
Fermi level, and magnetic field. For magnetic fields oriented
perpendicular to the potential boundaries the splitting into
Dirac cones leads to a transition from a bilayer system to
two separated monolayer-like systems with Klein tunneling
emerging at certain incident angles symmetric around 0, a
feature which can also be seen in the conductance.

The strength of the magnetic field used in this paper is
very large and although these fields cannot be created in
terrestrial laboratories, we show that they can be achieved
by means of shifting the two graphene planes with respect
to each other. Following a similar reasoning to that for
monolayer graphene [17], in this way one creates an in-plane
pseudomagnetic field.

We are aware of two articles which study similar systems.
However, the first paper [10] only focuses on one orientation
of the magnetic field and the second paper [18] only focuses
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on the case in which the Fermi energy equals the height of
the potential barrier. Furthermore, both papers were limited
to transport governed by a single transmission channel. Our
findings match these results in the respective limits but we
extend them by taking into account all the different transmis-
sion and reflection channels for a range of both Fermi energy
and incident angle values and for two fundamentally different
orientations of the in-plane magnetic field. This is important
since it shows new results. Furthermore, we calculate the
conductance which also is a new and important result because
it shows the experimentally observable signatures of the new
physics.

The paper is organized as follows. In Sec. II we discuss the
influence of an in-plane magnetic field on the energy spectrum
of bilayer graphene and on the chiral properties of the charge
carriers. We discuss how very strong pseudomagnetic fields
can be created in shifted bilayer graphene in Sec. III. In Sec. IV
we calculate the spinor wave function from which the current
density is determined in Sec. V, which is needed to calculate
the different transmission and reflection probabilities. The
numerical results of the different scattering probabilities are
discussed in Sec. VIA and with them the conductance is
determined and discussed in Sec. VIB. Finally, in Sec. VII
we summarize the main conclusions of this paper.

II. ENERGY SPECTRUM AND PSEUDOSPIN

Bilayer graphene consists of two stacked hexagonal mono-
layers which in turn are made of two trigonal sublattices. We
denote them as A and B for the bottom layer and A’ and
B’ for the top layer. The intralayer interatomic distance is
ayp=1. 42A which is related to the lattice constanta = 2. 46A
by a = +/3a and the interlayer distance measures ¢ = 3.35 A.
In this paper we consider Bernal-stacked bilayer graphene [19]
for which the B and B’ sublattices are situated above each
other as illustrated in Fig. 1(a). The coupling between these
sublattices is therefore the dominant interlayer interaction and
has a corresponding hopping parameter y; = 0.377 eV in
the tight-binding approximation [20]. The intralayer hopping
parameter is Yy = 3.12 eV [20].

The presence of a magnetic field parallel to the graphene
plane can be incorporated by means of the Peierls substitution
k — k + ;A [11,14]. Two possible choices of the gauge field
are considered: A (z) = Bze, corresponding to a magnetic
field B = Be, and A, (z) = —Bze, corresponding to a
magnetic field B | = Be,, where e, and e, are the unit vectors
in the x and y directions, respectively. These two cases are
indicated in Fig. 1(a) and will have very different effects on
the transport properties as the magnetic fields are respectively
oriented parallel and perpendicular to the boundaries of the
potentials that we will consider. If we choose z = —c/2 for the
bottom layer and z = ¢/2 for the top layer, the Hamiltonian
H becomes in the basis of the atomic Bloch functions [21]
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FIG. 1. (a) Illustration of Bernal-stacked bilayer graphene with
the indication of the two magnetic field orientations that are
considered in this work and the interlayer hopping parameter. (b)
3D plot of the low-energy bands in the presence of an in-plane
magnetic field oriented parallel to the potential boundaries with
strength B = 500 T showing the presence of the two low-energy
cones. (c) Slice of the four-band energy spectrum in (b) (black solid
curves) and two-band energy spectrum (green dashed curves) for
ky = 0. (d) Zoom of the two low-energy bands in (c). The red energy
band corresponds with the pseudospin-up state; the blue energy band
is the pseudospin-down state. The dashed black energy bands include
the y3 hopping parameter. (e) Same as (b) for a magnetic field oriented
perpendicular to the potential boundaries. (f) Slice of the energy
spectrum in (e) for k, = 0 (red curve for the pseudospin-up state
and blue curve for the pseudospin-down state) and for k, = « (black
dashed curve).

