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Magnetoelectronic properties of graphene dressed by a high-frequency field
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Solving the Schrödinger problem for electrons in graphene subjected to both a stationary magnetic field and a
strong high-frequency electromagnetic wave (dressing field), we found that the dressing field drastically changes
the structure of Landau levels in graphene. As a consequence, the magnetoelectronic properties of graphene are
very sensitive to the dressing field. Particularly, it is demonstrated theoretically that the dressing field strongly
changes the optical spectra and the Shubnikov–de Haas oscillations. As a result, the developed theory opens a
way for controlling magnetoelectronic properties of graphene with light.
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I. INTRODUCTION

Since the discovery of graphene [1], its unique electronic
properties have aroused enormous interest in the scientific
community [2–4]. Particularly, the magnetoelectronic prop-
erties of graphene—effects caused by the influence of a sta-
tionary magnetic field on the electron energy spectrum [5–8],
optical characteristics [9–15], and electronic transport [3,16–
22]—attract attention. Since a magnetic field effectively
controls electronic properties of graphene, studies on the
subject are important from the viewpoint of both fundamental
physics and graphene-based electronics. Besides a stationary
magnetic field, an effective tool to manipulate electronic
properties is a strong high-frequency electromagnetic field.
Since the “electron + strong electromagnetic field” system
should be considered as a whole, the composite electron-field
object—“electron dressed by electromagnetic field” (dressed
electron)—has become a commonly used model in modern
physics [23,24]. The physical properties of dressed electrons
have been studied in both atomic systems [23–25] and vari-
ous condensed-matter structures, including bulk semiconduc-
tors [26–28], quantum wells [29–35], quantum rings [36–39],
etc. In graphene, a dressing field can strongly modify both
the electron energy spectra and electronic transport [40–47].
Particularly, magnetolike electronic effects (so-called photo-
voltaic Hall effect, etc.) can be induced by a dressing field in the
absence of a stationary magnetic field [41,42]. Therefore, one
can expect that the magnetoelectronic properties of graphene
are strongly affected by a dressing field as well. This paper
provides a consistent theory of the properties.

II. MODEL

To describe the magnetoelectronic properties of dressed
graphene, we have to solve the Schrödinger problem for elec-
trons in a graphene layer exposed to both an electromagnetic
wave (dressing field) and a stationary magnetic field (see
Fig. 1).

*Oleg.Kibis@nstu.ru

Generally, electronic states near the K and K ′ points of
the Brillouin zone of graphene (the Dirac points) can be
described by eight-component wave functions written in a
basis corresponding to two crystal sublattices of graphene,
two electron valleys, and two orientations of electron spin [2].
In the following, the intervalley mixing of electron states and
spin effects are beyond consideration. Therefore, the number
of necessary wave-function components can be reduced to
two. Within this conventional approximation, the Hamiltonian
of electrons near the K point of the Brillouin zone has the form

Ĥ = vσ ·
[

p̂ + e

c
(A0 + AB)

]
, (1)

where v is the electron velocity at the Dirac point, p̂ = (p̂x,p̂y)
is the operator of electron momentum in the graphene layer, e

is the modulus of electron charge, A0 = ([cE0/ω] cos ωt,0,0)
is the vector potential of the linearly polarized electromagnetic
wave propagating perpendicularly to the graphene plane, E0 is
the amplitude of electric field of the wave, ω is the wave
frequency, AB = (−By,0,0) is the vector potential of the
stationary magnetic field, B = (0,0,B), which is assumed
to be directed perpendicularly to the graphene layer, and
σ = (σx,σy,σz) is the vector of Pauli matrices written in the
basis of two orthogonal electron states arisen from the two
crystal sublattices of graphene [2]. Formally, these two basis
states, |+〉 and |−〉, correspond to the two opposite orientations
of the pseudospin along the z axis, σz|±〉 = ±|±〉.

Let us introduce two orthonormal states,

ψ±
0 = |+〉 ± |−〉√

2
e∓i(α/2) sin ωt , (2)

where α = 2veE0/�ω2 is the dimensionless parameter de-
scribing the interaction between an electron in graphene and
a dressing field. Since Eq. (2) defines the complete system of
basis states of graphene at any time t , one can seek solutions
of the Schrödinger problem as

ψ(r,t) = a+(r,t)ψ+
0 + a−(r,t)ψ−

0 , (3)

where r = (x,y) is the electron radius vector in the graphene
plane. Substituting the wave function (3) into the Schrödinger
equation with the Hamiltonian (1), i�∂ψ(r,t)/∂t = Ĥψ(r,t),
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FIG. 1. Sketch of the system under consideration: A graphene
layer subjected to both a linearly polarized electromagnetic wave
(EM) with the electric field amplitude E0 and a stationary magnetic
field B directed perpendicularly to the layer.

