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The embedding potential defined on the boundary surface of a semi-infinite crystal relates the value and
normal derivative of generalized Bloch states propagating or decaying toward the interior of the crystal. It
becomes Hermitian when the electron energy ε is located in a projected bulk band gap at a given wave vector k in
the surface Brillouin zone (SBZ). If one plots the real eigenvalues of the embedding potential for a time-reversal
invariant insulator in the projected bulk band gap along a path ε = ε0(k) passing between two time-reversal
invariant momentum (TRIM) points in the SBZ, then, they form Kramers doublets at both end points. We will
demonstrate that the Z2 topological invariant, ν, which is either 0 or 1, depending on the product of time-reversal
polarizations at the two TRIM points, can be determined from the two different ways these eigenvalues are
connected between the two TRIM points. Furthermore, we will reveal a relation, ν = P mod 2, where P denotes
the number of poles that the embedding potential exhibits along the path. We also discuss why gapless surface
states crossing the bulk band gap inevitably occur on the surface of topological band insulators from the view
point of the embedding theory.
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I. INTRODUCTION

Since the discovery that band insulators with time-reversal
symmetry can be divided according to Z2 topological invari-
ants characterizing their electronic band structure, there has
been a continuing effort to search for topological insulators
[1–4]. A salient feature of topological insulators is the pres-
ence of time-reversal protected gapless surface (edge) bands
crossing the energy gap between the valence and conduction
bands [5,6]. Their energy dispersion relation with wave vector
possesses the same form as that of massless Dirac fermions
in the vicinity of a time-reversal invariant momentum (TRIM)
in the surface Brillouin zone (SBZ). To utilize surface con-
duction through massless Dirac bands exhibiting chiral spin
texture for technological applications such as spintronics, it is
desirable to have materials with a large band gap in order to
reduce the influence of bulk electron conduction. On the other
hand, the energy-gap values of topological band insulators
known to date are not so large, since they become topologically
nontrivial via the band inversion mechanism associated with
large spin-orbit interactions. Among three-dimensional (3D)
topological band insulators with relatively large band gaps are
binary and ternary chalcogenide compounds containing heavy
elements such as Bi2Se3 and TlBiSe2 whose bulk band gap
amounts to a few tenths of eV [7–15]. It is remarkable that
these compounds were at first theoretically predicted to be
topological insulators before experimental verifications [7,11].

One can define a single Z2 invariant for two-dimensional
(2D) band insulators with time-reversal symmetry [16,17],
whereas there are four Z2 invariants (ν0; ν1ν2ν3) for the 3D
ones [18–21]. As shown by Fu and Kane [20], the Z2 invariants
of 2D (3D) band insulators having a center of space inversion
can be easily calculated from the parities of valence-band wave
functions at the four (eight) TRIM points in the bulk Brillouin
zone. On the other hand, determining the Z2 invariants for
systems without space inversion symmetry is more compli-

cated. While the Z2 invariants can be expressed in terms of
skew-symmetric matrices comprising the matrix elements of
time-reversal operator between valence-band wave functions
at the TRIM points [16,17,19,20], numerical evaluation of
the formula is not straightforward, since the phase of the
valence-band wave functions must be chosen continuously
in the Brillouin zone. A few alternative methods have been
developed so far to overcome the difficulty. One of them is to
use an expression for the Z2 invariant that involves the line
integral of the Berry connection and the surface integral of
the Berry curvature of valence-band wave functions over half
the 2D Brillouin zone [17]. Fukui and Hatsugai developed an
efficient numerical algorithm to evaluate these integrals [22].
Another approach for determining the Z2 invariant utilizes
the Wannier function [23]. In this approach, one calculates
the change in time-reversal polarization between two TRIM
points from the evolution of the Wannier function centers of
the occupied bands [24–26]. The expression derived by Yu
et al. uses the non-Abelian Berry connection and is free from
the gauge-fixing problem of valence band wave functions [25].

In the present work, we will demonstrate that the embedding
potential as invented by Inglesfield [27,28] can be used to
determine the topological invariants of time-reversal invariant
band insulators. Given a semi-infinite crystal composed of
atomic planes stacked in the surface normal direction and its
boundary surface S, the embedding potential relates the value
and normal derivative on S of generalized Bloch states with
energy ε and 2D wave vector k, which propagate or decay to-
ward the interior of the crystal. Essentially, it is a bulk quantity,
as are the generalized Bloch states. The embedding method
has been successfully used for first-principles calculations of
the electronic structure of semi-infinite surfaces and interfaces
[29–35].

As will be shown, the embedding potential becomes a
Hermitian matrix having real eigenvalues if ε is located in
a projected bulk band gap at a given k. If one draws a line
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graph of these eigenvalues along a path in the SBZ, ε = ε0(k),
passing between two TRIM points, kα and kβ , these lines form
Kramers doublets at both end points. There are two distinct
ways these lines are connected between the two end points.
In one case, two states forming a Kramers pair at kα meet
again at kβ to form a Kramers pair. In the other case, the two
states forming a Kramers pair at kα change partners at kβ .
These two cases remind us of the two distinct ways the surface
bands in a projected bulk band gap disperse with k along a path
connecting two TRIM points [19,20]. In fact, we will show that
the former corresponds to the topologically trivial case with the
associated Z2 invariant ν = 0 and the latter corresponds to the
topologically nontrivial case with ν = 1. Furthermore, we will
show that these two cases are clearly classified by the number
of poles, P , that the embedding potential exhibits along the
path: the number of poles is even when ν = 0 and odd when
ν = 1. In other words, we have ν = P mod 2. The present
formalism may be useful for calculating the Z2 topological
invariants of band insulators without space inversion centers,
since the numerical procedure for calculating the embedding
potential does not depend on whether the system has space
inversion symmetry or not.

The plan of the present paper is as follows. In Sec. II, we
present the main theory: starting with the definition of the
embedding potential, we explain how it can be constructed
from generalized Bloch states. Further, we show that its
eigenvalues are real in a projected bulk band gap and discuss
the properties of the eigenvalues when the system has time-
reversal symmetry. Then, we will show that the two distinct
ways the eigenvalues of the embedding potential behave along
a path linking two TRIM points is related to the associated Z2

invariant. As an application of the theory, we study in Sec. III
the embedding-potential eigenvalues of realistic materials by
a first-principles calculation within density-functional theory
(DFT). We choose CdTe, GeTe, and Bi as trivial insulators
and TlBiSe2 and Bi2Se3 as topological insulators. Section IV
contains some more theoretical discussions. We will clarify
under what conditions surface bands crossing the bulk band
gap inevitably emerge from a view point of embedding theory.
We conclude in Sec. V. Unless otherwise stated, we use the
Hartree atomic units throughout the present paper.

II. THEORY

A. Definition of embedding potential

We consider a bulk crystalline insulator composed of atomic
lattice planes stacked in the z direction. Two fundamental
lattice vectors within the xy plane are denoted by {a1,a2}, and
the third one connecting two lattice points on two equivalent
lattice planes with the shortest distance in the z direction is
denoted by d = (d‖,dz) with dz chosen as a positive. The
three-dimensional (3D) unit cell, i.e., the parallelepiped made
out of {a1,a2,d} may contain more than one atomic planes.
For example, TlBiSe2 and Bi2Se3 contain four and five atomic
layers in a single unit cell when the z axis is chosen as the
[111] crystal orientation.

We divide the crystal into the left half-space and the right
one by introducing a surface S, where it is assumed that the
z axis points to the right. In the simplest case, S may be a
cut-plane z = z0. Let us consider ψ , an arbitrary solution of

the Schrödinger equation with energy ε and 2D wave vector in
the xy plane, k, satisfying the outgoing boundary condition at
z = −∞. In other words, ψ decays or propagates toward the
interior of the left half-space. The embedding potential for the
left half-space relates the value and normal derivative of ψ on
S by

∂nψ(ξ ) = 2
∫

S

dξ ′ 	L(k,ε,ξ,ξ ′) ψ(ξ ′), (1)

where the surface normal n points inward to the left half-space,
and the factor 2 on the right-hand side is used to be consistent
with the original definition of the embedding potential by
Inglesfield [27], and we introduced a composite index ξ =
(x,σ ) comprising a 2D space coordinate on S, x, and spin
index σ . Also, symbol dξ is understood to mean not only the
surface integral over S but also a summation over the spin
index.