with o =|| or L indicating the orientation of the in-plane
magnetic field, 7 = k, — iky, ky = ¢/21%, k1 = ic/2l3,lp =
«/h/eB the magnetic length, y| = y1/hvg, y3 = 0.29 eV, and
vr ~ 10° m/s the monolayer graphene Fermi velocity [22].
The upper and lower signs correspond to o =| and o =1,
respectively. The energy spectrum of H) near the K point
is shown in Figs. 1(b)-1(d) and the energy spectrum of H;
near the K point is shown in Figs. 1(e)—1(f). Their distinctive
feature is that the parabolic dispersion describing the electrons
in Bernal-stacked bilayer graphene [23] is replaced by two
monolayer-like Dirac cones shifted along the k; axis to the
positions

ki = :l:l(, (2)

with k = ¢/2I% and with i =x and i =y for o =| and
o =1, respectively. Notice that this shift increases linearly
with magnetic field, i.e., k = 2545 B[T] cm™!
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At low energy these bands can be described by an ap-
proximate 2 x 2 Hamiltonian [23] which is valid for energies
E < y; and is given by

(hvp)? ( 0 (ky — iky)? F K2)

H,, =— .
2 v (ke + iky)* F «? 0

3

where we have neglected y3. The corresponding two-band
energy spectrum is shown in Fig. 1(c). Equation (3) shows
that for k, =0 the Hamiltonian commutes with the Pauli
matrix o,, which has eigenvalues £1. Transforming the
above Hamiltonian to the basis formed by the eigenstates
%(1, + 1) of o, leads to the diagonalized Hamiltonian

H, = —M(kﬁ F k?)o,. Therefore, one can identify the two
branches of the low-energy spectrum with the orthonormal
pseudospin-up and pseudospin-down eigenstates, respectively.
This identification is shown as the red and blue bands in
Figs. 1(d) and 1(f). If electrons impinge perpendicularly on
a potential step or barrier, the conservation of pseudospin
implies that these bands are effectively decoupled and a
transition between them is prohibited. Since the effect of
in-plane magnetic fields with strengths less than 103 T is only
important for energies E < y;, we may limit ourselves to
the two low-energy bands of the Hamiltonian (1). The low-
energy spectrum including the interlayer hopping y;3 [11,24]
is shown in Fig. 1(d). This term leads to an additional shift
of the Dirac cones, which is of no fundamental importance.
The y4 interlayer hopping leads to an asymmetry between
electrons and holes. Therefore, the inclusion of these hopping
parameters would not significantly affect the physics discussed
in this work. Furthermore, the influence of the skew hopping
parameters on the transport properties of bilayer graphene
was already shown to be negligible [5] and because of their
relatively small importance but large computational cost they
will also be neglected in this work.

III. CREATING PSEUDOMAGNETIC FIELDS
BY SHIFTING ONE LAYER

Figure 1 shows that in order to have an appreciable
effect of the magnetic field on the electronic spectrum, one
requires field strengths of several hundred teslas, which
can only be generated by destructive pulsed magnetic fields
in a laboratory [25]. However, it is possible to obtain a
similar electronic spectrum by continuously shifting one of
the graphene layers along the armchair direction starting from
the Bernal stacking configuration [26], as shown in Fig. 2(a).
This is equivalent to having a different stacking and a suitable
system was recently proposed which can locally be realized
experimentally by applying a small strain [27]. As shown in
Figs. 2(b) and 2(c) this spectrum reproduces correctly the
splitting of the parabolic energy band into two linear Dirac
cones. The location of these new Dirac cones in reciprocal
space is related to the shift § as

2 2 5
kya=:l:3—yl 1 +2cos H’(u-)}. 4)

Yo ao

Comparing this relation with the position of the Dirac cones
due to the in-plane magnetic field, Eq. (2), we can establish a
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FIG. 2. (a) Illustration of the shifted bilayer graphene lattice. The
bottom and top layers are shown in black and red, respectively. (b)
3D plot of the low-energy bands of shifted bilayer graphene with
8 = 0.04qy. (c) Slice of the low-energy spectrum of shifted bilayer
graphene for k, = 0. (d) Pseudomagnetic field as a function of the
shift of the top layer.

relation between the shift § and the strength of the magnetic
field B as

4hy, 2 8
B = 14+2cos|—(1——)]. 5)
3aceyy 3 ap

This relation is shown in Fig. 2(d). Because the above formula
shows that the low-energy spectrum of a graphene bilayer
where one layer is shifted over a distance § in the armchair
direction corresponds to that of an in-plane magnetic field in
the armchair direction, the magnetic field B from Eq. (5) can be
considered as a pseudomagnetic field. Figure 2(d) shows that
the strength of the pseudomagnetic field can reach values of up
to 1500 T. Note that the correspondence of both energy spectra
is only valid at low energy. This is however sufficient for the
energy range considered in this study. The energy spectrum
for the case of the in-plane magnetic field is simpler and can
therefore be used as a theoretical approximation to determine
the tunneling properties of shifted bilayer graphene. Vice
versa, shifted bilayer graphene can be used as an experimental
approximation for bilayer graphene in an in-plane magnetic
field.