we arrive at the two differential equations,

i�ȧ±(r,t) = ±v

[
p̂x − eBy

c

]
a±(r,t)

±ive±iα sin ωt p̂ya
∓(r,t), (4)

which describe the quantum dynamics of dressed electrons in
the graphene layer. Applying the conventional Floquet theory
of periodically driven quantum systems [48–50] to the wave
function (3), we can rewrite it as ψ(r,t) = e−iε̃t/�φ(r,t), where
the function φ(r,t) periodically depends on time, φ(r,t) =
φ(r,t + 2π/ω), and ε̃ is the quasienergy of an electron. Since
the quasienergy (the energy of the dressed electron) is the
physical quantity which plays the same role in periodically
driven quantum systems as the usual energy in stationary ones,
the present analysis of the Schrödinger problem is aimed to
find the energy spectrum of the dressed electron, ε̃. Taking into
account the periodicity of the function φ(r,t), one can seek the
coefficients a±(r,t) in Eq. (4) as a Fourier expansion,

a±(r,t) = e−iε̃t/�

∞∑
n=−∞

a±
n (r)einωt . (5)

Substituting the expansion (5) into the expression (4)
and applying the Jacoby-Anger expansion, eiz sin θ =∑∞

n=−∞ Jn(z)einθ , to transform the exponent in the right side,
one can rewrite Eq. (4) as

(ε̃ − n�ω)a±
n (r) = ±v

[
p̂x − eBy

c

]
a±

n (r)

±iv

∞∑
n′=−∞

Jn−n′ (±α)p̂ya
∓
n′ (r). (6)

It should be noted that Eq. (6) still describes exactly
the initial Schrödinger problem. Next we will make some
approximations.

Let us assume that the wave frequency ω is far from resonant
electron frequencies corresponding to electron transitions be-
tween the different Landau levels in graphene, and, therefore,
the interlevel absorption of the wave by electrons is absent.
Thus, the considered electron system is conservative. Next,

we have to take into account that the expansion coefficients in
Eq. (5), a±

n (r), are the quantum amplitudes of the absorption
(emission) of n photons by an electron. Since the considered
nonresonant field can be neither absorbed nor emitted by
an electron, the amplitudes are very small, |a±

n�=0(r)| � 1.
Assuming the zero-order Bessel function J0(α) to be far from
zero, the aforesaid leads to the estimation∣∣∣∣Jn(α)p̂ya

±
n (r)

J0(α)p̂ya
±
0 (r)

∣∣∣∣ � 1, (7)

where n = ±1,±2, . . .. It follows from the inequality (7) that
the main contribution to the sum in Eq. (6) arises from terms
with n′ = 0, which describe the elastic interaction between
an electron and the dressing field. Therefore, small terms with
a±

n�=0(r) in Eq. (6) can be omitted. It should be noted that such a
neglect of high-frequency nonresonant terms in Eq. (6) is phys-
ically identical to the rotating-wave approximation (RWA),
which is conventionally used to describe various quantum
systems under periodical pumping (see, e.g., Refs. [23,24]).
Within this approach, Eq. (6) turns into the equation

ε̃a±
0 (r) = ±v

[
p̂x − eBy

c

]
a±

0 (r) ± ivJ0(α)p̂ya
∓
0 (r). (8)

Formally, Eq. (8) can be treated as a stationary Schrödinger
equation, Ĥ0a0(r) = ε̃a0(r), with the effective Hamiltonian

Ĥ0 = σzv

[
p̂x − eBy

c

]
− σyvJ0(α)p̂y, (9)

where a0(r) is the pseudospinor with the two compo-
nents a±

0 (r). Applying the unitary transformation, Û = (σz +
σx)/

√
2, to the Hamiltonian (9), we arrive at the transformed

Hamiltonian, Ĥ′
0 = Û †Ĥ0Û , which has the well-behaved form

Ĥ′
0 = σxṽx

[
p̂x − eBy

c

]
+ σyṽyp̂y, (10)

where the quantities ṽx = v and ṽy = vJ0(α) should be treated
as components of the velocity of dressed electron along the
x,y axes. It should be noted that the electron velocity along
the polarization vector of the dressing field, ṽx = v, is not
changed by the dressing field, whereas the electron velocity in
the perpendicular direction, ṽy = vJ0(α), drastically depends
on the field because of the Bessel-function factor.

