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One-dimensional transport in hybrid metal-semiconductor nanotube systems
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We develop an electron transport theory for the hybrid system of a semiconducting carbon nanotube that
encapsulates a one-atom-thick metallic wire. The theory predicts Fano resonances in electron transport through
the system, whereby the interaction of electrons on the wire with nanotube plasmon generated near fields blocks
some of the wire transmission channels to open up the new coherent plasmon-mediated channel in the nanotube
forbidden gap outside the wire transmission band. Such a channel makes the entire hybrid system transparent in
the energy domain where neither wire nor nanotube is individually transparent. This effect can be used to control
and optimize charge transfer in hybrid nanodevices built on metal-semiconductor nanotube systems.
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I. INTRODUCTION

Over the last decade, electron transport studies in quasi-one-
dimensional (1D) nanostructures have resulted in important
discoveries, such as conductance quantization and oscillatory
length dependence, molecular rectification, negative differ-
ential resistance, hysteresis behavior, etc. [1–4]. At present,
peculiar mechanisms of electron transport are fairly well
understood for pristine atomic wires (AWs) [1], carbon
nanotubes (CNs), and some CN based components [4,5].
Carbon nanotubes—graphene sheets rolled-up into cylinders
of one to a few nanometers in diameter and up to hundreds of
microns in length [6]—have been successfully integrated into
miniaturized electronic, electromechanical, chemical devices
and into nanocomposite materials [7,8], and have found a
variety of applications in optoelectronics [9–17].

Enormous potential of carbon nanotubes as building
blocks for designing optoelectronic nanodevices stems from
their extraordinary thermomechanical stability combined with
unique physical properties that originate from quasi-one-
dimensionality to give rise to a peculiar quasi-1D band
structure featuring intrinsic, spatially confined, collective
electronic excitations such as excitons and plasmons [18–23].
Due to the circumferential quantization of the longitudinal
electron motion, the real parts of the axial (along the CN
axis) optical conductivities of single wall CNs consist of
series of peaks E11,E22, . . . , representing the first, second,
etc. excitons, respectively [see Fig. 1(a)]. The imaginary
parts of the conductivities are linked with the real ones
by the Kramers-Kronig relation, and so the real parts of
the inverse conductivities show the resonances P11,P22, . . .

next to their excitonic counterparts. These are weakly dis-
persive, low-energy (∼1–2 eV) interband plasmon modes.
They were observed experimentally quite a while ago [20],
and were theoretically demonstrated quite recently to play
the key role in a variety of new surface electromagnetic
(EM) phenomena with CNs [22–36], such as exciton-plasmon
coupling [22,23], plasmon generation by excitons [24,25],
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exciton Bose-Einstein condensation in individual single wall
CNs [26], Casimir attraction in double wall CNs [23,27,28],
van der Waals coupling [29,30], spontaneous emission [30,31],
resonance absorption [32], scattering [33], bipartite entangle-
ment in hybrid systems of extrinsic atoms/ions doped into
CNs [34–36], to mention a few—all of relevance to con-
ceptually new tunable optoelectronic device applications with
CNs [37–39].

Apparently, further progress in CN optoelectronics can
be expected from the exploration of complex hybrid CN
structures [40,41], particularly CNs doped with extrinsic
species such as molecules [42–45], semiconductor quantum
dots [10,46,47], atoms and ions [45,48–50], and also AW-
encapsulating CNs [51–67]. This research direction is being
pursued by a number of groups worldwide. Carbon nanotubes
of different diameters are synthesized to host various metallic
AWs, including Cr [55], Fe [56], Co [57], Ni [58], Cu [59],
Ge [60], I [61], La [62], Gd [63], Mo [64,65], Eu [66], and
Cs [67]. Quantum chemistry simulations are performed for
the electronic structure of AW-encapsulating CNs [68–76],
supplemented with electron transmission calculations for CNs
encapsulating Gd/Eu [74], Mo [75], and Au-V(Cr) [76] AWs.
However, the interplay between the intrinsic 1D conductance
of an atomic wire and CN plasmon mediated near fields is still
far from being well understood, calling for deeper theoretical
insight into electron transport peculiarities in these complex
hybrid quasi-1D quantum systems.

Encapsulating metallic wires of just one atom thick into
a single wall CN, metallic or semiconducting, is known to
drastically alter the transport properties of the compound
hybrid system. The whole body of available data shows that
transport peculiarities in hybrid CN-AW systems cannot be
explained by a mere addition of the properties of pristine CNs
and AWs, suggesting a crucial role of the CN-AW interactions
with a variety of associated quantum interference effects,
including opening extra (collective) transport channels [66,74–
76]. For example, metallic single wall CNs encapsulating Eu
atomic wires are experimentally demonstrated to have extra
conduction channels to supplement an overall “Tomonaga-
Luttinger liquid”-like transport behavior [66], and with both
CNs and AWs being nonmetals their compound CN-AW
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FIG. 1. (a) Dimensionless (normalized by e2/2π�) surface axial
conductivities σzz for the semiconducting (11,0) and (16,0) CNs.
Peaks of Re σzz and Re(1/σzz) represent excitons (E11, E22) and
interband plasmons (P11), respectively. (b) Photonic DOS for nonra-
diative spontaneous decay with CN plasmon excitation for a two-level
dipole emitter on the symmetry axis (inset) of the (11,0) and (16,0)
CN. (c) Electron transmission band for the free AW of 100 sodium
atoms with energy counted from the bottom of the fundamental band
gap Eg of the (11,0) and (16,0) CNs (top and bottom, respectively);
also shown are the AW Fermi energies EF and CN first interband
plasmon energies Ep . Conductivities are obtained using the (k · p)
scheme by Ando [18]. DOS functions are calculated as described
by Bondarev and Lambin in Refs. [29,30]. Transmission is plotted
within the nearest-neighbor hopping model as discussed by Mujica
et al. and by Gelin and Kosov in Refs. [87–89]. See Sec. V for more
details.

hybrids are theoretically predicted to be metallic for CNs of
appropriately chosen diameters [75].

Pristine metallic single wall CNs are excellent conductors
by themselves [5], and so, theoretically, there is no surprise
about extra channels in the CN transport that emerge upon
encapsulating metal AWs into them. From a theoretical per-
spective, more interesting is a hybrid system of metal-atomic-
wire encapsulating semiconducting CNs. In these systems, at
low bias voltages not exceeding the CN fundamental band
gap, the CN itself does not have any intrinsic open channels
to conduct electrons. Hence, there is no electron exchange
between the CN and the metallic AW encapsulated into it,
with the transport being totally dominated by the AW alone,
while at the same time being affected by local quasistatic fields
of nanotube’s collective interband plasmon excitations.

As an example, Fig. 1 shows same scale energy dependen-
cies for characteristic parameters to represent semiconducting
CNs, their near-field interaction with encapsulated atomic
types species, and one-dimensional (1D) metallic atomic
wires, respectively. Figure 1(a) shows the dynamical axial
conductivities for the semiconducting (11,0) and (16,0) CNs.
Shown are the real and imaginary parts of the conductivities
as well as the real parts of the inverse conductivities of
relevance to the electron energy-loss spectroscopy response
function used in studies of collective plasmon excitations in
solids [20–23,77]. Peaks of the real parts of the conductivities
and of the inverse conductivities represent excitons (E11,
E22) and interband plasmons (P11), respectively [22–28].
Figure 1(b) shows local densities of photonic states (DOS)
for the nonradiative spontaneous decay (relative to vacuum)
of a two-level dipole emitter placed on the symmetry axis
(inset) inside the (11,0) and (16,0) CNs. Figure 1(c) shows
the electron transmission band for the free 1D metallic AW
of 100 sodium atoms with energy counted from the bottom
of the fundamental band gap of the (11,0) and (16,0) CNs
(top and bottom, respectively). All AW transport channels
are seen to be inside of the CN forbidden gap. However,
AWs encapsulated into CNs will experience near-field EM
coupling to the CN interband plasmon modes represented by
the large DOS resonances in Fig. 1(b). Interband plasmons are
standing charge density waves due to the periodic opposite-
phase displacements of the electron shells with respect to
the ion cores in the neighboring elementary cells on the CN
surface. Such periodic displacements induce local coherent
oscillating electric fields of zero mean, but nonzero mean-
square magnitude, concentrated near the surface across the
diameter throughout the length of the CN [24,25]. The electric
dipole interaction of atoms on the wire with these near fields
will largely affect the AW transmission properties and the
properties of the entire hybrid system.

