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Pseudospin lifetime in relaxed-shape armchair graphene nanoribbons due to in-plane phonon modes
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We study the influence of ripple waves on the band structures of strained armchair graphene nanoribbons. We
argue that the Zeeman pseudospin (p-spin) splitting energy induced by ripple waves might not be neglected for
smaller widths of armchair graphene nanoribbons (GNRs). We show that the p-spin splitting energy breaks the
symmetry of degeneracy due to the ripple-induced Zeeman effect in GNRs, originating from electromechanical
coupling. We estimate the p-spin lifetime in strained armchair GNRs caused by in-plane phonon modes for
possible applications in straintronics and quantum information processing. By considering higher order terms
in the strain tensor expansion, we also demonstrate that highly asymmetric band structures of GNRs induce
asymmetric phonon-mediated p-spin relaxation. Such asymmetric p-spin relaxation is not possible for unstrained
armchair and zigzag GNRs. In particular, we report that the p-spin transition rate decreases like B (as a function
of p-magnetic fields), L~? (as a function of GNR width) and 7,”!, where 7, is the externally applied tensile edge

stress.
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I. INTRODUCTION

Graphene, just one atom thick, is purely a two-dimensional
material, and atoms spread throughout the sample of the
graphene sheet in the form of a honeycomb lattice, which is
of potential interest for developing next-generation optoelec-
tronic devices. At room temperature, electrons that possess the
properties of massless Dirac fermions can travel ballistically
over several micrometers without scattering. Researchers
have shown that transistors made of graphene can operate
at a speed two times faster than that of the best silicon
transistors of similar size. The massless Dirac fermions in
graphene also provide an opportunity for researchers to
study novel quantum mechanical properties with current
state-of-the-art tools. For example, measurements of quantum
mechanical properties such as the half-integer quantum Hall
effect, nonzero Berry phase, conductivity of electrons, and
high-mobility charge carriers (100 times that of silicon)
may reaffirm graphene as a promising material for making
next-generation optoelectronic, spintronic, and straintronic
devices [1-6]. Potential applications of graphene in photonics
and optoelectronics devices (solar cells, light-emitting devices
for touching screens, photodetectors, and ultrafast lasers) have
been discussed in Ref. [7], where the combination of its
unique optical and electronic properties is explored, even
in the absence of any bandgap. The authors explore how
a linear dispersion of the Dirac electrons enables ultrawide
band tunability. Experimental and theoretical studies of spin
initialization and readout, defect-induced magnetic moments,
spin-orbit coupling, and spin relaxation in graphene are
also presented in Refs. [8] and [9]. Further experimental
and theoretical study in graphene spintronics will indeed
require addressing the development of applications such as
spin transistors and spin logic devices, as well as utilizing
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more exotic physical properties including topological states
and proximity-induced phenomena in graphene and other
two-dimensional materials [8—10]. The pseudomorphic vector
potential in graphene may induce large pseudomagnetic fields
(10 times larger than the largest steady-state magnetic field
ever achieved in a laboratory) [6,11]. Electrons under such
large pseudomagnetic fields, which have not been investi-
gated experimentally so far, may provide a new level of
physics.

In-plane or out-of-plane ripple waves in graphene may
be induced by applying tensile edge stress (relaxed-shape
graphene) or adsorbed hydro-oxide molecules throughout
the sample of the graphene sheet [12—15]. Strain fields,
dislocations, and defects can also be utilized to control the
band structures of graphene [16,17]. The influence of such
effects (ripple, strain fields, dislocations, defects) on the band
structure of graphene can be studied by coupling a strain
tensor originating from electromechanical effects through a
pseudopotential [18,19]. This pseudopotential induces large
pseudomagnetic fields (300 to 1000 T) [11,20]. This is
linked to purely intrinsic properties and may be useful for
designing optoelectronic devices for straintronic applications.
It is assumed that graphene can easily sustain such large
pseudomagnetic fields because it is one of the strongest
materials (intrinsic breaking strength of ~42 N/m, 100 times
stronger than steel [6]) found in nature, which is confirmed
experimentally in Ref. [21]. The strain tensor may also
induce bandgaps at the Dirac point, which may open new
opportunities for making next-generation optoelectronic and
quantum information processing devices. In this paper, we
show that strain engineering can be used to tune graphene’s
band structure in ways that may be useful for taking advantage
of quantum confinement effects (to create dot and ribbon
geometries). In particular, we develop a new theoretical
approach to estimate the phonon-mediated p-spin lifetime in
strained armchair GNRs for application in quantum informa-
tion processing, among other areas of applications.
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The paper is organized as follows. In Sec. II, we provide
a theoretical description of coupling between the electrome-
chanical effects and the band structures of GNRs and show
that the electronic properties of strained GNRs are highly
asymmetric. Here we show that the pseudomagnetic fields
originating from the pseudomorphic vector potential might
induce large Zeeman p-spin splitting energies for smaller GNR
widths, which provides evidence of broken p-spin symmetry of
degeneracy. We also provide theoretical descriptions of orbital
and p-spin relaxation mechanisms caused by in-plane phonon
modes for straintronic and quantum information processing.
In addition to the results associated with the electromechanical
effects and band structures of strained GNRs, in Sec. III we
analyze p-spin relaxation rates vs several control parameters,
such as the width of the GNRs and the applied tensile
edge stress through the boundary and pseudomagnetic fields,
and demonstrate that resonant peaks in the p-spin lifetime
can be observed. Finally, we summarize our results in
Sec. IV.