If the magnetic field is absent, B = 0, the Hamiltonian (10)
can be diagonalized trivially and results in the anisotropic
energy spectrum of dressed electrons [51],

ε̃ = ±�v

√
k2
x + k2

yJ
2
0 (α), (11)

where k = (kx,ky) is the electron wave vector in the graphene
plane. If a graphene layer is exposed to the magnetic field,
B �= 0, the Hamiltonian (10) is mathematically identical to
the known Hamiltonian of “bare” graphene subjected to
the same magnetic field, where the velocity of the “bare”
electron, v = (v,v), should be replaced with the velocity
of the dressed electron, ṽ = (ṽx,ṽy). As a consequence, the
electron eigenenergies and eigenfunctions corresponding to
the Landau levels in dressed graphene can be easily obtained
from those for bare graphene [2], with the formal replacement
v → v

√|J0(α)|. Particularly, the energies of the Landau levels
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in dressed graphene read as

ε̃n = sgn(n)�ωB

√
|n|

√
|J0(α)|, (12)

where ωB = √
2v/lB is the cyclotron frequency of graphene,

lB = √
�c/eB is the magnetic length, sgn(n) is the signum

function, and n = 0,±1,±2, . . . is the number of Landau levels
in the conductivity band (n > 0) and the valence band (n < 0).
As expected, the energies (12) exactly coincide with those in
bare graphene [2] if the dressing field is absent (α = 0). To
avoid misunderstandings, one should keep in mind that the
present theory is elaborated under condition (7). Therefore,
Eqs. (8)–(12) are relevant if the Bessel function J0(α) is far
from zero.

According to Eq. (12), the dressing field changes the
distance between the Landau levels. Physically, this effect
originates from the linear electron dispersion in graphene.
Indeed, in conducting systems with the parabolic dispersion
of electrons, the Landau levels are stable against a dressing
field: The dressing field shifts the Landau levels uniformly but
does not change the distance between them [52]. Therefore,
the magnetoelectronic properties of graphene will be very
sensitive to the dressing field, in contrast to the case of usual
conducting systems with the parabolic dispersion of electrons.

III. OPTICAL AND TRANSPORT EFFECTS

The field-induced modification of the Landau levels (12)
will manifest itself in various magneto-optical and mag-
netotransport phenomena. For definiteness, we will focus
our attention on the optical absorption and longitudinal
conductivity of dressed graphene.

Let dressed graphene be subjected to a weak linearly
polarized electromagnetic wave with the frequency � (probing
field). The probing field can induce electron transitions be-
tween the dressed Landau levels (12) which are accompanied
by absorption of the field. Conventionally, this optical effect
can be described by the absorption coefficient β. Combining
the theory elaborated above and the known theory of magneto-
optical absorption in bare graphene (see, e.g., Ref. [15]), we
arrive at the expression for the absorption coefficient in dressed
graphene,

βi =
∑
n,m

2e2ṽ2
i γ (ρm − ρn)(1 + δn,0 + δm,0)δ|n|−|m|,±1

l2
B�cω̃nm[(ω̃nm − �)2 + γ 2]

, (13)

where ρn is the equilibrium filling factor for the Landau
levels (12), ω̃nm = (ε̃n − ε̃m)/� are the resonance frequencies
of dressed graphene corresponding to electron transitions
between different Landau levels (12), γ = �/� is the decay
rate at Landau levels which is assumed to be independent of the
irradiation, � is the scatterer-induced broadening of Landau
levels, δnm is the Kronecker symbol, and the index i = x,y

corresponds to the two polarizations of the probing field along
the x,y axes, respectively. The absorption coefficient (13) is
plotted in Fig. 2 for various intensities of the dressing field,
I0 = cE2

0/8π .
In order to analyze the longitudinal conductivity of dressed

graphene in the presence of a magnetic field, let us use the con-
ventional formalism based on the Kubo formula [16]. Within
this approach, the diagonal components of the conductivity

B = 2 Tesla

B = 3 Tesla

1
23

FIG. 2. The absorption coefficient of intrinsic graphene, βx , at the
temperature T = 0 as a function of the probing field frequency � for
the decay rate � = 1 meV. The photon energy of the dressing field is
�ω = 3 meV and the different curves correspond to the different field
intensities: (1) I0 = 0; (2) I0 = 3.51 W/cm2; (3) I0 = 6.24 W/cm2.
The inset shows the dependence of the absorption coefficient, βx , on
the photon energy �� and the electron-field interaction parameter
α = 2evE0/�ω2.

tensor read as

σii =
∫

dε

[
− ∂f (ε)

