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Critical radius and temperature for buckling in graphene
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In this work, we find an analytical flat-membrane solution to the saddle point equations, derived by F. Guinea
et al. [Phys. Rev. B 89, 125428 (2014)], for the case of a suspended graphene membrane of circular shape. We
also find how different buckled membrane solutions bifurcate from the flat membrane at critical temperatures
and membrane radii. The saddle point equations take into account electron-phonon coupling and this coupling
provides a residual stress even for a flat graphene layer. Below a critical temperature (which is exceedingly high
for an infinite layer) or above a critical size that depend on boundary conditions, different buckling modes that
may be the germ of rippling appear. Our results provide the opportunity to develop new feasible experiments
dealing with buckling in small suspended graphene membranes that could verify them. These experiments may
also be used to fit the phonon-electron coupling constant or the bending energy.
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I. INTRODUCTION

The discovery of graphene has spawned one of the most
fertile scientific fields of today. Its unique electrical [1] and
mechanical properties [2] promise to revolutionize current
technology, making extremely important to characterize the
properties of graphene in order to design and optimize new
devices. Among mechanical properties, the presence of ripples
in suspended graphene [3] has aroused a great theoretical
effort focused on their explanation from first principles [4–10],
and by using simple statistical mechanics models [11–15].
Thermal and external stresses have been used to create large
ripples (wrinkles) in a layer of graphene which is suspended
over trenches [16]. These ripples have been explained using
classical elasticity [16] and seem to be qualitatively different
from the nanometer sized ripples observed in Refs. [3,17,18].
The latter tend to be considered inherent to suspended
graphene. Even when ripples in graphene are not fully
understood, one of the most promising approaches to ripple
formation is the quantum mechanical study of the membrane
and the phonon-electron interaction as a mechanism for
rippling [7,8]. Since the graphene Debye temperature is TD ∼
1000 K, the quantum treatment of graphene seems justified
at room temperature. Perturbation treatments point to the
vanishing of the renormalized bending energy of the membrane
as a possible mechanism for ripple formation [8,10]. The
destabilizing effects of quantum fluctuations on the bending
rigidity of crystalline membranes (without electron-phonon
interaction) have been considered in Ref. [19]. Within equi-
librium theory and without phonon-electron interaction, the
effect of (Matsubara) frequency-dependent renormalization of
the anharmonic coupling after elimination of in-plane phonons
has been considered in Ref. [20].

Recent experimental studies emphasize buckling effects in
suspended graphene, as buckling is more easily characterized
than ripple formation and can strongly affect the design of new
graphene-based devices. Long-range buckling of the graphene
sheet is pronounced near defects and dislocations [21–26].
In Ref. [27], buckled bilayer and monolayer graphene are
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fully clamped to circular holes in an electrode. Buckling
is induced by the fabrication process so that the sheets
are buckled and strain-free at zero applied electric field.
In the experiment, an external electric field pressures the
membrane and induces a sudden change in the buckling
direction (a “snap-through” effect). A relation between the
critical pressure and the bending rigidity of bilayer graphene
provides a measure of the latter. Even when the graphene
layer is not buckled initially, a strong enough electrostatic
force can produce irreversible buckling [28]. A spontaneous
buckling effect (“mirror buckling”) is also found by Xu et al. in
Ref. [29]. This effect is systematically studied in Ref. [15], in a
complementary approach to that in Ref. [27]. In Ref. [15], the
authors study a suspended graphene monolayer using scanning
tunneling microscopy (STM). The microscope tip is located on
the center of an initially nonbuckled layer. The STM keeps a
constant current and a variable potential between the tip and the
sample. Once the current is fixed at a sufficiently high value,
the sample buckles when the potential increases, similarly to
the experiments in Ref. [27,28].

These experimental efforts have their theoretical counter-
part through different approaches to the buckling of two-
dimensional (2D) layers such as graphene. A broad overview
of the effects of strain in graphene and its relation with its
electrical properties can be found in Ref. [30]. The study of
spontaneous buckling in graphene due to doping is carried
out in Ref. [7]. In polymerized membranes, buckling occurs
below a critical temperature [31]. Phenomenological models
of crystalline membranes coupled to spins undergoing Glauber
dynamics also indicate that there are critical temperatures
below which the membranes buckle [12,13].