One may rewrite Eq. (1) in a discrete matrix form by
introducing an orthonormal basis set defined on S, {χj (x)}
(j = 1,2, . . .) as

〈η|∂nψ〉 = 2
∑
η′

〈η|	̂L(k,ε)|η′〉 〈η′|ψ〉, (2)

where η = (j,σ ) is a composite index specifying both basis
function χj (x) and spin index σ . Here, 〈η|ψ〉 is defined by

〈η|ψ〉 =
∫

S

dx χ∗
j (x) ψ(x,σ ), (3)

and 〈η|∂nψ〉 and 〈η|	̂L(k,ε)|η′〉 are defined in the same way.
Hereafter, we use “∧” to explicitly indicate that the quantity to
which this symbol is attached is an operator or matrix. In the
following, a discrete representation using the basis set {|η〉} is
called “η representation.” For example, if S is a planar surface
z = z0, one may employ plane-wave basis functions,

χj (x) = 1√
A

exp[i(k + gj ) · x], (4)

where gj denotes 2D reciprocal lattice vectors in the xy plane
and A is the normalization area of S. In actual calculations,
the number of basis functions can be chosen to be finite
by introducing some cutoff parameter. For example, for the
plane-wave basis set, Eq. (4), one may introduce a cutoff
energy Ecut = G2

cut/2 and include only plane waves satisfying
the condition |k + gj | � Gcut in the basis set. In this case, the
embedding potential in η representation becomes a 2N × 2N

matrix including the spin degree of freedom, where N is
the number of the reciprocal lattice vectors included in the
basis set.

B. How to construct embedding potential

To construct the embedding potential, one first calculates
the wave functions with energy ε and 2D wave vector k
satisfying the generalized Bloch condition,

ψ(x + d,σ ) = μ ψ(x,σ ),

∂nψ(x + d,σ ) = μ ∂nψ(x,σ ), (5)

with

μ = exp(ik · d‖ + iqzdz), (6)
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as the eigenvectors of the transfer matrix relating the value
and normal derivative of wave functions on S with the
corresponding ones on the neighboring surface shifted by d.
A method to construct such a transfer matrix based on Green’s
theorem was given in Ref. [32]. In Eq. (6), qz is a complex
wave number. Bloch waves correspond to ψ’s with Imqz = 0,
while ψ’s with positive (negative) Imqz are evanescent waves
that decay toward z = +∞ (−∞). In η representation, the
transfer matrix becomes a 4N × 4N matrix (including spin
degree of freedom). Among its 4N eigenvalues, half of them,
i.e., 2N solutions correspond to ψ’s propagating or decaying
toward z = −∞. Let us denote the value and normal derivative
of these 2N solutions on S by ψj and ∂nψj . Then, by using
Eq. (2), the 2N × 2N embedding-potential matrix for the left
half-space can be expressed as

	̂L(k,ε) = 1
2∂n̂ ̂−1, (7)

where (̂)ηj = 〈η|ψj 〉 and (∂n̂)ηj = 〈η|∂nψj 〉 with η and j

ranging from 1 to 2N .
It should be emphasized that one needs no semi-infinite

calculations to compute 	̂L(k,ε). The generalized Bloch states
in Eq. (7) are obtained by a calculation involving only one bulk
unit cell.

C. Eigenvalue spectra of embedding potential

As before, we denote an arbitrary wave function with energy
ε and 2D wave vector k propagating or decaying toward z =
−∞ by ψ . By using Eq. (1), the current through S carried by
ψ is given by

J = 1

2

∫
S

[ψ∗(ξ )∂nψ(ξ ) − ∂nψ
∗(ξ )ψ(ξ )]dξ

= 1

2

∫
S

ψ∗(ξ )[	L(ξ,ξ ′) − 	∗
L(ξ ′,ξ )]ψ(ξ ′)dξdξ ′, (8)

where we omitted two arguments, ε and k, for simplicity. If ε

is located in a projected bulk band at a given k, i.e., if there
are Bloch waves with a 3D wave vector (k,Reqz) and energy ε

propagating toward z = −∞, J may become positive. On the
other hand, if ε is located in a projected bulk band gap, i.e., if
all the solutions of Eq. (5) are evanescent waves with nonzero
Imqz, then, J must vanish. This means that within a projected
bulk band gap, the embedding potential is Hermitian, i.e.,

	L(k,ε,ξ,ξ ′) = 	∗
L(k,ε,ξ ′,ξ ). (9)

This signifies that all the eigenvalues of the embedding
potential are real. Let us denote the i-th eigenvalue of the
embedding potential 	̂(k,ε) by λi(k,ε) and the corresponding
eigenfunction by φi , namely, in η representation,∑

η′
〈η|	̂L(k,ε)|η′〉〈η′|φi〉 = λi(k,ε)〈η|φi〉. (10)

By definition of the embedding potential (1), this implies that

∂nφi = 2λi(k,ε) φi, (11)

holds on S. That is, by appropriately taking a linear combina-
tion of the evanescent waves with a negative Imqz satisfying
Eq. (5), one can construct an evanescent wave φi , whose
logarithmic normal derivative takes a constant value 2λi on

every point on S for both spin components. We normalize φi

on S. Then, since eigenfunctions of a Hermitian matrix are
orthogonal to one another, we have

	̂L(k,ε) =
∑

i

λi(k,ε)|φi〉〈φi |. (12)

Also, the determinant of 	̂L(k,ε) is given by

det[	̂L(k,ε)] =
∏

i

λi(k,ε). (13)

An expression similar to Eq. (12) was derived for the
imaginary part of the embedding potential previously by
Inglesfield et al. [36] in the discussion of current-carrying
channel functions. In contrast, we consider in the present
work energies in a projected bulk band gap where no Bloch
states exist.

D. Time-reversal symmetry

Now, we assume that the band insulator under consideration
is invariant with respect to time-reversal operation T̂ =
−iσ̂yK̂ , where σ̂y is the y component of Pauli matrices and K̂

is a complex-conjugate operator. By operating T̂ on both sides
of Eq. (11) and noting that λi is real, one obtains

∂n(T̂ φi) = 2λi(k,ε)(T̂ φi). (14)

T̂ φi is an evanescent wave decaying toward z = −∞ with
energy ε and a 2D wave vector −k. Namely, T̂ φi is an
eigenfunction of the embedding potential 	̂L(−k,ε). As a
result,

λi(−k,ε) = λi(k,ε). (15)

Also, it is easy to show that

	̂L(−k,ε) = T̂ 	̂L(k,ε) T̂ −1, (16)

where T̂ −1 = −T̂ . It should be emphasized that the above
equation holds only when the energy ε is located in a projected
bulk band gap for a given k.

Let us consider the four TRIM points in the SBZ, i.e.,
kI = 0, kII = b1/2, kIII = b2/2, and kIV = (b1 + b2)/2,
where b1 and b2 are 2D fundamental reciprocal lattice vectors
satisfying the conditions

ai · bj = 2πδij .

At these k points, k and −k are equivalent because they are
connected by a reciprocal lattice vector. Thus one sees from
the above equations that the eigenvalues of the embedding
potential are twofold degenerate, forming Kramers pairs at kα

(α = I ∼ IV).
In the 3D Brillouin zone, there are eight time-reversal

invariant 3D wave vectors, whose projection onto the kxky

plane coincides with one of the four 2D TRIM points.
That is, each kα (α = I ∼ IV) is associated with two time-
reversal invariant 3D wave vectors, Ki

α (i = 1,2), whose planar
component is kα , while the kz components of K1

α and K2
α differ

by π/dz [19,20].
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The time-reversal polarization associated with kα is defined
by πα = δ1

α δ2
α where δi

α is [17]

δi
α =

√
det

[
ŵ

(
Ki

α

)]
Pf

[
ŵ

(
Ki

α

)] , (17)

where ŵ is a 2M × 2M skew-symmetric matrix constructed
from the valence-band wave functions, with 2M being the
number of valence bands including the spin degree of freedom.