The coupling strength of an individual atom to the plasmon-
induced near fields inside the nanotube can be estimated
as follows. Modeled by a two-level system, an atom (ion)
interacts with the CN medium-assisted fields via an electric
dipole transition dz = 〈u|d̂z|l〉 between its lower |l〉 and
upper |u〉 states [29,30], with the CN symmetry axis set
to be the z-quantization axis [Fig. 1(b), inset]. Transverse
dipole orientations can be neglected in view of the strong
transverse depolarization in individual CNs [21,78–80]. The
atom-CN electric dipole coupling constant is then given by
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�g = (2πd2
z �ω̃A/Ṽ )1/2 [32,82], where ω̃A is the effective

transition frequency in resonance with a local CN-
medium-assisted field mode. The effective mode volume
Ṽ ∼πR2

CN(λ̃A/2) for the CN of radius RCN. Evaluating
dz∼erA∼e(e2/�ω̃A), where rA is the linear size of the atom
(estimate valid for quantum systems with Coulomb interac-
tion [81]), and introducing the fine structure constant α =
e2/�c = 1/137, one arrives at �g = (2α3/π )1/2(�c/RCN),
to give �g∼0.2 eV for CNs with diameters ∼1 nm. Comparing
this to the “cavity” linewidth �γc(ω̃A) = 6π�c3/ω̃2

Aξ (ω̃A)Ṽ
[function ξ represents the local photonic DOS at the atomic
location, also called the Purcell factor [82]; shown in Fig. 1(b)],
one has the ratio g/γc∼10 � 1 for the 1-nm-diameter CNs
in the optical spectral range. This is the strong atom-
field coupling condition characterized by the rearrangement
(“dressing”) of atomic levels and formation of atomic quasi-1D
cavity polaritons [29,30] featuring strongly nonexponential
(oscillatory) spontaneous decay dynamics [30,31] and Rabi
splitting of the optical absorption line profile [32]. However,
one can hardly expect such a strong resonance coupling for
identical atoms aligned on a wire inside the CN as the |l〉 and
|u〉 transition states are here a subset of the one-dimensional
electronic band states, and so are not as clearly defined as
those for an individual atom, to most likely result in a weaker
nonresonance CN-AW coupling strength.

Here we study the interplay between the intrinsic 1D
conductance of metallic AWs and CN mediated near-field
effects for semiconducting single wall CNs that encapsulate
atomic wires of finite length. We use the matrix Green’s
functions formalism to develop an electron transfer theory
for such a complex hybrid quasi-1D CN system. The theory
predicts Fano resonances in electron transmission through the
system. That is the AW-CN near-field interaction blocks some
of the pristine AW transmission band channels to open up
new coherent channels in the CN forbidden gap outside the
pristine AW transmission band. This makes the entire hybrid
system transparent in the energy domain where neither of
the individual pristine constituents, neither AW nor CN, is
transparent. The effect can be used to control electron charge
transfer in semiconducting CN based devices for nanoscale
energy conversion, separation, and storage [83–86].

The paper is structured as follows. Section II formulates
the theoretical model for CN-mediated AW transmission.
Section III presents analytical expressions derived for the
transmission coefficient. The expressions obtained are an-
alyzed qualitatively in Sec. IV, and then numerically in
Sec. V. Section VI discusses the model approach and the
approximations used. A brief summary of the work is given in
Sec. VII. The Appendix A derives mathematical expressions
presented in Sec. III.

II. THE MODEL

This section formulates the model for the plasmon-
mediated electron transport through the hybrid metal AW
encapsulating single wall semiconductor CN system. We
closely follow the matrix Green’s function formalism by
Mujica, Kemp, and Ratner [87,88] (see also Ref. [89]), which
is consistently built on the scattering matrix approach (see, e.g.,
Refs. [4,81]) as applied to electron conduction in molecular

wires. This formalism is exact in the limit of low temperature
and small external bias applied, whereby the system under
consideration is in the linear response regime characterized by
the bias independent T matrix of the transported electrons. The
latter is defined as T (E) = S(E) − 1 = V + V G(E)V , with E
standing for the complex energy, S and V being the electron
scattering matrix and scattering potential, respectively, and
G(E) = 1/(E − H) representing the Green’s function with H
being the Hamiltonian of the entire system to include both the
electron reservoirs (leads, electrodes) and the wire connecting
them.

The quantum conductance of the wire-reservoir system is
defined as the ratio of the current density to the applied voltage
g = j/W . This only depends on the electronic structure of
the wire and reservoirs in this model, while being completely
independent of the voltage. For the wire modeled by a chain
of N one-electron states, the conductance g can be shown to
be represented by the wire-reservoir transmission coefficient
(in units of e2/2π�)

T (E) = 4	1(E)	N (E)|G1N (E)|2 (1)

taken at E = εF , where E is the real part of the complex
energy E and εF is the Fermi energy of the reservoirs
(leads, electrodes) [87,88]. The transmission coefficient is
the probability for an electron to be transported between the
electrodes at a constant energy E, whereby 0 � T (E) � 1.
The function G1N (E) is the 1N element of the wire-reservoir
Green’s function matrix

G(E) = [E − H − �(E)]−1, (2)

in which H stands for the Hamiltonian matrix of the wire alone,
and

�(E) = �(E) − i�(E) (3)

stands for the electron reservoir self-energy matrix to take into
account the lead-wire coupling. This only has two nonzero
matrix elements to couple the left and right wire terminals
to the left and right reservoirs. They are �11(E) = �1 − i	1

and �NN (E) = �N − i	N , where 	1,N (E) and �1,N (E) are
the reservoir spectral densities of states and their Hilbert
transforms, respectively.

In the case where the left and right reservoirs (leads,
electrodes) are identical, one has �11 = �NN = � − i	.
Then the transmission coefficient (1) takes the form

T (E) = 4	2(E)|G1N (E)|2. (4)

If, moreover, the identical leads are made of a broadband metal
with the half-filled conduction band, then it can be shown (see
Ref. [88] for details) that �(E) = 0 for the most interesting
E in the neighborhood of εF , while 	(E) takes the energy
independent form 	 = V 2

S /γ , where VS (=V1 ≡ VN ) is the
lead-wire terminal chemisorption coupling constant and γ is
the lead metal half-bandwidth.

The ultimate goal of this work is to derive the equation
for and analyze the energy dependence of the transmission
coefficient T (E) for the hybrid metal-semiconductor nanotube
system composed of the metal AW encapsulated in the
semiconducting CN.
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A. The Hamiltonian of the hybrid CN-AW system

According to Eqs. (1)–(4), the main ingredient of the
electron transmission theory of molecular wires in its scat-
tering matrix formulation is the Green’s function of the
wire-reservoir system in Eq. (2). This includes the separate
contributions from the Hamiltonian of the wire alone and
from the electron reservoir self-energy to account for the wire-
lead coupling. Our “wire” is the hybrid metal-semiconductor
nanotube system composed of the metal AW encapsulated in
the semiconducting CN. We write the total Hamiltonian for
our system as the sum of the Hamiltonians for the AW, the
CN, and their interaction as follows:

Ĥ = ĤAW + ĤCN + Ĥint. (5)

To describe the AW of N atoms (lattice sites) in length,
we adopt the standard second quantized tight-binding model
Hamiltonian with the nearest neighbor electron hopping rate
V and the electron on-site energy E0,

ĤAW = E0

N∑
k=1

B
†
kBk + V

N−1∑
k=1

(B†
kBk+1 + B

†
k+1Bk). (6)

Here the operators B
†
k and Bk create and annihilate, respec-

tively, the single-quantum electronic excitations on site k of
the AW. They obey the Pauli commutation rules [Bk,B

†
n] =

δkn(1 − 2B
†
kBn), whereby no two electrons can occupy the

same lattice site simultaneously, though being able to occupy
equivalent neighboring lattice sites at the same time. This
Hamiltonian is the simplest one to capture the essence
of the near-field EM effects we are about to study and
discuss, the effects to occur inside the fundamental band
gap Eg [= E(11)

g ] of the semiconducting CN at the energies
EF � E < Eg , where EF is the Fermi energy of the AW
as it shows in Figs. 1(a)–1(c). Here, regardless of whether
the AW transmission band is narrower [as in Fig. 1(c)] or
broader than Eg , the near-field electric dipole interaction that
involves electronic dipole transitions in the atoms on the
wire due to the energy exchange with the quasistatic near
fields of low-energy (∼1–2 eV) collective interband plasmon
modes of the nanotube [represented by the local photonic DOS
resonances in Fig. 1(b)], will largely affect the AW electron
transmission and thereby the transport properties of the entire
hybrid metal-semiconductor nanotube system.