In Ref. [9], Guinea et al. have developed a model for
suspended graphene based in the coupling between flexural
phonons and electrons. They consider a 2D membrane in equi-
librium that is embedded in a 2 + d dimension space, where
there are d-dimensional out-of-membrane displacements (d =
1 in the physical situation). Then they eliminate the in-plane
phonons, ignore the frequency dependence of the resulting
couplings, use the self-consistent screening approximation and
perform a saddle-point analysis of the free energy in the limit as
d → ∞. The resulting saddle-point equations (SPEs) are time-
independent and will be analyzed in the present paper. They
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consist of one von Kármán type plate equation for the physical
out-of-plane displacement coupled to two equations for two
auxiliary fields: one “scalar” stress associated to membrane
curvature and a field associated to charge fluctuations. We
expect these equations to describe buckling and ripples of
the graphene membrane in a stable stationary (equilibrium)
configuration after all possible transients have decayed. We
find flat membrane solutions with constant nonzero auxiliary
fields. The linearization of the stationary SPEs about these
solutions accompanied by appropriate boundary conditions
provide an eigenvalue problem that yields critical values
of temperature and membrane size corresponding to the
bifurcation of buckling states from the flat membrane. Why
is this so?

The stationary SPEs provide stationary solutions to not yet
derived dynamic SPEs that should describe the graphene mem-
brane out of equilibrium. Among them, we have found the sta-
tionary flat membrane solution. Other solutions may bifurcate
from it at appropriate parameter values. To find them, we have
to solve the eigenvalue problem that governs the linear stability
of the stationary flat membrane solution to dynamic SPEs. The
corresponding eigenvalues give the growth of disturbances
about the stationary solution. We do not know the precise
shape of the dynamic SPEs but we may surmise that stationary
solutions bifurcating from the flat membrane appear when
these eigenvalues are zero. But linearized dynamic SPEs with
zero eigenvalues are the same as linearized stationary SPEs,
which we know from [9]. These linearized stationary SPEs
have nonzero solutions only for particular values of the con-
stant auxiliary fields that correspond to critical temperature and
membrane sizes. The eigenmodes solving these equations give
the shape of the buckling states near bifurcation points. A com-
bination of eigenmodes may characterize ripples in graphene.

The rest of the paper is as follows. In Sec. II, we
briefly revise the derivation of the stationary saddle-point
equations [9] and write them in real (not Fourier) space. In
Sec. III, we find the flat membrane solution of the SPEs for
constant auxiliary fields. In Sec. IV, we linearize the plate
equation that forms part of the stationary SPE about the
flat solution and add appropriate boundary conditions for a
finite circular graphene sheet. Thus we obtain an eigenvalue
problem for critical values of the constant auxiliary fields.
From the critical auxiliary fields, we get critical values of
temperature and membrane size at which nonflat buckled
solutions may bifurcate from flat ones. The linearized plate
equations are solved for a circular monolayer of graphene
with two different boundary conditions corresponding to a free
graphene layer and to a clamped sample. We obtain different
eigenmodes (corresponding to vertical deformations of the
layer) together with their respective critical temperatures and
radii. The critical radii allow us to predict the minimal size that
allows a graphene layer to buckle. Moreover, the combination
of the different bifurcating modes could be used to characterize
ripples in graphene. The last section contains our conclusions.

II. MODEL AND SADDLE-POINT EQUATIONS

In Ref. [9], Guinea, Le Doussal, and Wiese have considered
the graphene sheet to be a 2D membrane embedded in a larger
space of dimension d + 2 and interacting with Nf d copies of a

free Dirac fermion. The real physical system has Nf = 4 (four
flavors, two valleys and two spins) and d = 1 but Guinea et al.
have derived saddle-point equations involving the out-of-plane
displacement in the limit as d → ∞. Here we analyze buckling
of the graphene membrane using the saddle-point equations.
Let us briefly recall the model, the saddle-point equations
and their meaning. The model Hamiltonian consists of:
(1) the deformation energy of the graphene sheet is the sum of
kinetic energy Hkin and of curvature and elastic energy Helas

with

Helas = 1

2

∫
d2x

[
κ(∇2ha)2 + λu2

ii + 2μu2
ij

]
. (1)

Here, ui , i = 1,2, are the in-plane phonon displacements,
ha , a = 1, . . . ,d are the out-of-plane flexural phonon modes,
uij := 1

2 (∂iuj + ∂jui + ∂iha∂jha), λ and μ are the Lamé
constants, and κ is the bending energy.