In the following discussion, the 2D wave vector k is
assumed to be on a path connecting two TRIM points, kα

and kβ . For simplicity, we use a scalar variable k to represent
k on the path in the SBZ. In Fig. 1, we show a schematic
view of 2D surface λ = λi(k,ε) in the 3D Cartesian coordinate
system with the k, ε, and λ axis lines, where the kε plane
is chosen as the horizontal plane and the λ axis points to
the vertical direction. It should be noted that this surface is
defined only inside the projected band gap εv(k) < ε < εc(k).
The shaded region ε � εc(k) (ε � εv(k)) corresponds to the
energy continuum of bulk conduction (valence) bands.

Let us consider the lines of intersection between surfaces
λ = λi(k,ε) (i = 1,2, . . .) and a vertical cut-plane ε = ε0 with
ε0 located in the projected bulk band gap. As discussed above,
at both kα and kβ , these lines form Kramers doublets. In
Fig. 1(b), we show two possible ways how these lines are
connected between kα and kβ . In the left panel, two states in a
Kramers pair at kα meet again at kβ to form a Kramers pair. As
a result, one would have couples of lines which are connected
both at kα and kβ , and are separated from the neighboring pairs
of lines. In this case, there may be a “λ gap” between two pairs
of lines, i.e., a range of λ values in which no λ = λi(k,ε0)
lines enter. On the other hand, in the right panel, each state in a
Kramers pair at kα changes the partner at kβ to meet a state that
belongs to a neighboring Kramers pair at kα . In this case, the set
of line segments λ = λi(k,ε0) (i = 1,2, . . . ) may be regarded
as a single continuous line alternating between kα and kβ and
ranging between λ = −∞ and +∞. It is important that the
uppermost line λ = λ1(k,ε0) should inevitably diverge to +∞
at k0 between kα and kβ . Correspondingly, the lowermost line
on the negative side of λ diverges to −∞ at k0. In other words,
if one plots 1/λi as a function of k, the first and last branches
are smoothly connected at k = k0. As seen from Eq. (13),
k0 corresponds to a pole of the determinant det[	̂L(k,ε0)].
Furthermore, as seen from Eq. (7), the pole corresponds to a
zero of det[̂]. Physically, this means that one can construct a
solution of the Schrödinger equation with energy ε0 and wave
number k0 whose amplitude on S vanishes identically from
a linear combination of the 2N evanescent waves satisfying
the generalized Bloch condition Eq, (5). In contrast to the left
panel, there appears no “λ gap,” and any λ value between
−∞ and +∞ becomes an eigenvalue of 	̂L(k,ε0) at some k

between kα and kβ .
The above discussion on the two possible ways how the

eigenvalues of the embedding potential behave with k may
remind us of the two possible ways how the energy dispersion
relations with k of the surface states on a semi-infinite time-
reversal invariant insulator behave in a projected bulk band gap
[19,20]. As shown in Fig. 1(c), due to time-reversal symmetry,
the surface states are doubly degenerate at the two TRIM
points, kα and kβ . As is known [19,20], if (−1)ν = παπβ = 1

k
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αα
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FIG. 1. (a) Schematic view of the 2D surface λ = λi(k,ε) in a
3D (k,ε,λ) coordinate space. The surface is defined only inside the
projected bulk band gap εv(k) < ε < εc(k). The upper (lower) shaded
area on the kε plane corresponds to the energy continuum of bulk
conduction (valence) bands. ka and kb denote two TRIM points in
the SBZ. (b) Lines of intersection between surfaces λ = λi(k,ε) (i =
1,2, . . .) and a vertical cut plane ε = ε0 plotted as a function of k

where ε0 is located inside the projected band gap. In the left panel,
two states forming a Kramers pair at kα are connected again at kβ . In
the right panel, two states forming a Kramers pair at kα change their
partners at kβ . (c) Energy dispersion relation with 2D wave number
k of the surface states of semi-infinite band insulators inside the
projected bulk band gap along a path connecting two TRIM points.
Left and right panels correspond to παπβ = 1 and −1, where πα (πβ )
denotes time-reversal polarization at kα (kβ ).

(ν = 0), two surface states in a Kramers pair at kα meet each
other again at kβ (see the left panel). On the other hand, if
παπβ = −1 (ν = 1), each surface state in a Kramers pair at kα

changes the partner to become degenerate at kβ with another
surface state which belongs to a neighboring Kramers pair at
kα (see the right panel). It may be tempting from the close
similarity between Figs. 1(b) and 1(c) to infer that the left
panel in Fig. 1(b) may correspond to the topologically trivial
case with παπβ = 1, whereas the right panel may correspond
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to the topologically nontrivial case with παπβ = −1. In the
next section. we will show that this is actually the case.

E. Surface states

In Sec. II A, we introduced surface S to divide a 3D band
insulator into the left and right half-spaces. Now, we consider
a semi-infinite crystal to the left of S. The surface states
appearing in the projected bulk band gap between its bulk
valence and conduction bands are determined by the boundary
condition of electron wave functions on S. In Sec. IV, we
will consider realistic boundary conditions taking account of
surface atomic layers and the semi-infinite vacuum. However,
here we consider a more simplified mathematical boundary
condition on S, i.e.,

∂nφ(ξ ) = 2λ0 φ(ξ ), (18)

with a constant λ0. For example, λ0 = 0 corresponds to the
Neumann boundary condition with ∂nφ(ξ ) = 0 on S, while
λ0 = ±∞ corresponds to the Dirichlet boundary condition
with φ(ξ ) = 0 on S. Surface states inside the projected bulk
band gap are the evanescent waves satisfying Eq. (18). On
the other hand, this equation has exactly the same form as
that for the eigenfunctions of the embedding potential (11).
Accordingly, the energy dispersion relations of the surface
states with k are given by the lines of intersection between
the horizontal plane λ = λ0 and the eigenvalue surfaces of
the embedding potential, λ = λi(k,ε) (i = 1,2, . . . ), shown
in Fig. 1(a). This may give us a clear relationship between
Figs. 1(b) and 1(c): namely, the eigenvalue dispersion curves
with k shown in Fig. 1(b) are the lines of intersection between
2D surfaces λ = λi(k,ε) (i = 1,2, . . . ) and a vertical cut plane
ε = ε0, whereas the surface-state energy dispersion relations
with k shown in Fig. 1(c) are the lines of intersection between
the same 2D surfaces and a horizontal cut plane λ = λ0.
How these eigenvalue surfaces intersect with a horizontal or
a vertical cut plane may be determined by the geometrical
behaviors of these 2D surfaces themselves.

As was shown previously [19,20], regardless of the bound-
ary conditions at the surface, there appear in the projected
bulk band gap, surface bands whose energy dispersion relation
with k behaves like the right panel of Fig. 1(c) if παπβ = −1
(ν = 1). This indicates that, no matter what the value of λ0

is, the lines of intersection between 2D surfaces λ = λi(k,ε)
(i = 1,2, . . . ) and the cut plane λ = λ0 look like the right
panel of Fig. 1(c) if ν = 1. One may reconstruct the original
2D surfaces λ = λi(k,ε) (i = 1,2, . . . ) from these lines of
intersection by continuously varying the value of λ0 from −∞
to +∞. Then, obviously, the lines of intersection between
the surfaces λ = λi(k,ε) (i = 1,2, . . . ) reconstructed in this
manner and a vertical cut-plane ε = ε0 should be of the type
as given in the right panel of Fig. 1(b). The same argument
holds for the other case with παπβ = 1 (ν = 0). In this case,
the lines of intersection between 2D surfaces λ = λi(k,ε)
(i = 1,2, . . . ) and a cut-plane λ = λ0 behave like the left
panel of Fig. 1(c) for any value of λ0, unless λ0 is located
within a “λ gap” where no surface states occur. Then, the
lines of intersection between the same surfaces and a cut
plane ε = ε0 should behave like the left panel of Fig. 1(b). To
summarize, the embedding potential within the projected bulk

band gap between the valence and conduction bands should
exhibit qualitatively different eigenvalue spectra along a path
connecting two TRIM points, kα and kβ , depending on the
value of the topological invariant of the valence band structure.