IV. SPINOR WAVE FUNCTION

The scattering potential profiles studied in this paper are the
potential step, which models a single gated pn junction and is
given by

0 ifx <0
Vix) = {V14 ifx >0

and the potential barrier, which models a single gated pnp
junction and is given by

region 1,
region 2,

(6)

0 ifx <0, region 1,
Vix)y={VIly if0<x<d region2, @)
0 ifx >d region 3,
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with V the height of the step or barrier, d the width of the
barrier, and I, the 4 x 4 identity matrix. Since these potential
profiles break translation invariance in the x direction, k, will
no longer be a good quantum number. It is therefore useful
to switch to position representation and calculate the wave
function from the Schrodinger equation HW = E'W by solving
the set of coupled differential equations. The solution can be
written as [8]

W(x,y) =PE(x.y)C, ®)
|
(=) A(k-)B(—k-)

(=) A(=k-)B(k-)

P B(k_) B(—k_)
= Ak A(—k_)
1 1

with ¢ =1 and ¢ =0 for the case of a magnetic field
oriented parallel and perpendicular to the potential boundaries,
respectively, and where

k+iky +«

Ay = —————. (11)

e —k} — (k4 «)?

’
V1

for a magnetic field oriented parallel to the potential boundaries
and

B(k) =

; 12)

k+iky, —ik

Ay = ——— 13)

2k —(ky —k)?
ey,
for a magnetic field oriented perpendicular to the potential
boundaries. The y dependence of the wave function consists
of a simple phase factor, which is a consequence of the
translational invariance of the system in the y direction and
which will not contribute to the transmission probability.
The wave number in the x direction is given by

Blk) =%

; (14)

ke = \/:t(kg —e2—Kk2) + \/4K2(82 - k%) + &2y, (15)

for a magnetic field oriented parallel to the potential bound-
aries, and

ki = \/:I:(kf — &2+ k%) + JACkE + &2y 7,

for a magnetic field oriented perpendicular to the potential
boundaries, with ¢ = E/hvg. When both k_ and k, are real
numbers the wave function consists of a superposition of a left
and a right propagating wave with wave number k_ and two
exponential terms with inverse decay length &, as can be seen
from Eq. (9). However, if k_ becomes imaginary, the corre-
sponding exponential terms will no longer represent propagat-
ing waves, while if k. becomes imaginary the corresponding
exponential terms will represent another set of propagating
waves. An electron or hole can therefore have 0, 1, or 2 differ-
ent propagating modes depending on the values of k, ¢, and «.

The wave function inside the potential step or barrier
follows from substituting & — & — v with v = V /hvg in both

(16)
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with
E(x,y) = Diagle™* e eh+r e7her]ety (9)

and where the four-component vector C contains the different
coefficients expressing the relative importance of the different
exponentials, which have to be set according to the appropriate
boundary conditions. The matrix P from Eq. (8) is

(- A(iks)B(—iky)
B(—iky) B(iky)
A(—iky) Aliky) '

1 1

(- A(—iky)B(iky)
(10)

(

‘P and k., which will thus result in a different x component
for the wave number, denoted as g-.

V. CURRENT DENSITY AND SCATTERING
PROBABILITIES

For a magnetic field oriented parallel to the potential
boundaries, at a given energy, different propagating modes
exist outside and inside the potential step or barrier, which can
be seen from Fig. 1(d). We therefore need to consider different
transition probabilities between each of them. These 8 different
transitions are illustrated in Fig. 3. A transmission to another
potential region is denoted by T¢,,, which represents an electron
scattering from the k; mode to the k, mode, with&,n = +. A
reflection within the same potential region is denoted by Rg,,.
As a consequence of conservation of pseudospin we have for
perpendicular impinging electrons that 7__ = T, = 0 for
E<V,T_y =T, =0forE>V,andR_, =R,_=0,as
is indicated in Fig. 3.