∂ε

]
σii(ε), (14)

with

σii(ε) = e2
�

πS
Tr〈v̂i Im G(ε + i0)v̂i Im G(ε + i0)〉, (15)

where ε is the electron energy, f (ε) is the Fermi distribution
function, S is the area of the graphene layer, v̂x,y is the operator
of electron velocity along the x,y axes, G(ε) is the Green’s
function of the effective Hamiltonian (10), and the angle
brackets in Eq. (15) correspond to averaging over all possible
configurations of random distributions of scatterers. Applying
the conventional Green’s-function technique within the self-
consistent Born approximation, Shon and Ando calculated the
conductivity of graphene for the cases of short-range scatterers
and long-range ones in the most general form [16]. Particularly,
they demonstrated that the self-energy is the same for the
both kinds of scatterers. As to the vertex corrections, they
vanish in the case of short-range scatterers but should be taken
into account for long-range ones. In order to incorporate a
dressing field into this known approach, we have to just replace
the electron velocity in bare graphene, v, with the velocity
renormalized by the dressing field, ṽ, in expression (15). It
should be noted that the conductivity (15) can be calculated
analytically in the important case of weak scattering, when
the scatterer-induced broadening of Landau levels, �, is much
less than the energy interval between nearest Landau levels.
Taking into account the contribution of only the Landau levels
at the Fermi energy and assuming the scattering processes in
graphene to be caused by a long-range “white noise” disorder,
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FIG. 3. The conductivity of a graphene layer, σxx , at the temper-
ature T = 0 as a function of the magnetic field B for the Landau
level broadening � = 1 meV and the Fermi energy εF = 10 meV.
The photon energy of the dressing field is �ω = 3 meV and the
different curves correspond to the different field intensities: (1)
I0 = 0; (2) I0 = 1.56 W/cm2; (3) I0 = 2.63 W/cm2. The inset shows
the dependence of the conductivity, σxx , on the magnetic field B and
the electron-field interaction parameter α = 2evE0/�ω2.

we can write the conductivity (15) as

σxx(ε) = σ0|n|
[

1 − π |ε|(ε − ε̃n)2

2�(�ωB)2

]
, (16)

where σ0 = e2/π2
� is the conductivity of intrinsic graphene,

and n = ±1,±2,±3, . . . is the number of Landau levels at
the Fermi energy. As to the case of short-range disorder, it is
described by the same expression (16) which should just be
multiplied by the factor 2. As expected, the conductivity (16)
exactly coincides with the known expression [16] if a dressing
field is absent (E0 = 0). The Shubnikov–de Haas oscillations
of conductivity calculated within the approach [16] for a
graphene layer with short-range disorder are presented in Fig. 3
for various parameters of the dressing field.

IV. DISCUSSION AND CONCLUSIONS

Deriving the effective Hamiltonian (10), we assumed that
the electromagnetic wave is nonresonant. This allowed us to
neglect the interlevel absorption of the wave by electrons.
However, we also took into account the scattering-induced
broadening of Landau levels, � = �/τ , where τ is the electron
scattering time. For the self-consistency of the developed
theory, we need to exclude the scattering-induced intralevel
absorption of the wave by electrons within a broadened Landau
level. Therefore, we have to assume the wave frequency ω to
be high enough in order to satisfy the inequality ωτ � 1. It
is well known that the nonresonant (collisional) absorption of
wave energy by conduction electrons is negligibly small under
this condition. Therefore, an electromagnetic wave which is
both high frequency and nonresonant can be treated as a purely
dressing (nonabsorbable) field (see, e.g., Refs. [33–35]). Such
a purely dressing field should be used in experiments.

Physically, the absorption peaks in Fig. 2 correspond to the
resonant electron transitions between dressed Landau levels,
which are induced by a probing field. As to the Shubnikov–de
Haas oscillations of the conductivity plotted in Fig. 3, their

maxima correspond to the crossing of the Landau levels
and the Fermi level. Since the distance between Landau
levels (12) depends on a dressing field, the field-induced
shifting of the maxima of the curves plotted in Figs. 2
and 3 appears. Besides the shifting, the dressing field leads
to the anisotropy of magnetoelectronic properties caused by
the nonequivalence of the electron velocities along the x,y

axes, ṽx �= ṽy . Namely, it follows from Eqs. (13) and (15)
that βy/βx = σyy/σxx = |J0(α)|. It should be noted that the
discussed field-induced effects are most pronounced if the
parameter of electron-field interaction, α = 2veE0/�ω2, is
large enough. Due to the giant electron velocity in graphene,
v ≈ 1 × 106 m/s, this condition can be satisfied for relatively
weak intensities of the dressing field (see Figs. 2 and 3).
As a consequence, the optical and transport measurements
are appropriate to detect the field-induced modification of
electron energy spectrum (12) for experimentally reasonable
parameters of the dressing field.