II. THEORETICAL MODEL

The total elastic energy density associated with the strain
for a two-dimensional graphene sheet can be written as [25,26]
2Us = Cijimé&ix€im. Here Ciym is a tensor of rank 4 (the
elastic modulus tensor) and &;; (or g,,) is the strain tensor.
In the above, we write the strain tensor components as &,, =
Oxliy, Eyy = OyUy, Exy = (Oylx + 0xuy)/2, where u; are the
in-plane displacements [14]. The stress tensor components
can be easily found from the expression o, = dU/dg;;. In
the continuum limit, elastic deformations of graphene sheets
under external tension in the x direction are described by the
Navier equations dyoy, = Fg,/t, where F}, = 1.q cos(gx).
Here ¢ = 2n /X is the period length of the in-plane ripple
waves, T, is the externally applied tensile edge stress, and
t = 0.35 nm is the thickness of the single-layer graphene.
We assume armchair GNRs elongated along the y direction
and apply tensile edge stress only along the x direction (see
Fig. 1), which only induces ¢, as a nonvanishing strain tensor
component [27]. Assuming a vanishing displacement vector
at x = £L/2, we derive the expression for the displacement
vector from the equilibrium Navier equations as

T qL |
= { cos <7> —cos(qx)}. &)

In Fig. 1, we have plotted the distribution of pseudomagnetic
fields (middle) and strain tensor (right). Below we show that
pseudofields induce high pseudo-Zeeman energies for smaller
ribbon widths and the strain tensor induces the quantum
confinement effect. By considering higher order terms in the
expansion of sin x in the strain tensor, we also show that highly
asymmetric band structures of GNRs are possible.

Now we turn to the study of the influence of the strain
tensor on the electronic properties of GNRs. In the continuum
limit, by expanding the momentum close to the K point in the
Brillouin zone, the Hamiltonian for 7 electrons at the K point
reads H = Hy + H, as [22]

H = vp(0, Py + 0, P,) + gores Byo2/2, @
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FIG. 1. (i) Schematic of the lattice structure of two-dimensional
armchair graphene nanoribbons (GNRs). (ii) Spatial dependence of
the induced pseudomagnetic field, in teslas (see color scale). (iii)
Strain originating from electromechanical effects due to externally
applied tensile edge stress in GNRs. Pseudomagnetic fields orig-
inating from electroelasticity induce Zeeman p-spin energy, while
the strain tensor induces a quantum confinement potential that
might be utilized in engineered straintronic devices. Here we chose
7, =45eV/nm,t =0.35nm, L = 34/3Na, with N = 30 and 1 um
as the length of the ribbon, C;; = 2246.22 eV/nm?, and A = 2L. See
also Refs. [20,22-24].