III. APPLICATION

A. Calculational method

To demonstrate that the theoretical results derived in Sec. II
hold true, we calculate the embedding potential and its
eigenvalues of several band insulators by a first-principles
method within DFT. For this purpose, we use a computer code
[34,35] that combines the full-potential linearized augmented
plane-wave (LAPW) method [37] and the embedded Green’s
function technique of Inglesfield [27,28]. The exchange-
correlation energy is treated within the generalized gradient
approximation by using the energy functional of Perdew,
Burke, and Ernzerhof [38].

For a given crystal orientation, we consider a slab-shaped
region with the left boundary surface S and the right one
S ′. The slab contains a single unit cell in the surface normal
direction, and S and S ′ are related by the lattice vector d
defined in Sec. II A. In most cases, any planar surface between
two neighboring atomic layers intersects the muffin-tin (MT)
spheres of atoms on both sides of the plane. This is not
convenient from a numerical point of view, since we use the
LAPW basis functions. To avoid this, when we construct the
boundary surface S, we start with a planar surface z = z0 at
the middle of two neighboring atomic planes, and if the plane
z = z0 cuts the MT sphere of a nearby atom whose nucleus
is located on the right (left) side of z = z0, we remove the
disk-shaped small portion of z = z0 contained inside the MT
sphere of this atom from S, and instead add to S the cap-shaped
small portion of the MT spherical surface to the left (or right)
of the plane z = z0, so that the MT sphere of this atom may
be located entirely to the right (or left) of the resultant curvy
surface. This procedure is repeated for all the atoms whose
MT spheres intersect z = z0. As basis functions to expand the
wave function defined on the resultant curvy surface S, we
employ [39]

χj (x) = 1√
A

exp[i(k + gj ) · x̃], (19)

where gj denotes a 2D reciprocal lattice vector in the xy plane
as before, and x = (x̃,z(x̃)) is a point on S with x̃ = (x,y) being
its projection onto the xy plane. As far as (x̃,z0) is located in
the interstitial region, z(x̃) coincides with z0. Only when (x̃,z0)
is located inside the MT sphere of a nearby atom, z(x̃) deviates
from z0 so that (x̃,z(x̃)) may be on the cap-shaped surface of
the MT sphere of the atom.

Since the basis set {|η〉} with η = (j,σ ) (η = 1,2, . . . ,2N ),
where N is the number of the reciprocal lattice vectors included
in the basis set, is nonorthogonal on S, the equations in “η
representation” given in Sec. II must be slightly modified.
This is most easily handled by introducing the dual basis set
{|η̄〉} (η = 1,2, . . . ,2N ), where |η̄〉 is defined by

|η̄〉 =
∑
η′

|η′〉(S−1)η′η,
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with Sηη′ = 〈η|η′〉. The dual basis set satisfies 〈η̄|η′〉 = δηη′ .
With these notations, Eq. (2) should now read

〈η̄|∂nψ〉 = 2
∑
η′

〈η̄|	̂L(k,ε)|η̄′〉 〈η′|ψ〉. (20)

Similarly, the eigenvalue equation of the embedding potential
Eq. (10) is modified as∑

η′
〈η̄|	̂L(k,ε)|η̄′〉〈η′|φi〉 = λi(k,ε)

∑
η′

〈η̄|η̄′〉〈η′|φi〉, (21)

where 〈η̄|η̄′〉 = (S−1)ηη′ .
As mentioned in Sec. II B, the embedding potential is

constructed from the transfer matrix that relates the value and
normal derivative of wave functions on S and S ′. More details
on the computational method of the transfer matrix and the
generalized Bloch states are given in Ref. [32].

B. Empty lattice

Before presenting results for realistic materials, we discuss
some general aspects of the eigenvalues of the embedding
potential by adopting the empty lattice approximation. We
assume that the potential energy takes a constant value E0

in the whole space and choose the plane z = z0 as the
embedding surface. Then, the solution of the Schrödinger
equation with energy ε and 2D wave vector k satisfying the
outgoing boundary condition at z = −∞ is a plane wave or an
evanescent wave of the form containing a single 2D reciprocal
lattice vector k + gj ,

ψ(r) = 1√
S

exp[i(k + gj ) · x + κzz]. (22)

Thus 	̂L(k,ε), the embedding potential for the left half-space,
is diagonal with respect to 2D reciprocal lattice vectors and its
eigenvalues are given by

λj = − 1
2κz = − 1

2

√
|k + gj |2 + 2(E0 − ε), (23)

with Imλi � 0. For the present case, the projected bulk band
gap corresponds to ε < E0 + 1

2 mini |k + gi |2, and all the
eigenvalues λi becomes real and negative in the projected bulk
band gap.

As an example, let us consider a 2D hexagonal lattice with
lattice constant a as the lattice structure in the xy plane. The
real-space lattice vectors are a1 = (a,0) and a2 = ( 1

2a,
√

3
2 a),

and the corresponding four TRIM points are kI = (0,0) (�),
kII = (π

a
, − π√

3a
), kIII = (0, 2π√

3a
), and kIV = (π

a
, π√

3a
). In the

following sections, we consider semi-infinite crystals having
C3v symmetry, for which the latter three TRIM points are
symmetrically equivalent (the M point).

In Fig. 2(a), we show the embedding-potential eigenvalues
of a semi-infinite crystal within the empty lattice approxima-
tion with a hexagonal-lattice structure in the xy plane. Here,
the lattice constant in the plane, electron energy, and cutoff
parameter are chosen as a = 8.0 a.u., ε = E0 − 0.01 a.u., and
Gcut = 3.5 a.u., respectively. Since λi(k,ε) as a function of
k can diverge at poles for realistic materials, in the present
work, we have chosen to plot tan−1 λi instead of λi to
show the embedding-potential eigenvalues. Thus the range

FIG. 2. Embedding-potential eigenvalues λi(k,ε) of semi-infinite
crystals within the empty lattice approximation along a k-space line
segment connecting two TRIM points. (a) Hexagonal lattice with
lattice constant a = 8 a.u., (b) square lattice with a = 6 a.u. In both
panels, energy ε is E0 − 0.01 a.u., and the cutoff parameter Gcut is
3.5 a.u.

of the vertical axis becomes a finite interval [−π/2,π/2].
Each λ = λi(k,ε0) line in Fig. 2(a) is doubly degenerate
with respect to spin degrees of freedom, and more than
one lines meet together at � and M because of the empty
lattice approximation. The latter degeneracy can be lifted by
introducing nonvanishing lattice potentials, while the former
degeneracy can be lifted by introducing spin-orbit interactions
except at the two TRIM points, � and M . The λi(k,ε) values
corresponding to eigenfunctions φi’s that decay slowly toward
the interior of the crystal do not change upon increasing cutoff
parameter Gcut, while one obtains additional eigenfunctions
whose amplitude is strongly localized near S by increasing
Gcut. As will be shown in the following sections, these rapidly
decaying solutions are rather insensitive to material details
and form a bunch of λi(k,ε) bands whose lower limit is given
by ∼ − 1

2Gcut. This is somewhat analogous to electronic band
structure calculations of bulk crystals, in which the low-lying
energy bands hardly change with increasing plane-wave cutoff
parameter Gcut, while one obtains additional free-electron-like
states with energy ∼ 1

2G2
cut by increasing Gcut.

For comparison, we show in Fig. 2(b) the λi(k,ε) values of
a semi-infinite crystal within the empty lattice approximation
with a square-lattice structure in the xy plane, where the lattice
constant a = 6.0 a.u., ε = E0 − 0.01 a.u., Gcut = 3.5 a.u.,
and the Y point corresponds to k = (0, π

a
). Qualitatively, the

eigenvalue spectra in both panels are very similar. In the sense
that both eigenvalue spectra exhibit no poles along the paths
connecting two TRIM points, one may regard the half-space
with constant potential E0 as topologically trivial.