The most general second quantized Hamiltonian of the CN
can be written as follows [22]:

ĤCN =
∑

n

∫ ∞

0
dω�ωf̂ †(n,ω)f̂ (n,ω). (7)

In this Hamiltonian, the scalar bosonic field operators f̂ †(n,ω)
and f̂ (n,ω) create and annihilate, respectively, the surface
EM excitation (plasmon) of frequency ω at an arbitrary point
n = Rn = {RCN,ϕn,zn} that represents the position of a carbon
atom [nanotube lattice site—Fig. 1(b), inset] on the surface
of the CN of radius RCN, [f̂ (n,ω),f̂ †(n′,ω′)]=δnn′δ(ω − ω′).
Summation is taken over all the carbon atoms on the entire CN
surface. Since only one plasmon resonance is located inside

Eg , Eq. (7) can further be simplified to take the form

ĤCN = Epf̂ †f̂ . (8)

Here the operators f̂ † and f̂ ([f̂ ,f̂ †]=1) create and anni-
hilate collective interband plasmon excitations of energy Ep

[Figs. 1(a) and 1(b)] that are delocalized all over the CN surface
in accordance with the correspondence relation∑

n

f̂ †(n,ω)f̂ (n,ω) = f̂ †f̂ δ(ω − Ep/�). (9)

The CN-AW interaction can then be written in the form

Ĥint =
N∑

k=1

μk(Bkf̂
† + B

†
k f̂ ), (10)

where μk is the AW-CN dipole coupling constant for site k of
the AW. We assume it to be the same for all of the AW sites,
that is

μk = μ � �g =
√

2πd2
z �ω̃A

Ṽ
≈

√
2α3

π

�c

RCN
(11)

in what follows, as discussed in the Introduction above.
The Hamiltonian in Eqs. (5)–(11) belongs to the well-

known family of Fano-Anderson Hamiltonians [90,91]. How-
ever, it describes a physical picture opposite to that normally
refereed to as the Fano-Anderson model. The latter deals
with a bound (e.g., localized on a defect) electron state
inside (or outside) of the continuum of scattering (band,
or free) electron states [90]. In our case, the band electron
states represented by the AW Hamiltonian (6) interact with
the CN collective interband plasmon excitations described
by the Hamiltonian (8). These are standing charge density
waves due to the periodic opposite-phase displacements of
the electron shells with respect to the ion cores in the
neighboring elementary cells on the CN surface [24,25].
They are extended coherently all over the entire surface of
the CN as described by Eqs. (7) and (9). The main feature
of the standard Fano-Anderson model is still there though,
offering two different electron transmission paths. They are:
(i) the direct transfer through the AW, and (ii) the transfer
mediated by quasistatic near fields due to the CN collective
interband plasmon excitations. Thus, the model we present
here is a nontrivial extension of the Fano-Anderson model to
cover coherently delocalized electron states, such as collective
plasmon excitations, in addition to localized (defect-type)
states studied originally.

B. The matrix representation of the operators

Using the relevant single-quantum Hilbert space basis of
N + 1 basis vectors as follows:

{B†
k |0〉}k=1,...,N , f̂ †|0〉,

with |0〉 being the vacuum state of the entire system, one can
convert the total Hamiltonian (5) into the matrix representation
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as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0 V 0 . . . 0 0 μ

V E0 V . . . 0 0 μ

0 V E0 . . . 0 0 μ

...
...

...
. . .

...
...

...

0 0 0 . . . E0 V μ

0 0 0 . . . V E0 μ

μ μ μ . . . μ μ Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Here rows and columns 1, . . . ,N enumerate AW sites. The
(N+1)st row/column refers to the CN interband plasmon
mode. Similar matrix representations can be written for other
operators of relevance to the problem.

Matrix (12) represents the tight-binding Hamiltonian for
the hybrid CN-AW system. Its diagonal matrix elements
H11, . . . ,HNN are the site energies of the AW sites that
incoming electrons hop through, its off-diagonal elements
specify the rates at which the hopping occurs through the
AW, and its eigenenergies determine the resonances of the
electron transmission through the CN-AW system. The AW-
CN coupling constant μ in the (N+1)st row/column modifies
the resonance transmission energies and hopping pathways.
To explore the role of this latter ingredient is the goal of
this work.

III. THE TRANSMISSION COEFFICIENT: EXACT
ANALYTICAL SOLUTION

For simplicity and to obtain tractable results, we derive
the transmission coefficient T (E) in the form (4) assuming
identical leads made of a broadband metal with the half-filled
conduction band as discussed above in Sec. II.

To evaluate the matrix element G1N (E) of the Green’s
function (2) in Eq. (4), we introduce the matrix

h ≡ E − H − �(E),

and follow the rules for calculating the matrix elements of its
inverse. One obtains

G1N (E) = hN1

det(h)
, (13)

with hN1 representing the N1 co-factor of the matrix h. Next,
we use the result of the matrix Green’s function partitioning
technique developed in Ref. [87], whereby

det(h) = �2DN−2 + 2�DN−1 + DN, (14)

with � = �11 = �NN = −i	 (= −iV 2
S /γ ), and

hN1 = (−1)N+1SN−1, (15)

with DN and SN−1 being the determinant and the N1 minor of
the matrix H − E, respectively (both determined by the AW
lattice site number N ; subscripts to indicate that the latter is a
polynomial of degree one less than the former). The matrix H
is given by Eq. (12).

In view of Eqs. (13)–(15), the transmission coefficient (4)
takes the form

T (E) = 4	2

∣∣∣∣ SN−1

	2DN−2 + 2i	DN−1 − DN

∣∣∣∣
2

. (16)

Here the quantities DN and SN are functions of the AW lattice
site number N given by the analytical expressions as follows:

DN = εpdN + μ2

ε0 + 2V

{
−NdN + 2V

ε0 + 2V

× [(−1)NV N − V dN−1 − dN ]

}
, (17)

SN = εpV N + μ2

ε0 + 2V
[−(N + 1)V N + (−1)NdN ], (18)

where

ε0 = E0 − E, εp = Ep − E (19)

and

dN = λN+1
1 − λN+1

2

λ1 − λ2
, (20)

with

λ1,2 =
ε0 ±

√
ε2

0 − 4V 2

2
. (21)

The explicit derivation of Eqs. (17) and (18) can be found in
the Appendix A.

IV. QUALITATIVE ANALYSIS

The transmission coefficient given by Eqs. (16)–(21) is
the key quantity to describe the electron transfer through the
atomic wire encapsulated into a carbon nanotube. There are
two parameters to control the AW-CN coupling there. They are
the atom-plasmon coupling constant μ and the plasmon energy
detuning εp in Eqs. (11) and (19), respectively. From Eqs. (17)
and (18) we see that it is the ratio μ2/εp = μ2/(Ep − E) that
determines the T (E) energy dependence. [The conductance g

is determined by μ2/(Ep − εF ), accordingly.] In view of this,
increasing μ affects T (E) the same way as decreasing εp, and
vice versa. Therefore, we restrict ourselves to the analysis of
the T (E) behavior versus μ in what follows.

A. Pristine AWs

The pristine AW case follows from the general equation (16)
if one substitutes μ = 0 there. Then we recover the known
quantum wire transmission formula [87,89]

T (E) = 4	2

∣∣∣∣ V N−1

	2dN−2 + 2i	dN−1 − dN

∣∣∣∣
2

. (22)

This shows that there are two possible, qualitatively different
electron transport regimes there for pristine AWs, depending
on whether |ε0/2V | < 1 or |ε0/2V | > 1.