(2) The energy of the free Dirac fermions (in units such that
� = 1),

He =
∫

d2x

Nf d∑
γ=1

�̄γ [−vF σ · (−i∇)]�γ . (2)

Here, σ = (σx,σy) are the Pauli matrices, vF is the Fermi
velocity of Dirac electrons in graphene such that, in these units,
vF

a
= 5 eV (a = 1.4 Å is the side of a graphene hexagon).
(3) The electron-phonon coupling

He−ph = −g0

∫
d2xδρ(x)uii(x), (3)

δρ(x) = ρ(x) − ρ0 = 1

d

Nf d∑
γ=1

�̄γ 1�γ − ρ0, (4)

where δρ(x) is the charge distribution on the graphene layer,
ρ0 is the equilibrium carrier density, and g0 is in the range
between 4 and 50 eV.

(4) Finally, the Coulomb interaction has the form

Hee = 1

2

∫
d2q

(2π )2
V0(q)|ρ(q)|2, (5)

where V0(q) = 2πe2

ε0q
is the Fourier transform of the electrostatic

potential, V0(r) = e2/(ε0r), ε0 is the dielectric constant of the
environment and −e < 0 is the charge of the electron.

Once all interactions are defined, the resultant Hamiltonian
is integrated over the in-plane phonons, leading to a coupled
theory of flexural phonon modes and electrons. The frequency
dependence of the resulting couplings is ignored, as it is impor-
tant only for temperatures below 90 K [20], that we do not con-
sider here. In this process, the Coulomb interaction becomes

V̂ (q) = 2πe2

ε0q
− g2

0

λ + 2μ
. (6)

The effective Hamiltonian, depending only on the electrons
and flexural phonon modes, is used to build a Matsubara
equilibrium partition function. For later convenience, this
partition function is transformed using two fluctuating
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TABLE I. Dimensions of the parameters and variables appearing
in equations (7), (11), and (12a). E for energy and L for length
dimension.

Dimensions of variables

σ (x) α(x) K0 g V (x) V̂ (q) (x) δρ(x) vF κ

E

L2 E E

L2 E E EL2 1 L−2 EL E

auxiliary fields, σ and α, defined through the relation(
σ (x)
α(x)

)
=

∫
x ′

(
K0 −g

−g V̂

)
xx ′

(
(x ′)
δρ(x ′)

)

=
(

K0(x) − gδρ(x)
−g(x) + ∫

x ′ V̂ (x − x ′)δρ(x ′)

)
. (7)

Here, g= 2μ

2μ+λ
g0 ∼ g0, K0=4μ(μ+λ)/(2μ + λ)d, (K0)xx ′ =

K0δ(x − x ′), (g)xx ′ = gδ(x − x ′) and Table I gives
the dimensions of parameters and variables. In (7), (x) is

(x) = 1

d

d∑
a=1

1

2
P T

ij (∂)∂iha∂jha, (8)

where P T
ij = δij − ∂i∂j

∇2 is the transversal projector. With this
definition, (x) is related to the Gaussian curvature (K)
through the relation (q) = K(q)/q2. In (7), σ (x) is a local
linear combination of (x) and the charge disturbance δρ(x),
whereas α(x) is a nonlocal linear combination, as it involves
the potential energy of one electron in x with respect to the
charge disturbance distribution in x ′,

∫
x ′ V̂ (x − x ′)δρ(x ′). The

action corresponding to the Matsubara partition function is

S =
∫

d2x

∫ β

0
dτ

d∑
a=1

[
ρ

2
(∂τha)2 + κ

2
(∇2ha)2

]
+ 1

β

∑
ω′

n

∫
q

⎧⎨
⎩

Nf d∑
γ=1

�̄γ (−q, − ω′
n)[−vF σ · (−i∇) − (iω′

n + μ)1]�γ (q,ω′
n)

⎫⎬
⎭

+
∫

xτ

⎧⎨
⎩σ (x)

[
1

2
P T

ij (∂)
d∑

a=1

∂iha∂jha

]
+ α(x)

Nf d∑
γ=1

�̄γ 1�γ

⎫⎬
⎭ − d

2

∫
xx ′τ

(σ α)xτ

(
K0 −g

−g V̂

)−1

xx ′

(
σ

α

)
x ′τ

, (9)

where μ is the chemical potential. We now decompose the vertical displacements into an average and a fluctuating part,
ha = 〈ha〉 + δha , and assume symmetry breaking in the direction a = 1, 〈ha〉 = δa1h1 	= 0. Integrating over the fermions and
the fluctuating part of the vertical displacements, the action is [9]