C. CdTe(111)

Now, we present the calculated results for several realistic
band insulators exhibiting strong spin-orbit interactions. All
the systems considered in the present work possess the C3v

symmetry and we choose the y axis such that the yz plane is
one of the three mirror reflection planes. We begin with CdTe
crystallized in the zinc-blende structure with a cubic lattice
constant of 6.48 Å [40]. This material is topologically trivial
and characterized by 3D Z2 invariants, (ν0; ν1ν2ν3) = (0; 000).
Since the bulk crystal has no space inversion symmetry, the
standard parity analysis cannot be used to determine these Z2

parameters.
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FIG. 3. (a) Crystal structure of CdTe seen from a direction
perpendicular to the [111] axis. (b) Projected bulk bands of CdTe(111)
along the �-M line produced in two steps: first, one fixes the surface
normal (z) component of the wave vector, kz, and plots the energy of
each band with 2D k (different bands are plotted in different colors).
Second, one varies kz with a small mesh interval from −π/dz to π/dz.
(c) The eigenvalue spectrum of the embedding potential of CdTe(111)
along a constant energy path ε = ε1 shown by a dashed line in (b).
(d) Enlargement of (c) corresponding to a small λ interval indicated
by the vertical blue arrow in (c).

We calculate the eigenvalues of 	̂L(k,ε) for a semi-
infinite CdTe(111) along a straight path between kI = (0,0)
(�) and kIII = (0, 2π√

3a
) (M) with a = 6.48/

√
2 Å being a

hexagonal lattice constant of the (111) plane. Since the three
TRIM points, kII, kIII, and kIV are symmetrically equiva-
lent, we have π�πM = π�(πM )3 = ∏

α=I∼IV πα = (−1)ν0 = 1
(note that (−1)ν0 equals the product of Eq. (17) for the eight
3D TRIM points). Thus it is expected that the λi versus k plot
for CdTe(111) behaves like the left panel of Fig. 1(b).

As shown in Fig. 3(a), the lattice planes of Cd and Te are
stacked with two alternating interlayer spacings. By choosing
a central plane between two neighboring Cd and Te atomic
planes bonded in the [111] direction as S, one can define a
planar embedding surface S cutting no MT surfaces of Cd
and Te atoms on both sides of S. As a consequence, the basis
functions given by Eq. (19) become orthonormal in the present
case. Figure 3(b) shows the projected bulk bands of CdTe(111)
along the �-M line, which was calculated by a bulk LAPW
code. Each line represents the energy dispersion of a 3D energy
band with 2D k at a fixed value of kz, the z component of the
3D wave vector, which is varied with a small mesh interval
between [−π/dz,π/dz].

In Fig. 3(c), we show the embedding-potential eigenvalues
of CdTe(111) along a constant energy path ε = ε1 linking
� and M in the projected bulk band gap between the
valence and conduction bands shown by a dashed line in
panel (b). The cutoff parameter for the basis functions is

chosen as Gcut = 3.5 a.u. As stated in the preceding section,
a bunch of eigenvalues with tan−1 λi ∼ − tan−1(Gcut/2) =
−1.05 forming the lower edge of the λi bands correspond
to the evanescent waves strongly localized near S. Figure 3(d)
shows an enlargement of panel (c) corresponding to a small λ

interval marked with a vertical blue arrow. These eigenstates
are well converged and do not change upon increasing Gcut. It
is seen that two states in a Kramers pair at � form a Kramers
pair again at M , and also that each pair of states is separated
from neighboring pairs by a λ gap. Qualitative features of
these lines coincide with those in the left panel of Fig. 1(b),
confirming that the topological invariant along �–M , π�πM ,
equals unity.

Here, it may be worth to address a particular property of
the systems having C3v symmetry. That is, due to the mirror
reflection symmetry about the yz plane, generalized Bloch
states with k along the �–M line are either even or odd with
respect to the mirror reflection operation about the yz plane,
σ̂yz [41]. Assuming that φi , one of the two states forming a
Kramers pair at � or M , is even with respect to σ̂yz, it is easy
to show that the other state in the pair, T̂ φi , is odd with respect
to σ̂yz. This means that a pair of states forming a Kramers
doublet at both � and M have opposite parities with respect
to σ̂yz along the �–M line. As a consequence, the two lines
forming a pair in Fig. 3(d) can cross each other in the middle
of the �–M line.

D. GeTe(111)

For the second example we consider GeTe crystallized
in the rock-salt structure. We used a cubic lattice constant
of 6.02 Å reported in a recent work [42]. Similarly to
CdTe, GeTe is a nontopological insulator with 3D Z2 invari-
ants, (ν0; ν1ν2ν3) = (0; 000). We calculate the eigenvalues of
	̂L(k,ε) for a semi-infinite GeTe(111) along the �–M line. As
seen from Fig. 4(a), the system consists of alternating Ge and
Te atomic planes, which are stacked in the [111] direction with
the same layer spacing and form a hexagonal lattice with lattice
constant a = 6.02/

√
2 Å. Since the MT spheres of atoms are

nearly as large as touching spheres, the embedding surface S

weaving between two neighboring Ge and Te atomic planes
becomes a curvy surface to avoid overlapping with the MT
spheres of atoms on both sides of S. In Fig. 4(b), we show the
projected bulk bands of GeTe(111) along the �–M line.

The eigenvalues λi(k,ε) vary with k, ε, and also with the
choice of the embedding surface S. Here, we illustrate how
the eigenvalues change with energy ε. In Fig. 4(c), we show
the embedding-potential eigenvalues of GeTe(111) along a
constant energy path ε = ε1 in the projected band gap between
the valence and conduction bands shown by a dashed line
in panel (b). Since π�πM = (−1)ν0 = 1, the eigenvalues of
	̂L(k,ε) form pairs of states, which are degenerate both at �

and M , and are separated from neighboring pairs by λ gaps.
Interestingly, in contrast to the left panel of Fig. 1(b), where all
the λi values are finite, it is seen that the two states forming a
degenerate pair at � with the largest λi value (tan−1 λi = 1.21)
diverge to +∞ at two poles, k = k1 and k2, in the middle of the
�–M line. After crossing the poles, they emerge from λ = −∞
and disperse with k on the negative λ side. Moreover, before
reaching the M point, they diverge again to −∞ at two poles,
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FIG. 4. (a) Crystal structure of GeTe seen from a direction
perpendicular to the [111] axis. (b) Projected bulk bands of GeTe(111)
along the �–M line. (c) Eigenvalue spectrum of the embedding
potential of CdTe(111) along a constant energy path ε = ε1 shown by
a dashed line in (b). (d) The same as (c) for a slightly larger energy
ε = ε2.

k = k3 and k4, changing their sign, and form a Kramers pair at
M on the positive λ side with tan−1 λi = 1.51. As discussed
in Sec. II, the existence of a pole in λi indicates that one can
construct an evanescent wave φi whose amplitude vanishes
identically on S at (k,ε). If one plots λ−1

i instead of λi as a
function of k, the two states exhibit no singularity. Rather, the
λ−1

i versus k plot of the two states varies smoothly through
� and M , crossing the line λ−1 = 0 at k1 and k4 or at k2 and
k3. It should be also noted that the fact that these two states
exhibit large negative λi values in the second half of the �–M

line does not mean that the corresponding eigenfunctions φi

are strongly localized near S, as is the case for a bunch of
eigenstates with λi ∼ −Gcut/2. Instead, the λi values of this
pair take large values, simply because the denominator of the
equation λi = ∂nφi/(2φi), which holds on every point on S, is
much smaller than its numerator.

Figure 4(d) shows the embedding-potential eigenvalues of
GeTe(111) along the �–M line at a slightly larger energy
ε = ε2 than ε1 in the projected bulk band gap. The eigenvalue
spectra in Figs. 4(c) and 4(d) are qualitatively very similar. The
two states in panel (d) forming a degenerate pair at � with the
largest λi value diverge to +∞ at two poles (k1 and k2) and
change their sign similarly to the corresponding ones in panel
(c). However, the two states do not return to the positive λ side
differently from the corresponding ones in panel (c). Instead,
the two states form a Kramers doublet at M on the negative λ

side with tan−1 λi = −1.24.