In the case where |ε0/2V | < 1, the roots λ1,2 of Eq. (21)
are complex, yielding dN in Eq. (20) of the form

dN = sin[(N + 1)φ]

sin φ
V N, (23)

with φ given by the roots of the equation cos φ = ε0/2V . In
this case Eq. (22) takes the form

T (E) =
∣∣∣∣ 2ξ sin φ

sin[(N + 1)φ] + 2iξ sin(Nφ) − ξ 2 sin[(N − 1)φ]

∣∣∣∣
2

,
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with ξ = 	/V = (VS/γ )(VS/V ) 
 1, since for broadband
leads one would naturally expect the inequalities VS < γ

and VS � V to be fulfilled. This is the resonance tunneling
regime, in which the energies of the transmission max-
ima are approximately given by the roots of the equation
sin[(N + 1)φ] = 0 (corresponding to the minima of the de-
nominator) as follows:

φmax
k = πk

N + 1
, k = 1,2, . . . ,N, (24)

to result in the resonance transmission band of precisely N

energy channels for the AW of N atoms in length. They are

Emax
k = E0 − 2V cos φmax

k = E0 − 2V cos
πk

N + 1
,

(25)

T max
k = T

(
Emax

k

) = 1

1 + ξ 2 cos2φmax
k

.

These transmission maxima channels interchange with trans-
mission minima given approximately by the roots of the
equations sin[(N + 1)φ] = ±1 (corresponding to the maxima
of the denominator)

φmin
k = π (k + 1/2)

N + 1
, k = 1, . . . ,N − 1, (26)

yielding

Emin
k = E0 − 2V cos φmin

k = E0 − 2V cos
π (k + 1/2)

N + 1
,

(27)

T min
k = T

(
Emin

k

) = 4ξ 2 sin2 φmin
k[

1 − ξ 2 cos 2φmin
k

]2 + 4ξ 2 cos2φmin
k

.

The magnitude of T min
k is seen to increase with 	 (as

long as ξ = 	/V < 1), thereby representing the strength of
the coupling of the AW to the leads. For instance, T min

k =
4ξ 2/(1 + ξ 2)2 for Emin

k in the center of the transmission band
(Emin

k = E0, whereby cos φmin
k = 0), to give T min

k ≈ (2	/V )2

for 	 
 V (weak AW-lead coupling) and T min
k ≈ 1 for 	 ∼ V

(strong AW-lead coupling).
In the case where |ε0/2V | > 1, the roots λ1,2 of Eq. (21)

are real. Approximating them with their respective leading
terms of the power series expansions in |2V/ε0| < 1, one has
λ1,2 ≈ (ε0 ± |ε0|)/2. Then, dN in Eq. (20) is estimated to go
asymptotically as

dN ≈ εN
0 = (E0 − E)N .

The transmission coefficient (22) takes a nonresonant form
then that scales with N exponentially,

T (E) ≈ 4ξ 2

(
ε0

V

)−2N

= 4ξ 2

(
E0 − E

V

)−2N

, (28)

showing a fast exponential decrease as N increases. For
|ε0/2V | � 1, on the other hand, λ1,2 = (ε0 ± |ε0|ε)/2, with
ε =

√
1 − (2V/ε0)2 now being a small positive parameter, to

result in the leading term

dN ≈ (N + 1)

(
ε0

2

)N

= (N + 1)

(
E0 − E

2

)N

of the power series expansion in ε. In this regime, the
transmission coefficient (22) is an energy independent constant

decreasing with N as follows:

T (E) ≈ 4ξ 2

(N + 1)2
.

This can also be obtained using Eq. (23) for |ε0/2V | � 1.

B. Coupled CN-AW system

Nonzero μ changes drastically the electron transport
through the coupled CN-AW system. Intuitively, one would
expect additional transmission resonances (Fano-like [91]) to
appear in the transmission coefficient (4). In this section we
analyze Eq. (16) qualitatively to show that this is indeed the
case. This analysis is continued in Secs. V and VI to discuss
the numerical results.

Dividing the numerator and denominator of Eq. (16) by
V N , one obtains

T (E) =
∣∣∣∣ 2ξρN−1

ξ 2δN−2 + 2iξδN−1 − δN

∣∣∣∣
2

, (29)

where ρN = SN/V N and δN = DN/V N . With ξ 
 1, the
transmission maxima are determined by the condition δN = 0,
to minimize the denominator. If μ = 0, this becomes dN = 0,
according to Eq. (17), to bring us back to Eqs. (25) and (28) for
|ε0/2V |<1 (resonance transmission band) and for |ε0/2V |>1
(exponentially small transmission domain), respectively. For
μ �= 0 and |ε0/2V | > 1, we see from Eq. (17) that there exists
one more possibility to make δN close to zero. This is where
εp(ε0 + 2V ) = Nμ2, to result in two additional energy levels
as follows:

E1,2 = 1
2 [E0 + 2V + Ep ±

√
(E0 + 2V − Ep)2 + 4Nμ2].

(30)

As the top and bottom edges of the pristine AW tunneling
band are given by E = E0 ± 2V [see Eq. (25)], the E1

(higher energy) level falls into the domain E > E0 + 2V (or
ε0/2V < −1) of the exponentially small transmission of the
pristine AW, thereby opening an extra transmission channel
in this opaque area. At fixed μ �= 0, raising in energy with
N , this channel stays within the CN forbidden gap as long
as Nμ2 < (Eg − Ep)(Eg − E0 − 2V ), crossing into the CN
conduction band when the inequality changes its sign. The E2

(lower energy) level falls into the resonance tunneling band
E0 − 2V < E < E0 + 2V (or, equivalently, |ε0/2V | < 1) of
the pristine AW and remains there as long as the inequality
Nμ2 < 4V (Ep − E0 + 2V ) holds true, lowering in energy
with N . For large enough N this inequality changes the
sign, while the channel goes into the exponentially small
transmission domain E < E0 − 2V (or ε0/2V > 1) of the
pristine AW.

Inside the pristine AW transmission band, close to the
center of the band where |ε0/2V | 
 1, in Eq. (23) one has
sin φ = sin[arccos(ε0/2V )] ≈ sin(π/2) = 1 to within terms of
the second order in |ε0/2V |. Then Eq. (23) becomes

dN

V N
≈ sin

[
(N + 1)π

2

]
= cos

(
Nπ

2

)
= iN

1 + (−1)N

2
.

(31)

Using this in Eqs. (17) and (18) to evaluate ρN−1, δN , δN−1,
and δN−2 in Eq. (29), one can simplify this equation to the
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form

T (E) ≈ 4ξ 2[αN (E) + μ2 sin(Nπ/2)]2

[(1 + ξ 2)q cos(Nπ/2 + η) + (1 − ξ 2)(−1)Nμ2]2 + 4ξ 2[q sin(Nπ/2 + η) − (−1)Nμ2]2
, (32)

where

αN (E) = εp(ε0 + 2V ) − Nμ2 = (E − E1)(E − E2), (33)

η = arccos(αN+1/q), and q =
√

α2
N+1 + μ4. If μ = 0, then

Eqs. (31)–(33) bring us back to Eqs. (25) and (27) [with
φ

max(min)
k = π/2] for odd and even N , respectively. For nonzero

μ the factor in the brackets in the numerator of Eq. (32)
becomes either α2

N (E) if N is even, or α2
N∓1(E) if N is odd

of the form 4n ± 1, n = 1,2,3, . . . being positive integers.
Then, in view of Eq. (33) and the fact that the denominator
of Eq. (32) is always nonzero for μ �= 0, the transmission
coefficient T (E = E2) = 0 both in the former and in the
latter case, for N and N ∓ 1, respectively, once N is fixed.
Thus, the E2 energy level in the pristine AW transmission
band blocks the transmission entirely, resulting in the Fano
resonance, in full accord with the total resonant reflection
effect of the standard Fano-Anderson model for a bound state
within the continuum of scattering states [90,91]. The Fano
resonance width � can be estimated from the focal parameter
of the parabola one has in the numerator of Eq. (32) by
setting αN,N±1 ≈ αN ≈ (E2 − E1)(E − E2) for not too small
N in the neighborhood of E2 according to Eq. (33), whereas
αN+1 ≈ αN ≈ 0 in the denominator. As Eq. (32) is only valid
in the neighborhood of E0, there should be E2 ≈ E0, and then
E1 ≈ Ep + 2V by Vieta’s theorem, to result in

� ≈ μ2κ(ξ,N )

|E0 − 2V − Ep| , (34)

where

κ2(ξ,N ) =
[

cos

(
Nπ

2

)
− (−1)N

]2

+ 1

4ξ 2

[
(1 + ξ 2) sin

(
Nπ

2

)
− (1 − ξ 2)(−1)N

]2

.