where P = p — hA, with p = —ihd, being the canonical mo-
mentum operator and A = B(—2¢y,8,, — &xx,0)/a the vector
potential induced by the pseudomorphic strain tensor [22,28].
Here a is the lattice constant, 8 = —dIn¢/dIna ~ 2 is a di-
mensionless parameter that characterizes the coupling between
Dirac electrons and lattice deformations, and ¢ is the nearest-
neighbor hopping parameter. The last term on the right-hand
side of (2) is the Zeeman energy due to p-spin, where By, =
vV X A = —Bycos(gx)z with By = 2w hft.q/eCi ta is the
effective pseudomagnetic field induced by the pseudomorphic
vector potential. The Zeeman term due to p-spin is usually
neglected because it is assumed that the induced p-spin due to
ripple waves is not able to break the symmetry of degeneracy in
the band structure of graphene nanoribbons (GNRs). However,
in this paper for narrower GNRs, by applying tensile edge
stress through the boundary of the armchair edge along the x
direction [see Fig. 1(a)], we show that a giant Zeeman p-spin
splitting energy due to ripple waves can break the symmetry
of degeneracy, which can be utilized in designing straintronic
devices. In the above expression for the pseudomagnetic field,
By, we see that the magnitude of the pseudomagnetic field
amplitude, By, is directly proportional to the period length,
q = 21 /X, of the in-plane ripple waves. Assuming A ~ L, we
can write By oc 1/L. This means that the magnitude of the
pseudomagnetic field amplitude, By, is enhanced for smaller
GNR widths. It is this effect that is responsible for inducing
a giant Zeeman p-spin energy. Hence, we can confirm that
the Zeeman p-spin energy, originating from electroelasticity
due to externally applied tensile edge stress that induces a
nonvanishing strain tensor, is responsible for breaking the
symmetry of degeneracy in smaller-width GNRs [see second
and third terms on the right-hand side of Eq. (17)]. Note that
the contribution of the second and third terms on the right-hand
side of Eq. (17) to the total energy eigenvalues becomes
extremely small for either wider GNRs or smaller values of
externally applied stress, 7,. Thus, narrower GNRs and high
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externally applied tensile stresses are the key requirements in
our case to break the symmetry of degeneracy.

We assume Hy = ey, where ¢ (Y4 and yp are its
components) is the spinor wave function of Hamiltonian (2). In
Fig. 1(i), we assume that the edges of the graphene nanoribbons
are parallel to the y axis. In this case, the translational
symmetry guarantees that this spinor wave function can be
written as [2]

. $alx)
= k , 3
W(r) exp(l y)’)<¢B(x) ( )
where ¢4(x) and ¢p(x) are the wave functions of quantized
graphene electrons on sublattices A and B, respectively. Thus
from (2), we write the two coupled equations as

1
EgOMBBS(PA + hvp <_iax - lky - iggxx)(pB = 8¢Av @

hvr <_lax + lky + iggxx)(pA - %gOMBBs(pB = £¢B~ (5)
Exact solutions of (4) and (5) are nontrivial. Thus, we seek to
apply perturbation theory to get some insight into the behaviors
of the band structures of strained GNRs. First, we assume B; =
—Bycos (q£) ~ —By(1 — g>£2/2! + ¢*%*/4!) and write the
total Hamiltonian H = H, + I:Iz (#2,%%), where

Hy = vp(ox py + oyhky — hoyAy) + Ao, /2, (6)

H, = —Aq¢*%%0,/4 + Ag*ito, /48, (7)

and A = —goup By. Note that the coefficient of o, in (6) does
not depend on the position operator and it might be impossible
to break the p-spin symmetry of degeneracy. However, (7)
depends on the position operator and below we show that the
first-order energy correction term of Hy, due to H., breaks
the symmetry of degeneracy, which can be utilized to induce
p-spin splitting of electron-hole-like states for straintronic
applications of GNRs. The second-order energy correction
term of H, due to H, also provides highly asymmetric
electron-hole p-spin relaxation in GNRs mediated by in-plane
phonon modes.

We assume Hyyr = &y and write two coupled equations
associated with (6) as

— ihvp(dx +ky + Bexc/a)pp = (E — A/Dpa,  (8)

—ihvp(0y —ky — Bexr/a)pa = (E+ A/2)pp. ©)

Now we apply the operator —ihvp(d, —ky, — Becc/a)
from the left-hand side of (8) and the operator
—1hvp(dy + ky + Béexy/a) from the left-hand side of (9) and
write a single decoupled second-order partial differential
equation as

2 2 IB IB 2 /32 2
(hvr) _ax + 2_5xxky F —[0x,6xx] + ky + 5 Exx ¢B,A
a a a

= (8 — A* /g a. (10)

~ ii—1

By utilizing the identity [x",d,] = —iix with 7 =
1,2,3, ... and by considering &,, ~ 7,(qgx — ¢*x*/3!)/C1t,
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we formulate (10) as

2 . 2x3
|: Px | Smowyx” + A(x - q_>:|¢B,A=E¢B,A7 (11)

2mgy 2 3!
where
12

~2_A h e : e 3

=S4 2 <_’3”1) A M BT
2m0vF my Ciita 2Cta

- Bk, Bt.q A?