To find an expression for the different scattering probabil-
ities one first has to determine an expression for the current
density of each scattering mode. This expression can be found
by inserting the Hamiltonian into the continuity equation.
Since the terms involving the in-plane magnetic field form
a Hermitian matrix, these will drop out of the equation and the
current density is given by

j=vp¥iTw. 17)

Here X, is the 4 x 4 block diagonal matrix with two
Pauli matrices oy, on the diagonal. Filling in the wave
function (8) for the general case C = (¢t~,c™,c~F,cH)T
in the expression of the x component of the current density
results in

=g+ it (18)
where the left superscript refers to a left (—) or right (4)
propagating wave and the right superscript refers to the
propagating mode. This means that the total x component
of the current density is the sum of the current densities of
the separate propagation modes and directions. It should be
noted that the current density associated with an exponential
term is vanishing. For a magnetic field oriented parallel to the
potential boundaries, the first term in Eq. (18) in for example
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(b)

FIG. 3. Schematic representation of the different transmission
and reflection probabilities for electrons at perpendicular incidence
in the presence of a magnetic field oriented parallel to the potential
boundaries. The solid parts of the energy bands are associated with the
k_ and g_ propagating modes while the dashed parts of the energy
bands are associated with the k, and ¢, propagating modes. The
colors of the curves correspond to those of Fig. 1(d). (a) Transitions
that conserve pseudospin are allowed. (b) Transitions that do not
conserve pseudospin are prohibited.

potential region 1, as defined in Egs. (6) and (7), is given by

4 -2
JIT =2vlef |

2
x ([8
(19)

Since the wave function is a stationary state and the y
dependence consists of a simple phase factor meaning that j
does not depend on y, the continuity equation implies that the
current density j, is constant in the x direction. Expressing
this conservation for the two potential regions of the potential
step and dividing both sides by j ™~ yields

R R (L ot S Sy S
2.,12 + :
&2y, € &

JACE ey N Jer | dxa et dedddd |
.+7 .+7 .+7 .+7 .+7 .+7 .+7 - .
-]x.l -]x,l -]x,l -]x,l -]x,l -]x,l -]x,l

(20)

The same expression, but with the subscript 3 instead of 2,
follows when equating the x component of the current density
of potential regions 1 and 3 of the potential barrier.

When considering physical scattering processes, however,
appropriate boundary conditions should be imposed. It is
useful to consider an incoming electron in a single propagation

PHYSICAL REVIEW B 93, 115423 (2016)

mode, for example the k_ mode. The ¢~ coefficient then
corresponds to the incoming electron and can be normalized
to 1. Since we assume that there is no other incoming electron,
the ¢ coefficient has to be set to 0. When the k. mode is not
propagating, the corresponding term is an exponential which
diverges for x — —oo and thus also has to be excluded from
the calculation by again setting ¢+ = 0. The other two terms
represent either a reflected wave or an exponential term that
does not diverge and their coefficients will be denoted as the
reflection coefficients r_ and r.. For potential region 1 one
can therefore write C; = (1,7_,r4,0)7. When considering an
incoming electron in the k; mode the boundary condition is
C] = (O,r_,r+,1)T.

At the right side of the potential step (region 2) for £ > V
or barrier (region 3) there can be no left propagating wave and
therefore one has to set both ¢~ ~ and ¢~ to 0. When ¢, (step)
or k., (barrier) is not a propagating mode, the coefficient ¢~
corresponds to an exponential term that diverges for x — oo
and therefore again has to be set to 0. The other two terms
represent either a transmitted wave or an exponential term
that does not diverge and their coefficients will be denoted
as the transmission coefficients 7_ and ¢,.. One can therefore
write Ca3) = (¢-,0,0,7;) for the potential step (barrier). For
E < V this becomes C; = (O,t,,tJr,O)T for the potential step
when the ¢ mode is propagating and C, = (0,7_,0,z,)” when
it is not. Inside the potential barrier all the different terms
(propagating or not) can be present and therefore one has in
general C = (¢ ~,¢; ,¢; e DT

The different propagating modes along with their co-
efficients are indicated in Fig. 4(a). With these boundary
conditions the second, third, and last terms of the left-hand
side of Eq. (20) vanish and it can therefore be rewritten as
T__+T_,+ R__+ R_, = 1.Thisexpresses aspecific form
of the conservation of probability

> (T + Rey) = 1, @1

n=+

where the different scattering probabilities are defined as

j+,2n |j_v1n

X, X,

Top= %%, Ry ="5g, (22)
-]x,l ]x,l

with &,n = +.