We see that the Fano resonance width is directly proportional to
the square of the AW-CN coupling strength and varies strongly
with N , while also being dependent on the relative position
of the CN plasmon resonance energy and the pristine AW
transmission band center. For Ep ≈ E0 + 2V , as it shows in
Fig. 1(c) in particular, Eq. (34) results in � ∼ μ2/V in full
accord with the standard Fano-Anderson model [91].

Outside of the pristine AW transmission band, in the domain
of the exponentially small transmission where |ε0/2V | > 1,
Eq. (29) can be simplified by approximating the functions
ρN−1, δN , δN−1, and δN−2 with their respective leading terms
in |ε0/2V |, while keeping in mind that ξ 
 1. This brings one
to the following expression:

T (E) ≈ ξ 2μ4

α2
N (E)(ε0/2V )2 + [αN (E)+ μ2]2ξ 2

(35)

to allow for evaluating various asymptotic regimes of the elec-
tron transfer through the additional plasmon-assisted transmis-

sion channels. One can see, in particular, that when E = E1,2,
whereby αN = 0, Eq. (35) yields the perfect transmission
T (E1,2) = 1. In the vicinity of the (more interesting) higher
energy resonance transmission channel E ≈ E1 (and similar
for E≈E2), Eq. (33) can be written as αN ≈ (E−E1)(E1−E2)
∼ (E − E1)2μ

√
N , while |ε0| ≈ |E0 − E1| ∼ μ

√
N , for N

large enough as can be seen from Eq. (30). This brings the
transmission coefficient (35) to the form

T (E) ≈ (	/N )2

(E − E1)2 + (	/N )2
. (36)

We see the plasmon-assisted transmission energy channel
to have the Lorentzian line shape of the half-width-at-half-
maximum 	/N , that is proportional to the AW-lead coupling
and inversely proportional to the AW length.

For energies far from E1,2 resonances outside of the
pristine AW transmission band, the function αN in Eq. (33) is
nonzero, allowing for two possible plasmon-mediated electron
transmission regimes. If the AW is not too long, one can
approximate αN ≈ εp(ε0 + 2V ) in Eq. (33). Then Eq. (35)
takes the form

T (E) ≈
[

2	μ2

(E − Ep)(E − E0)(E − E0 − 2V )

]2

, (37)

in which |(E − E0)/2V | > 1 and E �= Ep. In this regime the
transmission coefficient shows no wire length dependence.
For long enough AWs, one has αN ≈ −Nμ2, which being
substituted into Eq. (35), results in

T (E) ≈
(

2	

E − E0

)2 1

N2
. (38)

This algebraic (∼N−2) transmission length dependence is
much slower than the exponential transmission length depen-
dence of Eq. (28) for pristine AWs. It comes from the slow
plasmon-mediated transmission channel narrowing ∼N−2 in
Eq. (36). The inverse quadratic length dependence in Eq. (38)
contrasts with the inverse linear length dependence of the
phonon-mediated transmission typical of quasi-1D molecular
wire systems [92].

V. NUMERICAL ANALYSIS

We assume that the leads and the AW are made of the same
metal, and that the AW incapsulating carbon nanotube is end-
bonded into the leads [93,94]. (Other possibilities for CN-lead
contacts can be found in Ref. [95].) The equilibrium band
lineup inside the hybrid AW-CN structure is then determined
by the self-consistent charge redistribution through the entire
metal-(CN-AW)-metal junction [94], to make EF = εF and to
position EF of the entire system at equilibrium at the middle of
the CN forbidden gap in the way it occurs for unpinned semi-
conducting CNs [93]. We analyze two representative semicon-
ducting CNs to show two possibilities for relative arrangement
of the CN interband plasmon resonance with respect to the
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encapsulated AW transmission band. They are the (11,0) CN
and the (16,0) CN. With energy counted from the bottom of
the CN fundamental band gap E(11)

g = Eg , by summing up the
first bright exciton excitation and binding energies, 1.21 and
0.76 eV, as reported by Ma et al. [96] and Capaz et al. [97],
respectively, one arrives at Eg = 1.97 eV for the (11,0) CN.
This makes E0 = EF = 0.985 eV for the AW on-site energy
and equilibrium Fermi energy of the complex hybrid system
of the (11,0) CN encapsulating the AW of the same metal as
that of leads. For the (16,0) CN, we evaluate Eg = 1.47 eV
numerically using the (k · p) method by Ando [18], to give
E0 = EF = 0.735 eV for the AW encapsulating hybrid (16,0)
CN system. For the AW, we use Na metal parameters, with the
electron effective mass m∗ = 1.0m0 [98] (m0 is the free elec-
tron mass) and lattice constant a = 4.225 Å [99]. This yields
the nearest neighbor electron hopping rate V = �

2/2m∗a2 =
0.21 eV. We choose the AW-lead coupling to be in the range
	 ∼ 0.01 – 0.1 eV as other authors earlier did [88,100]. The
AW-CN coupling μ varies broadly in accordance with Eq. (11)
as discussed at the beginning of Sec. IV.

Figures 1(a)–1(c) show for the (11,0) and (16,0) CNs the
real and imaginary parts of the low-energy conductivities as
well as the real parts of the inverse conductivities and the local
photonic DOS resonances originating from them, to scale with
the finite-length (100 atoms) sodium AW transmission bands.
To calculate the graphs in Fig. 1(a), we used the (k · p) method
by Ando with the exciton relaxation time 100 fs for both CNs
(consistent with earlier estimates [101,102]). Many-particle
Coulomb correlations are included in these calculations by
solving the Bethe-Salpeter equation in the momentum space
within the screened Hartree-Fock approximation as described
in Ref. [18]. The real parts of the conductivities consist of
series of peaks (E11,E22, . . . ) representing the first, second,
etc., excitons, and are linked with imaginary ones by the
Kramers-Kronig relation. Therefore, the real parts of the
inverse conductivities show the interband plasmon peaks
P11,P22, . . . right next to E11,E22, . . . (first observed in
Ref. [20]; see Refs. [22–28] for more details). The graphs
in Fig. 1(b) show the local photonic DOS functions for the
excited state nonradiative spontaneous decay of a two-level
dipole emitter placed on the symmetry axis (inset) of the
(11,0) and (16,0) CN. Details of these calculations and similar
graphs for a variety of other geometry configurations can be
found in Refs. [27–34]. Comparing Figs. 1(a) and 1(b), we
see the sharp single-peak DOS resonances to come from the
interband plasmons of respective CNs. These are responsible
for the AW-CN near-field coupling in hybrid CN systems.
The coupling is due to the virtual (vacuum-type) EM energy
exchange between the AW and the CN to create and annihilate
plasmons on the CN surface as described by the interaction
Hamiltonian (10). Comparison with Fig. 1(c), which shows
transmission bands for the 100 Na atoms chain calculated
per Eqs. (22) and (23) with 	 = 0.05 eV to scale Eg for the
(11,0) CN (top) and (16,0) CN (bottom), indicates that the first
interband plasmon energy Ep ∼ EF + 2V and can be located
both outside (Ep � EF + 2V ) and inside (Ep � EF + 2V ) of
the free AW electron transmission band.

These two possibilities are simulated and presented in
Figs. 2(a) and 2(b). Here we show the transmission as given by
Eqs. (16)–(21) for the AW of ten sodium atoms in length inside

FIG. 2. Transmission versus energy and AW-CN coupling
strength as given by Eqs. (16)–(21) for the AW of length N = 10
inside the (11,0) CN [Ep � EF + 2V , panel (a)] and inside the
(16,0) CN [Ep � EF + 2V , panel (b)]. AW-lead coupling constant
	 = 0.05 eV [cf. Fig. 1(c)].

the (11,0) CN [Fig. 2(a), Ep � EF + 2V ] and inside the (16,0)
CN [Fig. 2(b), Ep � EF + 2V ] under the AW-lead coupling
	 = 0.05 eV with the AW-CN coupling μ varied from 0 up
to 0.3 eV over the energy range to cover the entire free AW
transmission band [cf. Fig. 1(c)]. At zero μ, in accordance with
Eqs. (25) and (27), we see the free AW transmission band of
ten resonance electron transfer channels T max

k=1,10
≈ 1 separated

by the transmission minima T min
k=1,9

that are controlled by the
magnitude of 	 as discussed following Eq. (27). As μ departs
from zero to increase, the near-field AW-CN interaction is
seen to block some of the electron transfer channels in the AW
transmission band, while opening up extra (plasmon-induced)
electron transfer channels in the CN forbidden gap outside
of the AW transmission band. Depending on whether Ep is
outside or inside of the AW transmission band, the higher
energy plasmon-induced transfer channel in the CN forbidden
gap either shows up gradually [Fig. 2(a)], or splits off from the
top of the free AW transmission band [Fig. 2(b)]. The exact
energies of the emerging and blocked transmission channels
are given by E1,2 in Eq. (30), and their behavior is in agreement
with that discussed in the previous section.
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FIG. 3. Transmission versus energy as given by Eqs. (16)–(21)
for the AW of varying length N = 100–103 [(a)–(d)] inside the
(11,0) CN. AW-CN and AW-lead coupling constants are μ =
0.045 eV and 	 = 0.1 eV, respectively. Red dashed lines are
zone-center approximations of Eq. (32). Green lines are parabolas
of Eq. (33) [cf. Fig. 1(c)].