S ′

d
= 1

2
tr ln

{−ρ∂2
τ + κ∇4 − [

P T
ij (∂)σ (x,τ )

]
∂i∂j

} − Nf

2
tr ln{−vF [σ · (−i∇)] + [α(x,τ ) − μ − ∂τ ]1}

− 1

2

∫
xx ′τ

(σ α)xτ

(
K0 −g

−g V̂

)−1

xx ′

(
σ

α

)
x ′τ

+ 1

d

∫
x,τ

[
κ

2
(∇2h1)2 + ρ

2
(∂τh1)2 + σ

2
P T

ij (∂)∂ih1∂jh1

]
. (10)

To obtain the saddle-point equations, we vary (10) with respect to σ , α, and h1, thereby obtaining

∫
x ′

(
K0 −g

−g V̂

)−1

xx ′

(
σ0(x ′)
α0(x ′)

)
=

⎛
⎝P T

ij ∂xi
h(x)∂xj

h(x) − 1
2β

∑
ωn

P T
ij ∂xi

∂xj

[
ρω2

n + κ�2
y − P T

lmσ0(y)∂yl
∂ym

]−1
xx

4
β

∑
ω′

n
(iω′

n)
[
(iω′

n − α0(y) + μ)2 + v2
F ∇2

y

]−1
xx

⎞
⎠, (11)

− κ�2h + ∂xi

(
σij ∂xj

h
) = 0, (12a)

∂xi
σij = 0, (12b)

σij = P T
ij σ0 = (

δij − ∂xi
∂xj

�−1
)
σ0, (12c)

where we have replaced h1 = h and not yet made μ = 0 as in Ref. [9]. Eq. (11) provides the average fields σ0 = 〈σ (x)〉 and
α0 = 〈α〉 in terms of h. The average auxiliary fields are related to the averages of the charge distribution (4) and of the field (8),

0(x) = 1

d

〈
d∑

a=1

1

2
P T

ij (∂)∂iha∂jha

〉
, δρ0(x) = 〈δρ(x)〉, (13)

by the linear equation (7), which also holds for the averages of the corresponding quantities. Equations (12a)–(12c) are von
Karman plate equations (they appear in Fourier transform form in Ref. [9]). The stress tensor σij is generated by the average
auxiliary field σ0 and it is automatically in equilibrium as ∂xi

P T
ij = 0. P T

ij is the transversal projector, and ωn = 2πn/β and

ω′
n = 2π (n + 1

2 )/β are the bosonic and fermionic Matsubara frequencies. The matrix Green function appearing in (11) satisfies

∫
x ′′

(
K0 −g

−g V̂

)
xx ′′

(
K0 −g

−g V̂

)−1

x ′′x ′
≡

∫
x ′′

(
K0 −g

−g V̂

)
xx ′′

G(x ′′,x ′) =
(

1 0
0 1

)
δ(x − x ′), (14)
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and G(x ′′,x ′) can be computed from (14) as

G(x,x ′) = 1

4π2

∫
q

eiq(x−x ′) 1

(K0V̂ (q) − g2)

(
V̂ (q) g

g K0

)
≡ 1

4π2

∫
q

eiq(x−x ′)Ĝ(q). (15)

It is clear from (15) that G(x,x ′) = G(x − x ′). Using this translation invariant Green’s function, we can write (11) as

(
σ (x)
α(x)

)
=

∫
y

G(x − y)

⎛
⎝P T

ij ∂yi
h(y)∂yj

h(y) − 1
2β

∑
ωn

P T
ij ∂yi

∂yj

[
ρω2

n + κ�2
z − P T

lmσ (z)∂zl
∂zm

]−1
yy

4
β

∑
ω′

n
(iω′

n)
[
(iω′

n − α(z) + μ)2 + v2
F ∇2

z

]−1
yy

⎞
⎠. (16)

Henceforth from this equation we suppress the subscript 0 in
all average quantities.

Let us now set μ = 0 as in Ref. [9]. It is important to note
that the flat membrane h(x) = 0 is always a solution of (12a).
However, the right side of (16) is not zero for h(x) = 0 and
therefore the trivial solution (h = σ = α = 0) is not a valid
solution of the SPEs. As we will see in the next section, h = 0
and nonzero σ and α is a valid solution. Nonzero auxiliary
fields σ and α provide a residual stress that induces plate
buckling and rippling below a certain critical temperature
and over a critical plate size. In a mathematically related
phenomenon, a growing bacterial biofilm can be modeled as
a plate with a growth tensor that modifies the elastic part of
strain, acts as residual stress and may trigger ripples (called
wrinkles in that application) [32]. The critical growth term may
then be sought by solving an appropriate eigenvalue problem
for h(x) coming from the linearized plate equations [33].