For a magnetic field oriented perpendicular to the potential
boundaries the situation is much simpler since at a given energy
E < y; maximum two propagating modes exist outside and
inside the potential step or barrier, which can be seen from
Fig. 1(f). This means that for energies E < y; the k; mode
is always evanescent and therefore the transport properties
are determined by a single transmission probability 7 = 7__
and a single reflection probability R = R__. Furthermore,
since conservation of probability requires that T + R = 1, the
reflection probability follows trivially once the transmission
probability is known. Therefore, we can restrict ourselves to
the transmission probability. In this case the current density is
given by

o ko (182 — K2 = (ky — )PP
B = 2velef |2;( >

+ 1). (23)

2.,72
8)/1
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FIG. 4. (a) Schematic representation of electron scattering on a
potential step in the presence of a magnetic field oriented parallel
to the potential boundaries. The energy spectrum (red) is shown for
ky # 0. The propagating modes (black arrows) and their respective
coefficients are shown for different energies, where the subscript of
the energies refers to the respective zone in (b) to which the electron
corresponds. (b) Schematic representation of the different zones in
the ky-E plane with different propagating modes in the presence of a
magnetic field oriented parallel to the potential boundaries. The blue
(blue dashed) lines indicate the boundaries for the k_ (k) mode and
the red (red dashed) lines indicate the boundaries for the ¢g_ (g4)
mode. The arrows indicate the direction in which the boundaries will
move when the magnetic field becomes larger.

The boundary conditions for this situation are C; = (1, c,007,
Co3) = (¢,0,0,d)" for the potential step for £ > V or barrier,
C> = (0,£,0,d)T for the potential step for E < V, and C, =
(cf™,c; 7,65 F,c3 )T for the potential barrier.

Using these definitions the different scattering probabilities
can be calculated from the reflection and transmission coeffi-
cients, which can in turn be determined by equating the wave
functions from the regions outside and inside the potential step
or barrier at the boundaries x = 0 and x = d.

VI. NUMERICAL RESULTS
A. Scattering probabilities

The results for the different transmission and reflection
probabilities for electron scattering on a potential step with the
application of an in-plane magnetic field oriented parallel to

PHYSICAL REVIEW B 93, 115423 (2016)

the potential boundaries are shown in Fig. 5. The probabilities
are shown as a function of the conserved quantities k, and
E. If a part of the ky-E plane in Fig. 5 is colored in white
this means that the incoming mode of the respective scattering
probability is not propagating and therefore the probability is
undefined. The results of Fig. 5 can be understood by means
of Fig. 4(b), in which the k,-E plane is divided into different
zones that are defined by different propagating modes as we
will explain in this section.

In zone 1, the modes corresponding to k_, k., and g_
are propagating while the g, mode is not. This explains
why 7_, and T, are vanishing in that zone while the other
probabilities are finite. Indeed, the probabilities 7_ and T, 4
correspond to modes moving inwards with wave number k_
or k., respectively, and scatter to the g, mode afterwards.
Because the latter mode is not propagating, the transmission
probabilities will vanish.

Transiting to zone 2 the ¢ mode also becomes propagating
and therefore 7_, is nonvanishing. As a consequence of
conservation of probability, Eq. (21), this lowers the other
scattering probabilities.

In zone 3 the k; mode is not propagating and therefore
in this zone the scattering probabilities that correspond to an
electron incoming into the k; mode are not defined. This also
explains why R_ = 0 in this zone.

In zone 4 all the modes outside the potential are propagating
while all the modes inside the potential are not. Therefore, all
the transmission probabilities vanish while the four reflection
probabilities do not. Note that in this zone the electrons rather
scatter into the other mode upon reflection.

The only propagating mode in zone 5 is the k_ mode which
is why R__ =1 in this zone while all the other scattering
probabilities either vanish or are undefined.

Finally, in zone 6 the k_ and g_ modes are propagating
while their k; and ¢, counterparts are not. This explains why
T_; and R_ vanish while 7__ and R__ are finite. However,
because the energy of the electrons is much larger than the
height of the potential step, the transmission is nearly unity
while the reflection is almost zero.

Figure 5 shows that R_, = R, _ where both probabilities
are defined. This is a consequence of time reversal symmetry
and the fact that the two different valleys in the graphene
Brillouin zone are equivalent [5]. Furthermore, it is clear that
the results of the scattering probabilities at normal incidence
are in agreement with the predictions made in Sec. V based on
the conservation of pseudospin.

The results for electrons scattering on a potential barrier
are shown in Fig. 6. The reflection probabilities are similar
to those for the case of scattering on a potential step since
the situation at the left side of the potential has not changed.
In contrast, the transmission probabilities differ significantly
from those for the potential step.

Figure 6 shows that the transmission probabilities for which
the propagating mode is the same at the left and right side of
the barrier are dominant over the transmission probabilities
for which the propagating mode is altered. For example, while
the 7, _ channel for low energy is significant for the potential
step, for the barrier it is almost completely suppressed to the
advantage of the 7, channel in the same energy range. A
similar probability transfer has occurred between the 7__ and
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FIG. 5. Transmission and reflection probabilities as a function of the transverse wave number k, and the energy E in the case of a potential
step with height V = 0.1y, in the presence of an in-plane magnetic field oriented parallel to the potential boundaries with strength B = 500 T.