Figures 3(a)–3(d) illustrates in detail the Fano resonance ef-
fect discussed in the previous section. We see the transmission
versus energy calculated according to Eqs. (16)–(21) for the
sodium AW of varied length N = 100, 101, 102, and 103 inside
the (11,0) CN under the AW-CN coupling μ = 0.045 eV and
the AW-lead coupling 	 = 0.1 eV. Dashed and dotted vertical
lines trace the band gap (Eg = 1.97 eV) and the first interband
plasmon energy (Ep = 1.50 eV) for the (11,0) CN (cf. Fig. 1).
Red thick dashed lines show the approximate transmission
curves given by Eq. (32) valid in the neighborhood of the AW
transmission band center (hence the choice of μ and 	 in

this calculation). Green lines are the parabolas of Eq. (33).
They are seen to intersect the abscise axis at two points,
E = E1,2 given by Eq. (30). At E = E2 inside the AW band,
the transmission drops down to zero in view of the fact that this
coupled AW-CN state (which can also be interpreted as one of
the two branches to represent the “dressed” states of the mixed
CN plasmon and AW electron excitations [32,33]) is not a well
defined eigenstate of the entire hybrid system. An electron can
occupy this state just temporarily, not permanently, as there
is always a high probability for it to leave for one of the
many band states that are available in this energy domain.
That is why this coupled AW-CN state behaves as a scattering
resonance to reflect an incident electron flux at E = E2,
thereby blocking the transmission at this energy. Another
coupled AW-CN state, the second branch of the mixed CN
plasmon and AW electron excitations, is isolated at E = E1

in the CN forbidden gap outside the AW band. This is a well
defined eigenstate of the hybrid AW-CN system, which opens
up a new plasmon-mediated resonance transmission channel.

Figure 4 shows the transmission as a function of the AW
length, calculated from Eqs. (16)–(21) for the AW inside
the (11,0) CN. The energy is fixed at E = 1.93 eV, that is
inside the CN forbidden gap but outside the pristine AW
transmission band, and is close to the plasmon-mediated
resonance transmission channel E1 in Fig. 3. Red lines indicate
the approximations given by Eq. (36) in the neighborhood of
E1 (middle line), and by Eqs. (37) and (38) away from E1 in
the short AW (left line) and long AW (right line) limits. In
Fig. 4(a) the same coupling parameters as in Fig. 3 are used,
while in Fig. 4(b) the AW-CN coupling is reduced by a factor
of 3. We see that the resonance plasmon-mediated transmission

FIG. 4. Log-scaled transmission versus the AW length as given
by Eqs. (16)–(21) for the AW inside the (11,0) CN at E = 1.93 eV
(CN forbidden gap outside of the AW transmission band, cf. Fig. 3).
AW-CN coupling μ = 0.045 eV in (a) and 0.015 eV in (b), AW-lead
coupling 	 = 0.1 eV. Red lines are the near resonance and short/long
AW out-of-resonance approximations of Eqs. (36) (middle line), (37)
(left line), and (38) (right line), respectively.
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FIG. 5. Transmission versus the AW length as given by Eqs. (16)–
(21) for the AW inside the (11,0) CN at E = EF = 0.985 eV [cf.
Fig. 2(a)]. (a) μ = 0 eV, 	 = 0.05 eV. (b) μ = 0.15 eV, 	 = 0.05 eV.
(c) μ = 0.15 eV, 	 = 0.1 eV.

depends strongly on the AW-CN coupling strength μ, and
can be achieved both at shorter and at longer AW length for
stronger and weaker coupling, respectively. The energy of the
plasmon-mediated transmission channels is controlled by the
product Nμ2 as given by Eq. (30). Therefore, to reach the reso-
nance transmission regime of Eq. (36) at fixed energy E with μ

reduced by a factor of 3, one has to increase N by a factor of 9.
That is exactly what we see comparing Figs. 4(a) and 4(b). This
peculiarity is the key to practical applications of the plasmon-
mediated coherent resonance transmission phenomenon.

It is interesting to see how the AW-CN coupling affects the
transmission at the Fermi level energy E = EF . For pristine
monoatomic wires of finite length it is known, in particular,
that depending on the valence and interatomic spacing their
conductance shows both odd-even atom number oscillations

and more complicated features such as four-atom and six-atom
period oscillations (see Refs. [103–107] and references therein
for details). Figure 5 shows the transmission coefficient versus
the AW length calculated from Eqs. (16)–(21) for the AW
inside the (11,0) CN at E = EF = 0.985 eV. The graphs for the
AW-(16,0) CN system look similar, and so are not shown here.
In Figs. 5(a) and 5(b) the AW-CN coupling μ = 0 and 0.15 eV,
respectively, while 	 = 0.05 eV as in Fig. 2(a). In Fig. 5(c) the
AW-lead coupling is increased by a factor of 2, 	 = 0.1 eV,
while μ = 0.15 eV is the same as in Fig. 5(b). The odd-even
atom number oscillations of the pristine AW in Fig. 5(a) come
from the oscillatory behavior of dN in Eq. (23) at ε0 = 0,
whereby dN is zero or nonzero to yield maximal or minimal
transmission in Eq. (22) for odd or even N , respectively. In
Figs. 5(b) and 5(c), where the AW-CN coupling is nonzero,
the distinct behavior can be understood from Eq. (32), which
is the exact representation of Eq. (29) for E = E0 = EF . With
ξ 2 
 1, this equation is seen to have maxima when

q cos

(
Nπ

2
+ η

)
+ (−1)Nμ2 = 0, (39)

where η = arccos(αN+1/q) and q =
√

α2
N+1 + μ4, with αN =

2V (Ep − EF ) − Nμ2. The case where αN+1 = 0 was dis-
cussed in the previous section. The transmission coefficient
experiences the Fano resonance at E = EF then. This can be
clearly seen in Figs. 5(b) and 5(c) for N = 10 [and also in
Fig. 2(a)] for the parameters chosen. For nonzero αN+1 such
that α2

N+1 
 μ4, that is for N given by the inequality |N + 1 −
2V (Ep − EF )/μ2| 
 1, one has q ≈ μ2 and η ≈ π/2. Then
Eq. (39) fulfils for all integer n such that N = 4n + 3, yielding
four-atom periodic transmission maxima one can see at low
and moderate N in Figs. 5(b) and 5(c). As N increases and be-
comes large enough, one necessarily obtains α2

N+1 ≈α2
N �μ4,

to yield q ≈ |αN | ≈ Nμ2 and η ≈ π . As this takes place,
Eq. (39) takes the form cos(Nπ/2) = (−1)N/N ≈ 0, while
the μ dependence in Eq. (32) cancels, resulting in odd-even
atom number transmission oscillations that are only dependent
on the AW-lead coupling 	 as one can see from the graphs in
Figs. 5(b) and 5(c).