III. FLAT MEMBRANE WITH CONSTANT
AUXILIARY FIELDS

We now seek simple solutions of equations (12a)–(12c)
and (16) with μ = 0, σ (x) = σ (a constant), α(x) = α (a
constant) and h(x) = 0. Using that

P T
ij ∂xi

∂xj
= 0,

(17)[
(iω′

n − α(y))2 + v2
F ∇2

y

]−1
xx

=
∫

q

1

(iω′
n − α)2 − v2

F q2
,

and (15), Equation (16) now becomes(
σ

α

)
=

(
K0 −g

−g V̂ (0)

)(
0

4
β

∑
ω′

n

∫
q

iω′
n

(iω′
n−α)2−v2

F q2

)
, (18)

where V̂ (0) ≈ V (q =0) = 2πe2R/ε0 (1/R is an infrared cut-
off resulting from the graphene sheet radius) is its regularized
version and the constant appearing in (6) has been neglected.
The right side of (18) is computed separately in Appendix A
with the result

4

β

∫
q

∑
ω′

n

iω′
n

(iω′
n − α)2 − v2

F q2

∼ vF �2 − 2α�

2πvF

+ α2

2πv2
F

− π

6β2v2
F

, (19)

where � = 2π/a is an ultraviolet momentum cutoff (a is
the side of a graphene hexagon). The term �2/2π in (19)
is proportional to the area of the Brillouin zone, and it will
play a key role in the computation of the critical temperature

and radius for the graphene layer. We discuss in Appendix B
other possible interpretations of (18) that do not involve setting
the chemical potential μ = 0 and turn out to be unphysical.
From (18), we obtain

σ = − αg

V (0)
, (20)

α

V (0)
∼ vF �2 − 2α�

2πvF

+ α2

2πv2
F

− π

6β2v2
F

. (21)

The left side of (21) is much smaller than the right side and it
can be ignored, thereby producing the solution

α

vF �
∼ 1 ± π√

3βvF �
, (22)

which gives σ by insertion in (20).

IV. LINEARIZED EQUATION AND
EIGENVALUE PROBLEM

We want to ascertain the linear stability of the solution
found in the previous section, h = 0 and constant auxiliary
fields. For this we need to know the dynamics and to linearize
the corresponding SPEs about this solution. Let us assume that
the dynamic SPEs are

F(u; p) = G
(

∂u
∂t

,
∂2u
∂t2

)
, u =

⎛
⎝h

σ

α

⎞
⎠, (23)

so that

F(u; p) = 0, G(0,0) = 0, (24)

are the stationary SPEs (12a)–(12c) and (16). Let u0(p) be the
flat solution h = 0 and constant σ (p) and α(p) of (20) and (22).
Here p is a bifurcation parameter, later to be identified as the
temperature or the radius of a circular graphene membrane.
Linear stability about u0 follows from substituting u(t) = u0 +
eυtU in (23) and keeping terms of order U in the result. We
obtain the eigenvalue problem

δF
δu

(u0(p); p)U = υ

[
δG

δ∂u/∂t
(0,0) + υ

δG
δ∂2u/∂t2

(0,0)

]
U,

(25)

where δF
δu , δG

δ∂u/∂t
, and δG

δ∂2u/∂t2 are functionals acting upon
U ≡ U(x). For appropriate values of p, the real parts of all
eigenvalues υ are negative and the flat constant solution u0(p)
is linearly stable. Then zero eigenvalues or eigenvalues with
zero real part give the critical values at which nonflat solutions
bifurcate from the flat constant solution. Stationary solutions
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bifurcate from u0(p) at those critical values of p for which
υ = 0. At such pc, (25) becomes

δF
δu

(u0(pc); pc)U = 0. (26)

While the dynamic SPEs are not known, (26) are the known
linearized stationary SPEs about the flat constant solution.
We consider (26) as an eigenvalue problem for the critical
values pc and proceed to determine “eigenvalues” pc. The
corresponding eigenvectors U are buckling modes of the
membrane issuing forth from the flat constant solution. When
many of these modes become active we may have generated a
variety of rippling states of the graphene sheet.