A=—20 A= (we)? K2 = —. (3
myCiita (hwr) ( y:F Cnta) + 4 3

We treat A(x — ¢g?x>/3!) as a perturbation and write the total
energy eigenvalues associated with the Hamiltonian Hy as

1 12
& = :|:|:2mov,2v{<n + §>hw0 + af?} + A] . (14

where

AL A 243 2
= Y Ll = A8/ s

o &) — &
(m|% — q*%%/3"|n)

h
2m0a)0

- ;1—, <2moa)0) (3\/53%;1—1 + 3V (n 4+ 1)38, 511
+vnm — 1D —2)8,.,-3

+ V(1 + D0+ 2)(1 + 3)8.043), (16)

and &0 = (n + 1/2)hw,. Finally, by treating H. as a pertur-
bation of Hy, we write the total energy eigenvalue of H for
strained GNRs as

Eno. = En — AEQn + Do, + AE*2n* 4+ 2n + 1o,

A2§2
+ (v + D(n + 2)8,n42

&, — ¢

(\/ﬁam,nfl ++/n+ 18m,n+1)

+ VR — Dy + 20+ D8y 015, a7

where & = ¢g>h/8mqwy. Evidently, the first-order energy cor-
rection term in (17) gives us the p-spin splitting of the energy
bands of GNRs due to the applied tensile edge stress. Assuming
N =10 and 7, = 45 eV/nm and utilizing (17), we find the
p-spin splitting energy difference g9 | — £04 = 25.3 meV for
sublattice A and 19.3 meV for sublattice B. This p-spin
splitting energy due to ripple waves is much higher than
the energy induced by the spin-orbit coupling effect (1073
to 2.5 meV) [29] in GNRs. This indicates that the symmetry
of p-spin degeneracy is broken due to ripple waves. Thus, the
Zeeman energy term due to p-spin in the total Hamiltonian
of strained GNRs cannot be ignored for narrower ribbons.
In Fig. 2(a), we plot the dispersion relation E(k) of GNRs.
Clearly, the band structures of GNRs of sublattices A and B
are different [the energy difference between p-spin-up and
p-spin-down states for sublattice A is larger than that for
sublattice B; see Fig. 2(b)], which may lead to asymmetric
phonon-mediated p-spin relaxation of electrons in sublattices
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FIG. 2. Band structures of strained GNRs. (a) The case L =
3v/3aN with N = 30 clearly shows the p-spin splitting of several
states. (b) The p-spin splitting energy difference is demonstrated to
be enhanced in narrower GNRs at the Dirac point. It is also larger
for sublattice A than B. (c) Cusp-like structures for L = 3 nm and
dips, i.e., inverted cusp-like structures, for L = 3.8 nm are seen due
to level crossing (see the text) of the energy bands. Here we chose
7, =45eV/nm in (a) and (c) and 7, = 250 eV/nm in (b). Other
parameters were chosen as a = 0.142 nm, C;; = 2246.22 eV /nm?,
and A = 2L.

A and B. For strained GNRs, wg # 0 in Eq. (11) or g, # 0
in Egs. (8) and (9) may lead to a quantum confinement effect.
In Fig. 2(c), we plot the energy difference between the ground
state, with p-spin up, and the first excited state, with p-spin
down, vs k. Here we see that at smaller ribbon widths, where
the Zeeman energy due to p-spin is significantly higher, there
is a crossing of the band structures that provides either dips
(dashed line) or cusp-like (solid line) structures. For larger
GNR widths (dashed-dotted line), the ripple-induced Zeeman
energy becomes weaker and its influence on the symmetry of
degeneracy is neglected. For unstrained armchair and zigzag
GNRs, it is impossible to find band crossing.