VI. DISCUSSION

In this study we consider coherent electron transport
through the one-atom-thick, finite-length metallic wire
encapsulated in a semiconducting CN whose forbidden gap
is broader than the conduction band of the wire. To obtain
tractable theoretical results of relevance to the experimental
situation, this hybrid metal-semiconductor CN system is
assumed to be connected to the leads of the same metal as the
wire itself. We ignore a variety of incoherent electron scattering
processes such as those that are typical and normally studied
for complex molecular junction systems, including vibronic
coupling [92,108], coupling to defects [109], particularities of
the coupling to the leads [100,110], etc. [111]. Discussion of
all these processes would take us far away from the main topic
of our work, which is to understand the interplay between
the intrinsic 1D conductance of metallic AWs and the CN
mediated near-field effects in hybrid metal-semiconductor
nanotube systems. In our hybrid systems, incoherent processes
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like this also include electron exchange between the wire
and the nanotube, which we do not expect to be significant
due to rather strong ionization potentials of atomic metals
∼ 5 eV and their moderate electronegativity relative to carbon
(∼ 0.3–1.8 < 2) [112], that is insufficient to pull electrons
of metal over to carbon. Overall, incoherent effects can be
quite generally accounted for in our model by introducing
a phenomenological finite plasmon lifetime. This redefines
Ep to Ep − i	Ep with the imaginary part representing the
half-width (inverse lifetime) of the plasmon resonance, which
is equivalent to the replacement

δ(ω − Ep/�) −→ 1

π

	Ep/�

(ω − Ep/�)2 + (	Ep/�)2

in Eq. (9) above. Substitution of thus modified Eq. (9) into the
CN Hamiltonian (8) does not make any change to it provided
that 	Ep 
 Ep, in which case the plasmon resonance is
sharp and plasmons are well-defined long-lived excitations of
the nanotube, whereby∫ ∞

0

dω�ω	Ep/(π�)

(ω − Ep/�)2 + (	Ep/�)2

≈ Ep

∫ ∞

0

dω	Ep/(π�)

(ω − Ep/�)2 + (	Ep/�)2

= Ep

π

[
arctan

(
Ep

	Ep

)
+ π

2

]
≈ Ep,

thus leaving our results unchanged up to terms of the first
nonvanishing order in 	Ep/Ep.

In our approach, the AW is treated within the single-
hopping-parameter (or single-band) tight-binding model. Such
a model is realistic for the 1D chains of atoms with half-filled
outermost s shells. These include monovalent alkali metals and
transition metals with filled d (and f ) shells such as copper,
silver, and gold. The single atom |s〉 and |p〉 states of the same
principal quantum number combine, due to their quasidegener-
acy, to form an ordinary conduction band of mixed parity [113].
Such bands allow for a nonzero electron transition dipole
moment dz ∼ 〈s|d̂z|p〉 to control the AW-CN dipole coupling
constant μ in Eqs. (10) and (11). Other transition metals would
feature multiband (multichannel [106]) conductance due to
their underfilled d (and f ) shells. However, when allowed by
parity, the AW-CN near-field interaction (10) is universal in its
nature, and is hardly sensitive to conductance peculiarities for
them to be able to affect our results.

Our main result is the prediction of the sharp Fano reso-
nances in the electron transmission through the hybrid quasi-
1D nanostructures of semiconducting CNs that encapsulate
metal AWs. The resonances are due to the AW-CN near-field
interaction given by Eqs. (10) and (11). The interaction couples
the AW electron and CN plasmon excitations to form two
branches of the mixed (dressed [32,33]) states to represent
the eigenstates of the entire hybrid system. The quantity
that controls the coupling is Nμ2 in Eq. (30). Therefore,
regardless of how Ep and EF are positioned relative to
each other in the CN forbidden gap, a significant AW-CN
coupling strength can be achieved in structures of varied
length even if the single-atom coupling constant μ is small.
Quite generally, the condition for the conductance g = T (E ∼

EF = εF ) of the hybrid metal-semiconductor CN structure to
be affected significantly by the AW-CN plasmon coupling can
be formulated as αN (EF ) = 0 with αN (E) out of Eq. (33). This
translates into regular notations to give

2V (Ep − EF ) = Nμ2. (40)

If, for certain μ and N , this equation is fulfilled, then a coupled
AW-CN state falls right at the middle of the AW transmission
band (E2 in Figs. 2 and 3). Such a “Fano” state, being closely
surrounded by the band states, ceases to be the well-defined
eigenstate of the hybrid system. It turns into the scattering
resonance to reflect an incident electron flux and thus to block
the conductance [as it shows in Figs. 5(b) and 5(c)]. At the same
time, with Eq. (40) fulfilled, the second coupled AW-CN plas-
mon state emerges outside of the AW band at E = Ep + 2V .
If it happens to be isolated inside of the CN forbidden gap
(like E1 in Figs. 2 and 3), then this second Fano state presents
a well-defined eigenstate of the hybrid system to open up
a new plasmon-mediated coherent transmission channel in
the energy domain where neither of the individual pristine
constituents, neither AW nor CN, is transparent. The transport
through this channel can be quite efficient even if the coupling
constant μ, the AW length N , and the transmission energy
are out of their resonance values since the out-of-resonance
transmission coefficient falls down with N relatively slowly,
∼1/N2, as one can see from Eq. (38) shown in Fig. 4.

The features described of the Fano resonances we pre-
dict are quite generic. They originate from the similarity
between our model Hamiltonian (5)–(11) and the general
Fano-Anderson model for a bound quantum state inside or
outside of the continuum of scattering states [90]. Therefore,
the Fano resonances can also manifest themselves in those
metal-nanotube combinations where the AW transmission
band happens to be broader than the CN forbidden gap. They
may affect electron transport in the CN conduction band as
well as hole transport in the CN valence band, since E1 enters
the CN conduction band and E2 enters the CN valence band at
large Nμ2 (Fig. 2). The result will be transmission reduction
for some of the channels inside of a band of states and/or an
extra plasmon-mediated coherent transmission resonance in
the energy domain where no band states are available.

In our model, the single-atom AW-CN coupling constant
μ in Eq. (11) is considered to be site independent. In reality,
the structure of the AWs encapsulated in the nanotube can
be quite different from that of pristine AWs due to factors
such as atom clustering [71], dimerization [75], multiple
atomic chains formation [54], as well as a variety of random
spontaneous deformations of atomic chains inside the CN. In
all these and other related cases, our model coupling constant
μ should be considered as the effective mean interaction
constant. Local deviations from the mean value due to the
factors mentioned will definitely cause the inhomogeneous
broadening of the Fano resonances we predict—both inside
of the AW transmission band to increase the � estimate in
Eq. (34), in particular, and outside of the AW band to broaden
the plasmon-mediated coherent transmission channel in the
CN forbidden gap (see Figs. 2 and 3).

Overall, by selectively controlling the AW length N in the
process of sample fabrication [106], one might be able, in
principle, to manipulate by the electron transport regimes as
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it shows in Figs. 4 and 5 and is commented above—both
inside and outside of the CN forbidden gap, both to reduce
and to enhance the transmission of the hybrid AW-CN system.
Controlling the AW length can also be supplemented with other
external means, such as the AW transmission band tuneup
through chemical or electrostatic gate control [114,115],
electrostatic doping to adjust the CN forbidden gap [116],
and the quantum confined Stark effect to tune the CN plasmon
energy [24], thus allowing for flexible transport optimization
in hybrid metal-semiconductor CN systems in ways desired
for practical applications.

VII. CONCLUSIONS

We study coherent electron transport through the one-
atom-thick, finite-length metallic wire encapsulated into a
semiconducting carbon nanotube with the forbidden gap
broader than the AW conduction band. We use the matrix
Green’s functions formalism to develop the electron transfer
theory for such a hybrid metal-semiconductor system. Our
goal is to understand the interplay between the intrinsic
1D conductance of the atomic wire and nanotube mediated
near-field effects.

The theory we developed predicts the Fano resonances
in electron transmission through the system. That is the
AW-CN near-field interaction blocks some of the pristine
AW transmission band channels to open up new coherent
channels in the CN forbidden gap outside the AW transmission
band. This makes the entire hybrid system transparent in the
energy domain where neither AW nor CN is individually
transparent. These generic features of the Fano resonances we
predict may also manifest themselves in those metal-nanotube
combinations where the AW transmission band is broader
than the CN forbidden gap. They may affect both electron
transport in the CN conduction band and hole transport in the
CN valence band to block some of the transmission channels
inside and/or to provide extra plasmon-mediated coherent
transmission channels outside of bands of states. This effect
can be used to control and optimize charge transfer in hybrid
metal-semiconductor CN based devices for nanoscale energy
conversion, separation, and storage.
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APPENDIX: DERIVATION OF EQS. (17) AND (18)

Using the matrix H in Eq. (12), one can derive the recursion
relations for the quantities DN and SN to determine T (E) in
Eqs. (16) and (29).

Recursion relation for DN .