To solve the linearized stationary SPEs, we need appro-
priate boundary conditions. To solve the linearized plate
equation (12a), we need the value of σij in (12b) for the
constant σ and α of (20) and (22). Now u = �−1σ solves
the equation �u = σ with appropriate boundary conditions.
A solution is

u = σ

4
|x|2 + u0, �u0 = 0.

For a circular plate with zero data Dirichlet boundary condi-
tions at r = R, the solution is u = σ

4 (r2 − R2). Then, by (12b)
and (12c), σij = σδij /2, and (12a) becomes

�2h = σ

2κ
�h. (27)

There are different eigenvalue problems associated to
solving Eq. (27) with different boundary conditions for a
finite graphene membrane. Each of these problems yield its
critical temperature and size and allows us to know the shape
of different eigenmodes that appear as buckled solutions of the
suspended layer of graphene. We consider a finite circular layer
of graphene with a free border (natural boundary conditions)
or a graphene sheet clamped to a circular hole. Suspended
graphene sheets are clamped at their boundaries but the case
of a free border is easier to treat mathematically, so we start
by analyzing it.

A. Membrane with free border

The natural boundary conditions to solve (27) for a free
circular graphene layer of radius R are

�h = 0 and

(
� − σ

2κ

)
∂rh = 0 at r = R. (28)

Let us first solve the eigenvalue problem for H = �h: �H −
σ
2κ

H = 0 with H = 0 at r = R. We find the solution

Hn,m = 1

a
eimθJm

(
γn,mr

R

)
,

σ

2κ
= −γ 2

n,m

R2
, (29)

where Jm(γn,m) = 0, n = 1,2, . . ., m = 0,1,2, . . .. The lowest
possible value of σ in (29) corresponds to the first zero
γ1,0 = 2.4048 of the Bessel function J0(x). Note that γ1,0 <

γ1,1 < γ1,2 < γ2,0 < γ1,3. Thus there are two eigenvalues
corresponding to azimuthal eigenfunctions (m = 1,2) between
the first two eigenvalues corresponding to radially symmetric
eigenfunctions with m = 0.

TABLE II. Critical radii given by Eq. (33) for a circular layer
graphene at room temperature with natural boundary conditions.
Mode hn,m appears from the flat solution for R > Rc.

h: h1,0 h1,1 h1,2 h2,0

Rc (nm): 9 24 43 50

The solution of �h = H that satisfies the other boundary
condition is

hn,0(r) = R2

aγ 2
n,0

[
1 − J0

(
rγn,0

R

)]
, (30)

for m = 0 (normalized so that hn,0(0) = 0), and

hn,m(r,θ ) = − R2

aγ 2
n,m

eimθJm

(
γn,mr

R

)
, (31)

for m > 0.
We are interested in computing the critical temperature and

radii. To this end, we use (29) with (20) and (22), and find that
ripples appear below the critical temperature

Tc = 2
√

3vF

a

∣∣∣∣1 − e2

ε0vF

2aκ

Rg
γ 2

1,0

∣∣∣∣. (32)

Note that the critical temperature decreases as the size R

decreases. As R/a → ∞, the critical temperature tends to
2
√

3vF

a
≈ 16.05 eV (about 186,000 K). For finite membrane

size, (32) with γn,m instead of γ1,0 produces the following
numerical estimate:

1 − 5.4 × 10−6 Tn,m = 1.6 γ 2
n,m

R
. (33)

Here, Tn,m is the temperature (measured in Kelvin) at which
the mode hn,m appears and R is measured in nanometers.
The values considered for the parameters are g = 3.9 eV (the
lowest value considered in Ref. [9]) and κ = 1 eV. At room
temperature, Eq. (33) gives us different critical radii above
which the different modes hn,m (characterized by γn,m) appear,
see Table II and Fig. 1.