III. RESULTS AND DISCUSSION

We now turn to the calculation of p-spin relaxation induced
by in-plane phonon modes due to externally applied tensile
edge stress along the shorter edge in GNRs. The coupling
between electron and phonon with mode ke (K is the phonon
wave vector, and the branch index is ¢ = [; ¢ is used below
for longitudinal and transverse modes) in terms of the phonon
operators bx and b, is given by [30-32]

h .
ko . 2 : — ik-
uph (I') =1 = m“ﬂ Lyje rbka + H.C., (18)

where p is the crystal mass density and A, is the area of the
graphene sheet. Based on Fermi’s golden rule, the phonon-
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induced p-spin transition rate in GNRs is given by
1 2xV [ &k
—=" — M (ka)|*8(hs k— D, (19
= h <2ﬂ>3a;<| (ka)*8(hsk—es +e),  (19)

where T is the p-spin lifetime, 5; and s, are the longitudinal
and transverse acoustic phonon velocities, and V = A,t is
the volume. The matrix element M (ko) = (w,-|u';ﬁ‘(r)|1ﬁf)
with the emission of one phonon ko has been calculated
perturbatively [9]. Here [y;) and |v/f) correspond to the
initial and finial states of the Hamiltonian H. Since we only
apply tensile edge stress along x-direction, only longitudinal
phonon modes can be utilized to estimate relaxation rate.
Based on the second-order nondegenerate perturbation theory,
after long algebraic transformations, we have the final result
for the orbital relaxation:

1 E2t(n + 1)
— = %(sf —&). 20)
T 127 h? pmowos;

In (20), under the dipole approximation, we write the matrix
elements as

2Bk (n + 1)

I
IM(ka)|* = cos? ¢ sin® 6. 1)

4pwmowo

To investigate the p-spin flip time, we consider the phonon
interaction with (6) and write the matrix elements of (19) as

_ <m|u‘;ﬁ(r)|n)<n b [Holm 1)
Mke) = ; [~m %, — AGPh(m +n + 1)/dmomy

(m | |Holn T)(n|u';ﬁ‘(r)|m)
B — &n + Ag2h(m + n + 1)/4mowy

}. (22)

For m =0 and n = 1, we find Agh/2mowy < (8, — &).
Note that the third term on the right-hand side of (17) is
smaller than the second term, which is also ignored in the
denominator of (22). Thus the p-spin flip rate between these
two lowest states at the Dirac point can be written as

I Bovit < Ag*h )5
Ty 6rhpmiwds] (o — £1)* \ 4mowo

a*h \'( Brq \’
x{1-— —_—
8moywy Cyta
Zh 4h2
x(l— ar 4 ) 23)
21’)’[0(1)()

16m(2)a)é
In &, of (14), we find that mov%hwo/A is greater than unity
for sublattice B and smaller than unity for sublattice A. Thus,
we expect different p-spin flip behaviors for sublattices B
and A, which can be considered one of the central results of
this paper. We can also express (23) in terms of the control
parameters, 7., and width of the GNRs, L, as follows.
For sublattice A

! « y? 7Y
—=—Xaq —y+Z)(1-L
T~ 19" +X)< v 4)( 4

9 91 , N
x<l+§$+§€ + o(& ))

x (1 +28 — 8% /4 + 0(8%)), (24)
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FIG. 3. Orbital relaxation (a) between state |1 1) and state |0 1)
and (b) between state |1 |) and state |0 |). Here we chose L =
3v/3aN with N =8,12, ..., 100 and 7, =45 eV/nm. (c) The p-
spin relaxation (|0 |) — |0 1)) and orbital relaxation (|1 |) — [0 |
)) obtained from (23) and (20) in strained GNRs at the Dirac point.
Here we chose 7, = 100 eV /nm. Other parameters were chosen as
p=7.6x10"7kg/m?, By =6.8¢eV,s; =+/Cy,/p,and A = 2L.

and for sublattice B

: ; 2)0-4)

= (1- Z ) 1-£

Ty 384(2—J§)< r+y 4
x (1 — 4& + 10£2 + o(£7))

3-43 _
1——— = 51 52), 25
x( 35D o(5%) (25)

where
1322,5,,5 .2 3,2,,2
_ T EjgpHpta _ T8y MpPTe
phs/ e B, L° ’ LaCyte?vs’
3,2,,2 2
L, T8y pBTe q°h
8§ = —movihwy, &= — = .
A LaC“te Vg 2moa)0