E. Bi(111)

From the results for the empty lattice, CdTe, and GeTe,
one may say that the total number of poles that λi(k,ε)

FIG. 5. (a) Projected bulk bands of Bi(111) along the �–M line.
Blue and green lines correspond to the highest valence band and
lowest conduction bands, respectively. (b) Eigenvalue spectrum of the
embedding potential of Bi(111) along energy path ε = ε1(k) shown
by a dashed line in (a). (c) Enlargement of (b) corresponding to a
small λ interval indicated by vertical blue arrow in panel (b). (d) The
same as (b) for energy path ε = ε2(k).

(i = 1,2, . . . ,2N ) exhibit along a path linking two TRIM
points, kα and kβ , in a projected bulk band gap is even,
if the product of time-reversal polarization, παπβ is unity.
Because of Eq. (12), one may also say that the number of poles
that the embedding potential 	̂L(k,ε) exhibits along the same
path is even. Although we considered so far only constant-
energy paths, this also holds for any curvy path ε = ε(k)
(kα � k � kβ) passing in a projected bulk band gap from kα

to kβ . To illustrate this, we calculate the embedding-potential
eigenvalues of Bi(111).

Bismuth crystallizes in the rhombohedral A7 structure, in
which hexagonal 2D layers are stacked perpendicularly to the
[111] direction with the interlayer spacing alternating between
two values [43,44]. A pair of nearest-neighbor layers (bylayer)
with shorter layer spacing is covalently bonded, while nearest
bylayers with larger layer spacing are more weakly coupled.
We choose the embedding surface such that it weaves between
two neighboring bylayers.

In Fig. 5(a), we show the projected bulk bands of Bi(111)
along the �–M line. While Bi is a semi-metal, its valence bands
can be characterized by the Z2 topological invariants, since Bi
has a finite direct energy gap throughout the Brillouin zone.
Fu and Kane [20] proposed Bi1−xSbx alloys as a candidate of
3D topological insulators in a certain range of x values, where
Bi, the end component with x = 0, is a trivial insulator with
(ν0; ν1ν2ν3) = (0; 000). For Bi, it is not possible to define a
constant energy path passing in the projected bulk band gap
from � to M because the maximum of the projected valence
bands is higher in energy than the minimum of the projected
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conduction bands. Instead, we consider two curvy paths ε =
ε1,2(k), which trisect the projected bulk band gap between the
valence and conduction bands of Bi.

Figure 5(b) shows the calculated embedding-potential
eigenvalues of Bi(111) along ε = ε1(k) in the whole range,
while panel (c) is its enlargement corresponding to a small λ

interval marked with a blue arrow in panel (b). As in the case
of CdTe and GeTe, it is seen that the two states in a Kramers
pair at � form a Kramers doublet again at M and each pair of
states is separated from neighboring one, which is consistent
with the topological characterization of the Bi valence bands.
The two states in the Kramers pair with the largest eigenvalue
at � (tan−1 λi = 1.08) diverge to +∞ at two poles, k1 and
k2, and jump to λ = −∞ and then further disperse with k on
the negative λ side, until they are merged into the densely
distributed λi bands with λi ∼ −Gcut/2.

Figure 5(d) shows the calculated eigenvalues of 	L(k,ε)
along path ε = ε2(k) shown in panel (a). Qualitatively, the
eigenvalue spectra are very similar to those in panel (b). As
a difference, the embedding-potential exhibits no poles on
the path ε = ε2(k). The Kramers pair with tan−1 λi = 1.08
in panel (b) shifts to larger λ values and change sign at
some energy between ε1(k�) and ε2(k�). As a result, the
corresponding Kramers pair at � appears on the negative λ

side with tan−1 λi = −1.42.

F. TlBiSe2(111)

As the first example of topological insulators, we consider
TlBiSe2 with 3D Z2 invariants, (ν0; ν1ν2ν3) = (1; 000). At
first, this material was shown to be a topological insulator by
the parity analyses of the valence-band wave functions within
DFT [11]. This prediction was later verified by photoemission
experiments in which a 2D Dirac cone crossing the bulk band
gap was observed [13–15]. As shown in Fig. 6(a), TlBiSe2

is composed of hexagonal atomic layers, which are stacked
in the surface normal (z) direction in the same sequence as
a face centered cubic (FCC) crystal, that is, in the sequence
ABCABC . . ., where A, B, and C refer to the three atomic
sites of the FCC lattice when atoms are projected onto the
(111) plane. Regarding atomic arrangement, the lattice planes
are stacked in the repetition of the sequence Se-Bi-Se-Tl, so
that one unit cell contains four atomic layers, among which
Bi and Tl atomic sites are the inversion centers. In the present
work, we employ the bulk lattice parameters determined by a
DFT calculation reported by Singh et al. [45].

We consider a TlBiSe2 crystal oriented in the [111]
direction, where we use the rhombohedral unit cell to define
crystal orientations. The left half-space is defined by a curvy
embedding surface located at the middle of two neighboring Tl
and Se layers. We calculate the eigenvalues of 	̂L(k,ε) along
the �–M line. Since π�πM = π�(πM )3 = (−1)ν0 = −1, it is
expected that the λi versus k plot of TlBiSe2 behaves like the
right panel of Fig. 1(b).

Figures 6(b) and 6(c) show, respectively, the projected bulk
bands of TlBiSe2(111) along the �–M line and the eigenvalues
of 	̂L(k,ε) along a constant energy path ε = ε1 in the projected
bulk band gap between the valence and conduction bands. The
cutoff parameter for the basis functions is chosen as Gcut =
3.5 a.u. As already mentioned, while the lowest λi values

FIG. 6. (a) Crystal structure of TlBiSe2 seen from a direction
perpendicular to the [111] axis. (b) Projected bulk bands of TlBiSe2

along the �–M line. (c) Eigenvalue spectrum of the embedding
potential of TlBiSe2(111) along a constant energy path ε = ε1 shown
by a dashed line in (b). (d) Enlargement of (c) corresponding to a
small λ interval indicated by vertical blue arrow in (c).

corresponding to the evanescent waves strongly localized near
S (λi ∼ −Gcut/2) depend on the cutoff parameter, the other
eigenvalues including the zeros and poles of 	̂L(k,ε) are well
converged with respect to Gcut. It is seen that the eigenvalue
spectrum as a function of k exhibits a single pole at k = k1.
Figure 6(d) is an enlargement of panel (c) corresponding to a
small λ interval marked with a vertical blue arrow. As is seen,
in clear contrast to the cases of CdTe and GeTe, two states in
a Kramers pair at � do not form a Kramers pair at M . Instead,
the upper branch of a Kramers pair at � and the lower branch
of its nearest-neighbor Kramers pair at � having a larger λi

value form a Kramers pair at M . As a result, the ensemble of
line segments λ = λi(k,ε) (i = 1,2, . . .) form a single zigzag
line alternating between � between M from λ = −∞ to +∞
with a single pole at k = k1. These qualitative features agree
fully with those in the right panel of Fig. 2(b), indicating that
π�πM = −1 for the present system.

It should be also noted that the two states forming a Kramers
doublet at � or M have opposite parities with respect to
the mirror reflection operation σ̂yz due to C3v symmetry as
mentioned before. As a result, two neighboring line segments,
λ = λi(k,ε1) and λ = λi+1(k,ε1), which meet each either at �

or M , can cross each other in the middle of the �–M line.
This applies, for example, for the crossing point of two lines
at tan−1 λ ∼ −0.225 in Fig. 6(d).

G. Bi2Se3(111)

As the second example of topological insulators, we con-
sider Bi2Se3 having the same 3D Z2 invariants (ν0; ν1ν2ν3) =
(1; 000) as TlBiSe2 [7,8]. As is known, the unit cell of Bi2Se3
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FIG. 7. (a) Projected bulk bands of Bi2Se3(111) along the
�–M line. (b) Eigenvalue spectrum of the embedding potential of
Bi2Se3(111) along a constant energy path ε = ε1 shown by a dashed
line in (a). (c) Enlargement of panel (b) corresponding to a small λ

interval indicated by vertical blue arrow in (b). (d) The same as (b)
for a larger energy ε = ε2.

contains five hexagonal atomic layers stacked in the sequence
Se-Bi-Se-Bi-Se (quintuple layer) in the [111] direction, among
which Se atomic sites in the third layer form space inversion
centers. Neighboring atoms within the same quintuple layer are
strongly bonded, whereas two neighboring quintuple layers
are more weakly bonded, leading to a larger layer spacing
between the two neighboring Se layers at the boundary of two
quintuple layers than those within the same quintuple layer.
The embedding surface S is chosen such that it weaves between
these two neighboring Se atomic layers. We employ the lattice
parameters reported in the recent experimental work of dos
Reis et al. [46].