T_, channels in the lower part of zone 3. The reason for this
probability transfer is that a possible way of transiting the
barrier region in the same mode is by switching modes when
entering and leaving the barrier, i.e., k+ — g+ — k4. Figure 5
shows that in the case of the potential step, the transmission
probabilities 745 dominate over the probabilities T4 for
E < V. Thus in the case of the potential barrier, for E < V

o
o

the transmission probabilities 714 will dominate because the
electron is likely to change its propagating mode at both edges
of the potential. The reason that 7__ is dominant for £ > V
in the case of the potential barrier is because 7__ is also
dominant for £ > V in the case of the potential step and thus
a k_ electron can go through the barrier by staying in the same
mode.

L L L B

L
I R

LI
|

PRI R

.

0.00 ‘
0.20 e aaann el
0.15 A : : o

<010 i : : {Ros

w0 1t Fo 10N A
0.05- 1 F - \/ L N ™

: e - Y o R |
000 PRI B T I A T T TR [ P R |

—004 000 0.04 004 000
kya kya

7004 —0.04 000 0.04 —0.04 000 004"

kya kya

FIG. 6. Transmission and reflection probabilities as a function of the transverse wave number k, and the energy E in the case of a potential
barrier with height V = 0.1y, and width d = 50 nm in the presence of an in-plane magnetic field oriented parallel to the potential boundaries

with strength B = 500 T.
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FIG. 7. Transmission probability 7__ as a function of the transverse wave number k, and the energy E in the case of a potential barrier
with height V = 0.1y, and width d = 50 nm in the presence of an in-plane magnetic field oriented parallel to the potential boundaries with
strength varying from B = 0 T to B = 900 T as indicated in the different panels. The black dashed curves indicate the boundaries for the k_
and k; modes and the white dashed curves indicate the boundaries for the g_ and g, modes.

Furthermore, itis clear from Fig. 6 thatnow notonly R_ =
R, _butalso7_, = T, _.Thereasonis similar to the argument
used for the case of the potential step [5].

A remarkable feature of the transmission probability 7__
is that in a range around £ =V and k, =0 there is a
nonvanishing transmission probability despite the fact that
there are no propagating modes inside the barrier. This finite
transmission stems from evanescent tunneling through the
finite barrier, a process which is impossible for the step since
it is infinitely wide.

Furthermore, the results are again in agreement with the
predictions made in Sec. V based on the conservation of
pseudospin, keeping in mind that the predictions for £ < V
are not valid for the barrier and that the predictions for £ > V
can be extended to the entire positive energy domain since the
electron will always end up in a positive energy solution at the
right side of the barrier. This is in contrast to the case of
the potential step for which the electron will end up in a
negative energy solution in the step for £ < V.

Figure 6 shows that the transmission probability 7__ carries
most of the tunneling features present in the system. Therefore,
in Fig. 7 we show the evolution of this quantity with increasing
magnetic field. On top of the numerical results we have plotted
the curves from Fig. 4 that define the different zones. The
results show that as the in-plane magnetic field increases, the
typical bilayer graphene resonances at E < V shift upwards in
energy, become sharper, and eventually vanish at about 300 T.
As the magnetic field increases further the chiral suppressed
tunneling at normal incidence that is characteristic for bilayer
graphene is replaced by strong chiral supported tunneling,
typical for monolayer graphene. This happens in the region
corresponding to zone 2 in Fig. 4(b) and is to be expected as in
this zone the energy spectrum can both inside and outside the
potential barrier be considered to be that of two separate linear
Dirac cones. The requirement that the black and white dashed
lines in Fig. 7 have the same value for k, = 0 immediately

yields the minimal magnetic field at which chiral supported
tunneling for £ < V can be observed in this system, which is
given by

2h vV V2 + 2}/1V
ace 3y,

which yields B, = 510.73 T for V = 0.1y,. Note however
that at these large magnetic fields also the high-energy
transmission is affected. From 600 T and beyond there is a
set of antiresonances appearing in zone 3. These resonances
cut into the high-transmission region and can be considered
as a suppression of transmission due to bound states in the
barrier.