Since A = —goupBy and gy ~ —2, expressions (23)—(25)
now have positive values. Evidently, the relaxation rate
vanishes like 7~ "'and L=°. In Figs. 3(a) and 3(b), we plot the
orbital relaxation rate mediated by in-plane phonon modes vs
ky. Here we clearly see that the orbital p-spin relaxation rates
for sublattices A and B are different because the energy bands
of sublattices A and B of strained GNRs are not symmetric
[see Eq. (10)]. In Fig. 3(c), we plot both the p-spin and the
orbital relaxation rates mediated by in-plane phonon modes
vs the induced pseudomagnetic field due to ripple waves
and the widths of the GNRs. We clearly see that the p-spin
relaxation rate for larger ribbon widths vanishes like L= or
Bg [see Egs. (23)—(25)]. Note that the values of the induced
pseudomagnetic fields due to applied tensile edge stress are
reduced with increasing widths of GNRs (By o 1/L), which
is also reflected in Fig. 3(c). An enhancement of the relaxation
rate of electrons in sublattice A of GNRs is observed. An
enhancement of the p-spin relaxation rate decreases the
decoherence time. Thus, designing straintronic devices for
application in quantum information processing from highly
strained GNRs of sublattice A may not be as suitable as that
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FIG. 4. Pseudospin lifetime (|0 |) — |0 1)) vs applied tensile
edge stress 7, in strained GNRs at the Dirac point for L = 3+/3aN
with N = 7 (left) and N = 70 (right). Other parameters are the same
as in Fig. 3.

from the corresponding GNRs of sublattice B under similar
conditions.

In Fig. 4, we plot the p-spin lifetime vs the applied tensile
edge stress. Here we find resonant peaks in the manipulation of
the phonon-mediated p-spin lifetime with externally applied
tensile edge stress. This is due to the fact that the vanishing
p-spin splitting energy difference induces a negligible phonon
density of states, which provides a vanishing phonon-mediated
p-spin transition rate. The exact ideal location of the peak point
in the cusp-like structure of the p-spin lifetime can be found
from this expression, g9y — &g, = 0. This condition provides
us an expression which is quadratic for the applied tensile
stress, 7,, and can be written as

2 2
P Y (P19 o e
Ciita 2Cta 64

Thus, the solution of (26) is written as

T, = (\/g:Fz)(JTC“tQ). 7
8 BL

From Eq. (27), it is clear that 7, is inversely proportional to
the graphene nanoribbon width. This means that the resonant
peaks in the p-spin lifetime of GNRs due to applied tensile
edge stress for larger GNR widths can be observed at lower
values of applied tensile edge stress, which is also reflected in
Fig. 4(b). Also, Eq. (27) tells us that the resonant peaks in the
p-spin lifetime can be observed at lower values of the applied
tensile edge stress for sublattice B compared to sublattice
A. Note that the ¢ in Eq. (27) corresponds to sublattices B
and A, respectively [also see Eq. (11)]. For example, for the
parameters chosen in Fig. 4(a) and utilizing Eq. (27), we find
the ideal location of the resonant peaks at 7, ~ 18 eV/nm
for sublattice A and 7, ~ 1 eV /nm for sublattice B, which is
in agreement with Fig. 4(a). Similarly, by utilizing Eq. (27)
and choosing the parameters from Fig. 4(b), we find the
resonant peaks at 7, ~ 1.8 eV/nm and 7, ~ 0.1 eV/nm for
sublattices A and B, respectively. In other words, tuning of
the resonant peaks of the in-plane phonon-mediated p-spin
lifetime in GNRs of sublattice A extends to higher values of
the tensile edge stress.
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IV. CONCLUSION

We have shown that a giant ripple-induced Zeeman p-spin
splitting energy can be observed for smaller widths of strained
graphene nanoribbons, which may provide evidence of broken
p-spin symmetry of degeneracy. By considering in-plane
phonon modes in a relaxed-shape armchair GNR, we have
shown that highly asymmetric p-spin relaxation behaviors
are observed in GNR sublattices A and B. In particular,
we have demonstrated that the resonant peak in the p-spin
lifetime mediated by the in-plane phonon mode extends to
higher values of the applied tensile edge stress for sublattice
A than for sublattice B of the GNRs. We have also shown
that such resonant peaks can be observed at lower values of
the applied tensile edge stress for larger ribbon widths. The
resonant peaks can be seen due to the vanishing p-spin splitting
energy difference, which induces a negligible phonon density
of states and provides a vanishing phonon-mediated p-spin

PHYSICAL REVIEW B 93, 115417 (2016)

transition rate. Since we have only considered the internal
magnetic fields induced by ripple waves, without considering
any external source of magnetic fields in the band-structure
calculation and estimation of the p-spin lifetime in GNRs, our
study may be of special interest for designing optoelectronic
devices in straintronics and quantum information processing.
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