B. Clamped membrane

In this more realistic case, the boundary conditions are
h̃ = 0 and ∂r h̃ = 0 at r = R instead of (28). We use h̃ instead of
h to distinguish the out-of-plane displacement in the clamped

FIG. 1. Modes appearing over their respective critical radii, see
Table II. For a suspended layer of graphene of radius R and free
boundaries, all modes with Rc < R can combine to produce ripples
or buckling. The grey disk is the plane h = 0.
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case. Following the same procedure as for Eqs. (29) and (30),
we get

Hn,m = 1

a
eimθJm(kr), k2 = − σ

2κ
, (34)

instead of (29), and in which k is not yet determined. Now the
radial part h̃m(r) satisfies(

∂2
r + 1

r
∂r − m2

r2

)
h̃m = 1

a
Jm(kr). (35)

For m = 0, this equation is

∂r (r∂r h̃) = r

a
J0(kr) =⇒ r∂r h̃ = 1

ka
[rJ1(kr) − RJ1(kR)],

in which we have used the boundary condition h̃′(R) = 0.
Integrating once and using h̃(R) = 0, we obtain

h̃(r) = 1

k2a
[J0(kR) − J0(kr)] − R

ka
ln

(
r

R

)
J1(kR).

The vertical displacement is unbounded at r = 0 unless

J1(kR) = 0 =⇒ σ

2κ
= −γ 2

n,1

R2
. (36)

Then

h̃n,0(r) = R2

γ 2
n,1a

[
J0(γn,1) − J0

(
γn,1r

R

)]
. (37)

Similarly, for m > 0, the solution of �h̃ = Hn,m is

h̃n,m(r,θ ) =
(

c1

rm
+ c2r

m

)
eimθ + rm

a
eimθ

∫ r

0

dr

r2m+1

×
∫ r

0
ds sm+1Jm(ks). (38)

Clamped boundary conditions yield

c2 = −1

a

∫ R

0

dr

r2m+1

∫ r

0
ds sm+1Jm(ks) − c1

R2m
, (39)

c1 = 1

2ma

∫ R

0
ds sm+1Jm(ks)

= Rm+2

2ma

∫ 1

0
ds sm+1Jm(kRs) = Rm+1

2mka
Jm+1(kR). (40)

The condition that h̃n,m be bounded at r = 0 produces c1 = 0.
Thus Jm+1(kR) = 0, i.e., k = γn,m+1/R and therefore

σ

2κ
= −γ 2

n,m+1

R2
. (41)

TABLE III. Critical radii given by Eq. (33) for a circular layer
graphene at room temperature with clamped boundary conditions.
Mode h̃n,m appears from the flat solution for R > Rc.

h̃: h̃1,0 h̃1,1 h̃1,2 h̃2,0

Rc (nm): 24 43 66 80

FIG. 2. Modes appearing over their respective critical radii, see
Table II. In a suspended layer of graphene clamped on a circular hole
of radius R all modes with Rc < R can appear and combine to form
ripples and buckling. The grey disk is the substrate plane h = 0.

Equation (38) becomes

h̃n,m(r,θ ) = rm

a
eimθ

∫ r

R

dr

r2m+1

∫ r

0
ds sm+1Jm

(γn,m+1s

R

)

= − R2eimθ

γn,m+1a

( r

R

)m
∫ 1

r/R

ds

sm
Jm+1(γn,m+1s)

= R2eimθ

aγ 2
n,m+1

[(
r

R

)m

Jm(γn,m+1) − Jm

(
γn,m+1

r

R

)]
,

(42)

which agrees with (37) for m = 0.
According to (41), the critical radii are given by (33) with

γn,m+1 instead of γn,m. Then the critical radii of Table III
are greater than those in Table II, and buckling of a clamped
graphene membrane should be observable only for radii over
24 nm. Thus a clamped membrane remains flat for larger
radii than in the case of natural free boundary conditions.
This is according to our intuition that it is harder to buckle
a clamped membrane than a membrane with a free border.
The lowest possible value of σ in (29) corresponds to γ1,1 =
3.8317. Note that γ1,1 < γ1,2 < γ1,3 < γ2,1. Again, there are
two eigenvalues corresponding to azimuthal eigenfunctions
(m = 1,2) between the first two eigenvalues corresponding to
radially symmetric eigenfunctions with m = 0. These first four
modes given by (42) are depicted in Fig. 2.

V. CONCLUSIONS

In conclusion, the stationary saddle-point equations give the
vertical displacement of a graphene membrane and auxiliary
fields associated to curvature and to charge fluctuations,
provided elasticity and phonon-electron interaction are con-
sidered [9]. We have solved these equations for a flat circular
graphene sheet under constant auxiliary fields. We have then
solved the SPEs linearized about the flat membrane solution
and subject to either free or clamped boundary conditions.
The latter problem has nonzero solutions only for discrete
values of the auxiliary fields. These discrete values correspond
to critical values of temperature and membrane radius at
which buckling membrane solutions issue forth from the flat
membrane. The flat membrane is stable only for temperatures
larger than critical and radii smaller than critical. For an infinite
membrane, the predicted critical temperature is extremely
large and unphysical (186 000 K). However, critical radii
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at room temperature are in the nanometer range. Different
modes of membrane buckling appear below specific critical
temperatures and over specific critical radii, see Tables II
and III. The stability of these modes is to be analytically
determined, but experiments describing rippling [3] and
buckling [15] of graphene show that the flat solution is not
stable in most cases: Flat graphene has only been observed
when it stands over a substrate [36].