Physically, the considered features of the
magnetoelectronic properties originate from the anisotropy of
the energy spectrum of dressed electrons (11) along the x,y

axes. In turn, the anisotropy is caused by linear polarization of a
dressing field. In the case of a circularly polarized dressing field
with the same electric field amplitude E0 and frequency ω, the
anisotropic spectrum (11) turns into the isotropic gapped one,

ε̃ = ±
√

(εg/2)2 + (�vk)2, (17)

where εg =
√

(2veE0/ω)2 + (�ω)2 − �ω is the field-induced
gap [43]. Combining the theory of gapped graphene subjected
to a magnetic field [53] and the theory of a graphene layer
dressed by a circularly polarized electromagnetic wave [43],
we easily arrive from the Hamiltonian (1) at the energy
spectrum of Landau levels in the K point of the Brillouin zone,

ε̃n = ±
√

(�ωB)2(n + 1/2 ∓ 1/2) + ε2
g, (18)

where n = 0,1,2, . . . is the number of Landau levels, and
the upper and lower signs correspond to the conductivity and
valence band, respectively. As to the Landau levels at the K ′
point, their structure can also be described by Eq. (18), where
the signs “±” under the square root should be replaced with
the opposite signs, “∓”. It should be noted that the energy
spectrum (18) is correct for weak magnetic fields satisfying
the condition �ωB � εg (for the opposite case of strong
magnetic fields see Ref. [47]). In contrast to Eq. (12), the
energy spectrum (18) does not contain the Bessel function
J0(α). Mathematically, this means that the dependence of
the magnetoelectronic properties of graphene on a dressing
field is more pronounced in the case of linear polarization.
Thus, a linearly polarized dressing field is preferable from the
experimental viewpoint.

As to experimental observability of the discussed effects, it
should be noted that the employed parameters of the dressing
field (the photon energy of the meV scale and the field intensity
of W/cm2) can be easily realized experimentally by using such
conventional sources of THz radiation as quantum cascade
lasers and free electron lasers (see, e.g., Refs. [54,55]).

Summarizing the aforesaid, we can conclude that a strong
high-frequency electromagnetic field (dressing field) substan-
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tially modifies magnetoelectronic properties of graphene, in
contrast to the case of conventional conductors with the
parabolic dispersion of electrons. Particularly, such resonant
effects as optical absorption and Shubnikov–de Haas oscil-
lations are very sensitive to the field. Therefore, a dressing
field can be considered as a perspective tool to manipulate
the magnetoelectronic properties of graphene. Since graphene
serves as a basis for nanoelectronic devices, the developed
theory opens a way for optical control of their characteristics.
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APPENDIX: BORDERS OF APPLICABILITY
OF THE THEORY

In order to simplify comparison of the developed theory and
experiments, we summarize the conditions of applicability of
the theory:

(i) The dressing field is assumed to be off-resonant.
Therefore, the frequency of the dressing field, ω, should
be far from resonant frequencies corresponding to electron
transitions between different Landau levels.

(ii) To exclude the scattering-induced intralevel absorption
of the wave by electrons within a broadened Landau level, we
have to assume the wave frequency ω to be high enough in
order to satisfy the inequality ωτ � 1. It is well known that
the nonresonant (collisional) absorption of wave energy by
conduction electrons is negligibly small under this condition.
Therefore, a dressing field which satisfies both (a) the
nonresonant condition and (b) the high-frequency condition
can be treated as a purely dressing (nonabsorbable) field.

(iii) The effective Hamiltonian (9) is derived by reducing
the infinite system of quantum dynamics (6) to the sole
equation (8). This reducing is correct under the condition
|Jn(α)/J0(α)| � 1, where Jn(α) is the Bessel function of the
first kind, α = 2veE0/�ω2 is the dimensionless parameter
describing the interaction between an electron in graphene
and a dressing field, v is the electron velocity in graphene, E0

is the amplitude of the dressing field, ω is the frequency of
the dressing field, and n = ±1,±2,±3, . . .. Thus, the dressing
field amplitude E0 and the field frequency ω should be chosen
to keep the Bessel function J0(α) far from zero.

(iv) The calculation of the conductivity given by Eqs. (14)
and (15) within the approach [16] was performed under
the condition �/εF � 1, where � is the scatterer-induced
broadening of Landau levels and εF is the Fermi energy.
Therefore, the developed theory of transport effects is adequate
if the scattering is weak enough.
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