In Fig. 7(a), we show the calculated projected bulk bands of
Bi2Se3(111) along the �–M line. We plot the eigenvalues of
	̂L(k,ε) along two constant energy paths, ε = ε1 and ε = ε2,
passing between � and M in the projected band gap between
the valence and conduction bands. Since π�πM = (−1)ν0 =
−1, the λi versus k plot of Bi2Se3(111) should behave like
the right panel of Fig. 1(b) as in the case of TlBiSe2. In
fact, the eigenvalue spectrum for ε = ε1 shown in panel (b)
exhibits a single pole at k = k1. Figure 7(c) is an enlargement
of panel (b) corresponding to a small λ interval marked with
a vertical blue arrow. It is clearly seen that two states in a
Kramers pair at � change their partners at M . As a result, the
set of line segments λ = λi(k,ε) (i = 1,2, . . .) forms a single
connected line, alternating between � and M . It is also seen
that two neighboring line segments, which become degenerate
at � or M , cross each other in the middle of the �–M line
because they have opposite parities with respect to the mirror
reflection σ̂yz.

Furthermore, similarly to the previous example of GeTe and
Bi(111), the number of poles along the �–M line changes by
multiples of 2 depending on the energy value in the projected
bulk band gap. In Fig. 7(d), we plot the eigenvalues of 	̂L(k,ε)
at a larger energy ε = ε2, for which one finds three poles along
the �–M line. Looking into more details, one sees that the two
states forming a Kramers pair at M with the largest λi value
(tan−1 λi = 1.53 at ε = ε1) shift upward with increasing ε. As
a result, at ε = ε2, the two states diverge to +∞ at two poles,
k = k2 and k3. After crossing these poles, they emerge from
λ = −∞ and form a Kramers pair at M on the negative λ side
with tan−1 λi = −1.27. Similarly, the Kramers pair at � with
the largest positive λi value (tan−1 λi = 1.07 at ε = ε1) shifts
upward with increasing ε, transferring to the negative λ side at
ε = ε2 (its position is hard to see, as it overlaps and interacts
with the dense distribution of λi bands with λi � −Gcut/2).
As a result, the residue of the pole at k = k1 changes sign
between ε1 and ε2.

From the results for TlBiSe2 and Bi2Se3, we confirm that
the total number of poles that the embedding potential exhibits
along a path linking two TRIM points, kα and kβ , in a projected
bulk band gap is odd, if παπβ = −1. By denoting this number
by PL, we find

παπβ = (−1)PL, (24)

which holds for both topologically trivial and nontrivial cases.
Equivalently, the Z2 topological invariant can be expressed
as ν = PL mod 2. One may further generalize this relation as
ν = NL(λ0) mod 2, where NL(λ0) denotes the number of points
at which the line segments λ = λi(k,ε0(k)) (i = 1,2, . . .)
intersect λ = λ0 along a path ε = ε0(k) passing in the projected
bulk band gap from kα to kβ . Obviously, PL corresponds to
NL(λ0) in the limit of λ0 → ±∞. This is analogous to the
well-known criterion for topological insulators that the number
of points at which the energy dispersion curves of surface
bands with k intersect the Fermi energy is odd [19,20]. Both
criteria are closely related, since, as discussed in Sec. II E,
they are properties of the lines of intersection when one cuts
the 2D surfaces λ = λi(k,ε) (i = 1,2, . . .) in the 3D (k,ε,λ)
coordinate space by either a vertical or a horizontal plane.

H. Relation to previous works

It may be useful to discuss the relation between the present
method and previous ones for the determination of the Z2

invariant of band insulators. Specifically, we will focus on the
formulation in which one makes use of the winding number of
the Wannier function centers for the occupied valence bands
[24,25]. The figures in the paper of Yu et al. [25] showing
the evolution of the Wannier function centers along a path
connecting two TRIM points might look similar to Figs. 3 to
7 in the present paper. We consider that both methods are not
directly related. Our reasoning is as follows.

The Wannier functions in Refs. [24,25] are constructed
from the wave functions of the occupied valence bands. Main
quantity in the present theory is the embedding potential at
an arbitrary energy within the projected band gap between
the valence and conduction bands. The embedding potential
is constructed from the evanescent waves satisfying the
generalized Bloch condition. The character of the wave
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functions of these evanescent waves changes continuously
with energy. When the energy is slightly above the upper edge
of the projected valence bands, εv(k), their orbital character is
similar to that of the valence bands. On the other hand, when
the energy is slightly below the lower edge of the projected
conduction bands, εc(k), their orbital character is similar to that
of the conduction bands. Namely, the embedding potential is
not a property of the valence bands alone. In other words, if
the Hamiltonian matrix is constructed by using the Wannier
functions as the basis set, one would need not only the Wannier
functions of the valence bands but also those of the conduction
bands in order to be able to describe the evanescent waves
within the band gap. Thus we may say that, while the Wannier
center method derives the Z2 topological invariant from the
subspace of the Hamiltonian spanned by the occupied valence
bands, the present method uses a wider eigenstate space to
find the same quantity. In addition, it should be noted that
the embedding-potential eigenvalue is a real quantity simply
giving the ratio between the amplitude of the evanescent waves
and their normal derivative on the boundary surface and has no
relation with the eigenvalues of the projected position operator
used in the Wannier center method. Also, the number of lines
plotted in Figs. 3 to 7 in the present paper increases with the
increasing cutoff energy for the basis functions (19) and is
different from the number of the occupied bands.

The present method may rather be regarded as a technique to
calculate surface states from a single bulk unit-cell calculation
without making any computationally more demanding slab or
semi-infinite surface calculations. The point is that the exis-
tence of gapless surface states for topological band insulators is
protected by time-reversal symmetry for any surface boundary
condition irrespective of whether the boundary condtion is
realistic or only mathematical. As discussed in Sec. II E,
the eigenfunction of the embedding potential in the band
gap is a surface state satisfying the mathematical boundary
condition (18) on the boundary surface S. Hence it may be
rather natural that one can predict the emergence of a gapless
surface band from the behaviors of the eigenvalues of the
embedding potential. Indeed, the poles that the embedding
potential 	̂L(k,ε) exhibits along a path ε = ε0(k) between
two TRIM points in the projected bulk band gap are identical
with the points at which the energy dispersion curves of the
surface bands, which fulfill the particular boundary condition,
φ(ξ ) = 0 on S, intersect the line ε = ε0(k) in the energy gap.
Hence PL gives the number of points of intersection between
ε = ε0(k) and the energy dispersion curves of these bands.

IV. DISCUSSION ON INTERFACE STATES

In Sec. II E, we discussed the surface states of a semi-infinite
crystal occupying the half space to the left of surface S by
imposing a mathematical boundary condition, Eq. (18), on the
surface-state wave functions. Here, we consider an arbitrary
interface between two semi-infinite crystals and discuss under
what conditions the localized interface states may occur in
the projected bulk band gap of the two crystals. We would
like to explain from a view point of the embedding theory
why metallic interface bands crossing the bulk band gap occur
without exception when one system is a trivial insulator and
the other is a topological insulator.

We assume that the semi-infinite crystal on the left-hand
side of the interface, CL, and that on the right-hand side, CR ,
both are made out of lattice planes stacked in the surface
normal (z) direction and have the same 2D unit cell specified
by two lattice vectors, {a1,a2}. Although the atoms near the
interface may deviate from the ideal positions due to layer
relaxations and restructuring, we assume that the interface
holds the 1 × 1 structure in the plane. We define an embedding
surface S at the interface between the two crystals. To calculate
the embedding potential for the left half-space, 	̂L(k,ε), one
starts with the 2N generalized Bloch states, ψi , satisfying
the generalized Bloch condition (5) in the interior of CL.
By integrating the Schrödinger equation with respect to z

from the interior of CL through the interface region up to
S, one obtains the value and normal derivative of these 2N

solutions on S. Then, 	̂L(k,ε) is calculated by using Eq. (7).
The embedding potential for the right-half space, 	̂R(k,ε), is
calculated in a similar manner from the 2N generalized Bloch
states satisfying the outgoing boundary condition at z = +∞
in the interior of CR .