For the case of a magnetic field oriented perpendicular
to the potential boundaries the results are shown in Fig. 8
for electron scattering on a potential step and barrier. For
both cases, one can see from the figure that the transport
properties change from a bilayer system, with the typical
anti-Klein tunneling for E < V at k, = 0 and Klein tunneling
for E < V at finite k, [9], to two separated monolayer-like
systems as the magnetic field increases, with Klein tunneling
emerging at k, = £« for large enough magnetic fields. This is
because, as seen in Fig. 1(f), the low-energy spectrum becomes
conelike for k, = +«. Moreover, as k, is conserved because of
translational invariance this means that in this case the charge
carriers will scatter from cone to cone. As a reference, the
transmission probability for electrons in monolayer graphene
is shown in Fig. 9 for scattering on a potential step and on
a potential barrier [2]. The reason that the monolayer-like
transmission probability for large magnetic fields is similar
to that of electrons in monolayer graphene scattering through
a potential barrier with width 100 nm, as opposed to 50 nm, is
because of the reduced Fermi velocity of the split Dirac cones
in the presence of an in-plane magnetic field. For the case of
the potential step, Fig. 8 shows that the two high-transmission

Buin = (24)
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FIG. 8. Top row: Transmission probability as a function of the transverse wave number k, and the energy E in the case of a potential step
with height V = 0.1y in the presence of an in-plane magnetic field oriented perpendicular to the potential boundaries with strength varying
from B =0T to B = 600 T as indicated in the different panels. Bottom row: The same as the top row but now in the case of a potential barrier

with height V = 0.1y, and width d = 50 nm.

regions for £ < V, which are typical for bilayer graphene,
shift away from each other and each form a Klein tunneling
region at k, = =« of the separated monolayer systems. For the
potential barrier the bilayer graphene resonances for £ < V
broaden and merge with each other to form the monolayer
resonances and Klein tunneling at k, = d«. Furthermore, the
pseudospin structure shown in Fig. 1(f) implies that 7 = 0
for E < V at normal incidence, which is confirmed by our
numerical results.

B. Conductance

Using the numerical results for the transmission probabili-
ties, we can obtain the zero-temperature conductance from the

@ 0.20:

0.15
<0.10-
5010

0.05-
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20.02 0.00 0.02
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FIG. 9. (a) Transmission probability for monolayer graphene as
a function of the transverse wave number k, and the energy E in the
case of a potential step with height V = 0.1y,. (b) The same as (a)
but now in the case of a potential barrier with height V = 0.1y, and
width d = 100 nm.

Landauer-Bittiker formula [7 28]

G
dk, Te,, 25
Go 27[ gnzi & (25)

where G = 4¢?/ h is four times the quantum of conductance
due to spin and valley degeneracy and L, is the width
of the sample in the y direction. The result is shown in
Figs. 10(a) and 10(b) for the case of a potential step and barrier,
respectively, and for a magnetic field oriented parallel to the
potential boundaries, and in Figs. 11(a) and 11(b) for the case
of a potential step and barrier, respectively, and for a magnetic
field oriented perpendicular to the potential boundaries. In
these figures we relate three directly measurable quantities,
namely the conductance, magnetic field, and Fermi energy for
an electron tunneling through a pn junction and a pnp junction.

For a magnetic field oriented parallel to the potential
boundaries, local maxima and minima for energy values
symmetric on either side of E = V /2 are present for magnetic
fields smaller than B = 500 T for the potential step. These
extrema are a consequence of the fact that the k; mode (g4
mode) becomes propagating at energies lower (higher) than
the minimum below (above) E = V /2, as indicated by the k.
(g+) zone boundary in Fig. 4(b). The stronger the magnetic
field, the closer these extrema are located to £ = V/2, in
correspondence to the movement of the zone boundaries as
indicated by the arrows in Fig. 4(b). At B = 500 T the extrema
have reached E = V /2, corresponding to the k. and g, zone
boundaries passing each other in k, =0 in Fig. 4(b), and
there is a region around E = V/2 in which both k; and
g+ correspond to propagating modes and as a consequence
there is a higher conductance. This region corresponds to zone
2 in Fig. 4(b) and expands as the magnetic field increases.
For a constant E > V it is clear from the figure that the
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FIG. 10. (a) Contour plot of the conductance as a function of
the energy of the electron and the in-plane magnetic field oriented
parallel to the potential boundaries in the case of a potential step with
height V = 0.1y,. (b) Same as (a) but now in the case of a potential
barrier with height V = 0.1y, and width d = 50 nm.

conductance decreases with increasing magnetic field. This is
a consequence of the fact that as the magnetic field increases,
for a given energy there is a smaller k, interval in which the
q- mode is propagating and thus a smaller &, interval in which
there is a high transmission probability.