Expanding the determinant DN = det(H − E) along the
first row, one has the set of recursion relations as follows:

DN = ε0DN−1 − V AN + (−1)NμFN, (A1)

AN = V DN−2 − (−1)NμFN−1, (A2)

FN = V FN−1 − (−1)NμdN−1, (A3)

dN = ε0dN−1 − V 2dN−2, (A4)

where AN , FN , and dN are the determinants of the N×N

matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V V 0 . . . 0 0 μ

0 ε0 V . . . 0 0 μ

0 V ε0 . . . 0 0 μ

...
...

...
. . .

...
...

...

0 0 0 . . . ε0 V μ

0 0 0 . . . V ε0 μ

μ μ μ . . . μ μ εp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V ε0 V 0 . . . 0 0

0 V ε0 V . . . 0 0

0 0 V ε0 . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 . . . 0 V ε0 V

0 0 . . . 0 0 V ε0

μ μ . . . μ μ μ μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 V 0 . . . 0 0 0

V ε0 V . . . 0 0 0

0 V ε0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ε0 V 0

0 0 0 . . . V ε0 V

0 0 0 . . . 0 V ε0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Using Eqs. (A2) and (A3) to eliminate AN in
Eq. (A1) results in

DN+2 − ε0DN+1 + V 2DN = 2(−1)NμV FN+1 − μ2dN+1,

(A5)

This is the recursion relation for DN . It should be solved
together with recursion relations (A3) and (A4) under the
initial conditions as follows:

D0 = εp, D1 = ε0εp − μ2,
(A6)

F0 = 0, F1 = μ, d0 = 1, d1 = ε0.

Recursion relation for SN .
According to Eqs. (13)–(15), the quantity SN−1 of interest

is the N1 minor of the matrix H − E. This is given by the
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determinant of the N×N matrix

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V 0 0 0 . . . 0 μ

ε0 V 0 0 . . . 0 μ

V ε0 V 0 . . . 0 μ

...
. . .

. . .
. . .

...
...

...

0 . . . V ε0 V 0 μ

0 . . . 0 V ε0 V μ

μ . . . μ μ μ μ εp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Expanding SN−1 = det(S) along the first row, one has

SN−1 = V SN−2 − (−1)NμBN−2, (A7)

BN−1 = μdN−2 − V BN−2, (A8)

where BN−1 is the determinant of the N×N matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 V 0 . . . 0 0 0

V ε0 V . . . 0 0 0

0 V ε0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ε0 V 0

0 0 0 . . . V ε0 V

μ μ μ . . . μ μ μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Combining Eqs. (A7) and (A8), one arrives at the recursion
relation as follows:

SN+2 − 2V SN+1 + V 2SN = (−1)Nμ2dN, (A9)

to be solved under the initial conditions

S0 = εp, S1 = V εp − μ2,
(A10)

d0 = ε0, d1 = ε2
0 − V 2.

The dN initial condition is now one element downshifted [cf.
Eq. (A6)] to reflect the fact of the dimensionality reduction in
Eq. (A9) compared to Eq. (A5).

Solving recursion relations (A5) and (A9).
Recursion relations (A5) and (A9) are a convenient set

of the recursion formulas for the numerical evaluation of
the transmission coefficient in Eq. (16). They allow for the
exact solution though, and so will be solved here analytically.
According to Ref. [117], the solution to the second order
constant coefficient inhomogeneous recursive relation

yN+2 + ayN+1 + byN = fN (A11)

(a and b are constant coefficients, fN is a known function) is
given by the expression as follows:

yN = y1ζN−1 − y0bζN−2 +
N−2∑
k=0

fkζN−k−2. (A12)

Here

ζN = λN+1
1 − λN+1

2

λ1 − λ2
, (A13)

with λ1,2 being the roots of the characteristic equation λ2 +
aλ + b = 0. For λ1 = λ2, Eq. (A13) takes the form

ζN = (N + 1) λN
1 . (A14)

Starting with Eq. (A4) and bringing it to the standard
form (A11), one has

dN+2 − ε0 dN+1 + V 2dN = 0.

This is to be solved with initial conditions (A6) and (A10)
for recursion relations (A5) and (A9), respectively. Using
Eq. (A11) with fN = 0, Eqs. (A12) and (A13), one obtains
Eq. (20) under initial conditions (A6), and

dN = λN+2
1 − λN+2

2

λ1 − λ2
(A15)

under initial conditions (A10), where λ1,2 are the roots of
the characteristic equation λ2 − ε0λ + V 2 = 0. They are given
by Eq. (21), and are subject to Vieta’s formulas, whereby
λ1 + λ2 = ε0 and λ1λ2 = V 2.

Similarly, bringing Eq. (A3) to the form (A11), one has

FN+2 − V FN+1 = −(−1)Nμ dN+1,

which should be solved under initial conditions (A6). Then,
Eq. (A12) with fN = −(−1)Nμ dN+1, where dN is given by
Eq. (20), results in

FN = μV N−1 − μ

N−2(�0)∑
k=0

(−1)k
λk+2

1 − λk+2
2

λ1 − λ2
V N−k−2.

Here the second term can be found by summing up two
geometric series with common ratios −λ1/V and −λ2/V ,
respectively, to result in the final expression as follows:

FN = μ

ε0 + 2V
[V N − (−1)N (dN + V dN−1)]. (A16)

With FN determined by Eq. (A16), the right-hand side of
Eq. (A5) becomes

qN = μ2

ε0 + 2V
{2V 2[dN + (−1)NV N ] − ε0 dN+1}.

This can be further rewritten as

qN = μ2

ε0 + 2V

[
2(−1)NV N+2 − λN+2

1 − λN+2
2

]
(A17)

using Eq. (A4) followed by Eq. (20) to express dN+2 and dN

in terms of λ1,2. With fN = qN of Eq. (A17) and ζN = dN ,
Eqs. (A11)–(A13) under initial conditions (A6) result in the
solution to Eq. (A5) as follows:

DN = (ε0εp − μ2) dN−1 − εpV 2dN−2 +
N−2(�0)∑

k=0

qkdN−k−2.

(A18)

Here the first two terms can be written as εpdN − μ2dN−1 in
view of Eq. (A4). The third term can be evaluated by summing
up the geometric series in the same way as it was done to
derive Eq. (A16). There are three contributions to the total
sum that originate from the three terms in Eq. (A17). Using

115422-13



M. F. GELIN AND I. V. BONDAREV PHYSICAL REVIEW B 93, 115422 (2016)

Eqs. (20) and (A4) as well as the fact that λ1 + λ2 = ε0 and λ1λ2 = V 2, one has

N−2(�0)∑
k=0

(−1)kV k+2dN−k−2 = V dN−1 + V

ε0 + 2V
[(−1)NV N − V dN−1 − dN ]

and
N−2(�0)∑

k=0

λk+2
1 dN−k−2 +

N−2(�0)∑
k=0

λk+2
2 dN−k−2 = NdN − ε0 dN−1,

to result in
N−2(�0)∑

k=0

qkdN−k−2 = μ2dN−1 + μ2

ε0 + 2V

{
− NdN + 2V

ε0 + 2V
[(−1)NV N − V dN−1 − dN ]

}

after elementary algebraic simplifications. Substituting this into the right-hand side of Eq. (A18), one finally arrives at Eq. (17).
Equation (A9) must be solved with dN of Eq. (A15) consistent with the initial conditions (A10), as opposed to Eq. (A5) where

dN on the right is given by Eq. (20). Following Eqs. (A11) and (A12) with ζN = (N + 1)V N , one then obtains the solution of
the form

SN = εpV N − μ2NV N−1 + μ2
N−2(�0)∑

k=0

(−1)k
λk+2

1 − λk+2
2

λ1 − λ2
(N − k − 1)V N−k−2. (A19)

Here the sum over k can be done by rewriting it as

∂

∂V

N−2(�0)∑
k=0

(−1)k
λk+2

1 − λk+2
2

λ1 − λ2
V N−k−1,

followed by summing up the geometric series, differentiation, and algebraic simplifications subject to λ1 + λ2 = ε0 and λ1λ2 =
V 2, to result in the expression as follows:

λ1 − λ2

ε0 + 2V

[
(N − 1)V N + ε0NV N−1 + (−1)N

λN+1
1 − λN+1

1

λ1 − λ2

]
.

Substituting this into the right-hand side of Eq. (A19), after simplifications one finally arrives at Eq. (18).
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