Given a 2D wave vector k, localized interface states may
occur when the energy ε is located in the projected band gap
of CL and in the corresponding one of CR both. The lower and
upper boundaries of the intersection of the projected bulk band
gaps of the two materials will be denoted by εv(k) and εc(k) in
the following. Let us denote the wave function of an interface
state with ε and k by φ. Since φ decays toward the interior of
CL, its left normal derivative on S is given by Eq. (1). Further,
since φ also decays toward the interior of CR , its right normal
derivative is given by a similar equation in which 	̂L in Eq.
(1) is replaced by 	̂R (note that the surface normal n points to
the interior of the half space, so that n for 	̂R is opposite to
n for 	̂L). Since the left and right normal derivatives must be
the same, we have on S,∫

S

dξ ′	(k,ε,ξ,ξ ′) φ(ξ ′) = 0, (25)

with 	̂(k,ε) defined by

	̂(k,ε) ≡ 	̂L(k,ε) + 	̂R(k,ε). (26)

Equation (25) indicates that the energies of the interface states
with 2D wave vector k are determined by the equation,

det[	̂(k,ε)] = 0. (27)

As discussed in Sec. II C, 	̂L(k,ε) and 	̂R(k,ε) are
Hermitian in the projected bulk band gap of each material, so
that 	̂(k,ε) is Hermitian if εv(k) < ε < εc(k). In this energy
range, the eigenvalues of 	̂(k,ε) are real and the corresponding
eigenfunctions form an orthonormal basis set on S. Thus,
similarly to Eqs. (12) and (13), we have

	̂(k,ε) =
∑

i

λi(k,ε)|φi〉〈φi |, (28)

det[	̂(k,ε)] =
∏

i

λi(k,ε), (29)

where λi and φi denotes the i-th eigenvalue and eigenfunction
of 	̂(k,ε). From Eqs. (27) and (29), we see that the energies
of the interface state are given by the zeros of the eigenvalues
λi(k,ε).

115415-11



H. ISHIDA AND D. WORTMANN PHYSICAL REVIEW B 93, 115415 (2016)

Now, we assume that the system in consideration has time-
reversal symmetry. Due to Eq. (16) and the corresponding one
for 	̂R , we have

T̂ 	̂(k,ε) T̂ −1 = 	̂(−k,ε), (30)

if εv(k) < ε < εc(k). From this equation, we will see that T̂ φi ,
with φi being the eigenfunction of 	̂(k,ε) with eigenvalue
λi(k,ε), is an eigenfunction of 	̂(−k,ε) with the same
eigenvalue. Therefore, similarly to Eq. (15), we have

λi(−k,ε) = λi(k,ε). (31)

In what follows, we assume that k is along a path connecting
two TRIM points, kα and kβ (α,β = I ∼ IV). We use a scalar
variable k to represent 2D wave vector k on this path. As we did
in Sec. II D, it is useful to plot 2D surface λ = λi(k,ε) in the 3D
Cartesian coordinate system having the horizontal kε plane and
the vertical λ axis [see Fig. 1(a)]. Let us consider the lines of
intersection between surfaces λ = λi(k,ε) (i = 1,2, . . .) and a
vertical cut plane ε = ε0 in the projected bulk band gap. Then,
these lines, λ = λi(k,ε0) (i = 1,2, . . .), will behave like either
the left or right panel of Fig. 1(b), since they form Kramers
doublets at both end points, kα and kβ , because of Eq. (31).
In the present case, the energy dispersion relations with k

of the interface states are given by the lines of intersection
between surfaces λ = λi(k,ε) (i = 1,2, . . .) and the horizontal
cut plane λ = 0 as mentioned in the above. Following the same
arguments in Sec. II E, we may conclude that interface bands
crossing the projected bulk band gap inevitably occur if the
set of lines λ = λi(k,ε0) (i = 1,2, . . .) behave like the right
panel of Fig. 1(b). As discussed in Sec. III, the behaviors of
these lines are related with the number of poles that these
lines exhibit or equivalently with the number of poles that
	̂(k,ε0) exhibits along the path linking kα and kβ . The lines
of intersection behave like the right panel of Fig. 1(b) if this
number is odd. Because of the definition Eq. (26), the poles
of 	̂(k,ε0) arise either from the poles of 	̂L(k,ε0) or those of
	̂R(k,ε0). Namely, if the numbers of these poles are denoted
by P , PL, and PR , respectively, we will have P = PL + PR .
This indicates that surface states crossing the bulk band gap
inevitably occur for two combinations, (PL,PR) = (even,odd)
and (odd,even). In the case of crystal surfaces, the semi-infinite
vacuum on the right-hand side may be regarded as an empty
lattice with PR = 0. Thus the surface bands crossing the
projected bulk band gap always appear if PL is odd.

Before closing, one comment is in order. In the end
of Sec. II B, we emphasized that the embedding potential
is a bulk quantity obtained from generalized Bloch states.
The embedding potentials, 	̂L and 	̂R , in this section are
different in the sense that, in order to determine them, one
needs to calculate the value and normal derivative of the
generalized Bloch states on S by integrating the Schrödinger
equation through the interface region where the potential may
deviate from the bulk one. In this case, the eigenvalues of the
embedding potential may vary continuously, as the embedding
surface S is gradually moved from the interior of the crystal
toward the interface region. While the number of poles may
vary by a multiple of 2 similarly to Figs. 4, 5, and 7, where
energy ε was changed rather than the position of S, it is unlikely
that the behaviors of the embedding-potential eigenvalues
switch suddenly from those in the left panel of Fig. 1(b) to

those in the right panel or vice versa. Therefore we believe
that PL and PR mod 2 are bulk properties.

V. SUMMARY AND CONCLUSION

The embedding technique invented by Inglesfield [27,28]
has been successfully applied to the electronic structure
calculation of inhomogeneous systems such as surfaces and
interfaces. The embedding potential of a semi-infinite crystal
relates the value and normal derivative on embedding surface S

of generalized Bloch states with energy ε and 2D wave vector
k propagating or decaying toward the interior of the crystal.

In the present work, we have shown that the embedding
potential of a time-reversal invariant band insulator for a
given crystal orientation can be used to determine the Z2

topological invariants of the material associated with the
crystal orientation. For this purpose, one only has to plot real
eigenvalues of the embedding potential in the interior of the
projected bulk band gap along an arbitrary path ε = ε0(k)
connecting two TRIM points in the SBZ, kα and kβ . They form
Kramers pairs at both TRIM points, and from the two distinct
ways how they behave along the path, one easily finds the Z2

invariant associated with the two TRIM points, παπβ = (−1)ν ,
where πα and πβ denote the time-reversal polarizations at
the two points. Furthermore, we have derived a simplified
equation, ν = P mod 2, where P denotes the number of
poles that the embedding potential exhibits along the path
ε = ε0(k) connecting the two TRIM points. To determine
all the independent Z2 invariants for 3D band insulators,
one would need to calculate the real eigenvalues of the
embedding potential in the projected bulk band gap for more
than one crystal orientations depending on the symmetry of a
given system.

As an application, we calculated real eigenvalues of the
embedding potential in the projected bulk band gap between
the valence and conduction bands for the (111) surfaces
of CdTe, GeTe, Bi, BiTlSe2, and Bi2Se3 within DFT. For
the former three systems, the number of poles along the
path connecting the � and M points was even, while the
corresponding one for the latter two insulators was odd in full
accord with the topological classification of the five materials.

We have also discussed, from the embedding view point,
under what conditions localized interface states crossing the
bulk band gap occur at the interface between two band
insulators. It was shown that such gapless band inevitably
emerges if the sum of the number of the poles that the
embedding potential for the left-half system exhibits along
the path connecting two TRIM points and the corresponding
one for the right-half system is an odd integer. This occurs
only when one of the insulators constituting the interface is a
trivial insulator and the other is a topological insulator.
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