For the potential barrier the conductance has different
characteristics as a function of the magnetic field for energies
E < V. The typical bilayer resonances are shifted to higher
energy values until they vanish and eventually morph into
antiresonances. This is because the resonances in the trans-
mission probability shift to higher energies as the magnetic
field increases, as shown in Fig. 7, while also becoming
narrower and, therefore, contributing less to the conductance.
As a consequence, the conductance is very low for £ < V in
the region where both k; and ¢, are evanescent modes and
where the resonances have disappeared. However, when the
k4 and g, modes become propagating, this leads to a higher
conductance. In particular, the enhanced conductance in the
region corresponding to zone 2 in Fig. 4(b) is again clearly
visible. The conductance of electrons with energy E > V,
similar to the case of the potential step, decreases as the
magnetic field becomes larger, which is a consequence of
the k_ mode being a propagating mode in a decreasing k,
interval. Finally, the antiresonances in the conductance are the
consequence of antiresonances in the transmission probability
as discussed before. The conductance calculation shows the
remarkable fact that the resonances in the conductance morph
into antiresonances, implying that they stem from the same

PHYSICAL REVIEW B 93, 115423 (2016)
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FIG. 11. (a) Contour plot of the conductance as a function of
the energy of the electron and the in-plane magnetic field oriented
perpendicular to the potential boundaries in the case of a potential
step with height V = 0.1y,. (b) Same as (a) but now in the case of a
potential barrier with height V = 0.1y, and width d = 50 nm.

physical process and that the resonances in the transmission
probability morph into antiresonances as well. These results
are characteristic experimental features and are a direct
consequence of the in-plane (pseudo)magnetic field.

When the thickness of the barrier increases, more reso-
nances and antiresonances will appear. In the limit of an
infinitely thick potential barrier, i.e., a potential step, all
the resonances will merge to form the region of enhanced
conductance around E = V/2 and all the antiresonances will
merge to form the region of zero conductance around E = V.

For a magnetic field oriented perpendicular to the potential
boundaries, the conductance at first increases as the magnetic
field increases for a given energy but then decreases for even
larger magnetic fields. The initial increase in the conductance is
due to the splitting of the bilayer system into two monolayer-
like systems. However, as the magnetic field increases even
further the two monolayer-like transmission regions separate
further as well. As the transmission probability for k, values
in between these two regions vanishes this leads to a decrease
in the conductance. Furthermore, for the case of the potential
barrier the resonances for E < V now move to lower energies
as the magnetic field increases, as opposed to the case of
a magnetic field oriented parallel to the potential boundaries
where the resonances move to higher energies before morphing
into antiresonances. There are now also distinct resonances
visible for E > V.
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VII. SUMMARY AND CONCLUSION

By shifting one of the two layers of the bilayer system,
the energy spectrum becomes similar to the spectrum of
bilayer graphene in the presence of an in-plane magnetic
field. Therefore the shift has the same effect as an in-plane
pseudomagnetic field that can reach extremely high values.

The scattering of electrons on a potential step and barrier in
bilayer graphene was studied in the presence of such large in-
plane magnetic fields oriented both parallel and perpendicular
to the potential boundaries and it was linked with the concept
of pseudospin.

For a magnetic field oriented parallel to the potential
boundaries, the different scattering probabilities were shown
to be drastically altered by the presence of the magnetic field as
a consequence of an extra propagating mode at low energies.
The results for electrons at normal incidence were explained
by conservation of pseudospin and the results in general can
be understood by dividing the k,-E plane in different zones in
which electronic transport is governed by different propagating
modes. At large magnetic fields, we have further shown that
due to the splitting of the parabolic cone into two linear ones,
the chiral suppressed transmission is transformed into a chiral
supported transmission at normal incidence.

For both a potential step and a potential barrier the con-
ductance decreases as a function of the strength of the parallel

PHYSICAL REVIEW B 93, 115423 (2016)

magnetic field for energies £ > V. For electrons with energy
E <V the conductance is enhanced in the regions where
additional propagating modes are available. Furthermore, in
the case of a potential barrier a parallel magnetic field shifts
the tunneling resonances to higher energies and eventually
morphs them into antiresonances. This can be clearly seen in
the conductance of the system.

For a magnetic field oriented perpendicular to the potential
boundaries, we found a very clear transition from a bilayer sys-
tem to two separated monolayer-like systems. This transition
is clearly shown in the shifting of the bilayer graphene high-
transmission regions at £ < V which leads to the occurrence
of Klein tunneling at k, = £« for the case of the potential
step. For the potential barrier the bilayer graphene resonances
broaden and merge to form monolayer-like resonances and
again Klein tunneling at k, = £«. These features also leave a
signature in the conductance of the system, which should be
observable experimentally.
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