The calculated critical radii (Tables II and III) suggest
that the different modes appearing in figures 1 and 2 could
be observed for a specific temperature and membrane size.
This brings the opportunity to develop new experiments, as no
buckling should appear below the minimum critical radius Rc.
Similar experimental procedures to the ones in Refs. [27–29],
where suspended graphene layers were forced to buckle using
an external electrical potential or a STM, could be used to
determine the value of Rc and the validity of our results. For
this purpose, suspended graphene layers may be clamped to
holes of different dimensions, under different temperatures.
Checking when the layer may or not buckle, it should be
possible to get a better estimation of g and κ by fitting the
results of experiments with Eqs. (32).

A different approach to study the effects due to the
existence of nonflat modes would be experiments with
graphene resonators [34,35]. In this setting, when the external
driving force is sufficiently strong to deform the graphene
layer close to one of the stable buckling modes (away
from the flat configuration), the response of the resonator
should be extremely nonlinear. Instead of oscillating around
a single potential well (more or less parabolic) correspond-
ing to the rippled configuration, the system may oscillate
under influence of two different potential wells (the buck-
ling modes). This effect could be measured by observing
oscillation damping once the driving force is turned off.

Characterization of ripples in suspended graphene is not
yet accurate enough to compare with our results. Once the
experimental techniques have been improved, experiments
with suspended graphene layers clamped to holes of different
radii should show ripples that are combination of the possible
bifurcating modes for these membranes (Table III).

The study of different solutions of the SPEs with position-
dependent auxiliary fields σ and α is left as future work. From
a theoretical point of view, it is also interesting to take into
account the influence of external forces, such as an electrostatic
force, and to study the resulting dynamical effects. Then we
may be able to reproduce the transition from the flat membrane
with superimposed ripples to the buckled membrane and
compare with existing STM experimental results [15].
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APPENDIX A: MATSUBARA FREQUENCY SUM

The sum over Matsubara frequencies in the expression on
the right side of Eq. (18) gives [37]

1

β

∑
ω′

n

iω′
n

(iω′
n − α)2 − v2

F q2
= 1

2β

∑
ω′

n

(
1

iω′
n − α − vF q

+ 1

iω′
n − α + vF q

+ 2α

(iω′
n − α)2 − v2

F q2

)

= 1

2

(
1

1 + eβ(α+vF q)
+ 1

1 + eβ(α−vF q)

)
+ α

2qvF

(
1

1 + eβ(α+vF q)
− 1

1 + eβ(α−vF q)

)

= 1

2qvF

(
α + vF q

1 + eβ(α+vF q)
− α − vF q

1 + eβ(α−vF q)

)

= 1

2qvF

(
α + vF q

1 + eβ(α+vF q)
− vF q − α

1 + eβ(vF q−α)

)
+ vF q − α

2qvF

. (A1)

Then

4

β

∫
q

∑
ω′

n

iω′
n

(iω′
n − α)2 − v2

F q2
= 1

πvF

∫ �

0

(
α + vF q

1 + eβ(α+vF q)
− vF q − α

1 + eβ(vF q−α)

)
dq + 1

π

∫ �

0

(
q − α

vF

)
dq

= vF �2 − 2α�

2πvF

− 1

πβ2v2
F

(∫ e−βα

e−β(vF �+α)

ln t dt

1 + t
−

∫ eβα

e−β(vF �−α)

ln t dt

1 + t

)
. (A2)
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We now split the last integral on the right-hand side of (A2) as∫ eβα

e−β(vF �−α)

ln t dt

1 + t
=

(∫ 1

e−β(vF �−α)
+

∫ eβα

1

)
ln t dt

1 + t
=

∫ 1

e−β(vF �−α)

ln t dt

1 + t
−

∫ eβα

1

ln t dt

(1 + t)t
+ 1

2
(ln t)2

∣∣∣∣
eβα

1

∼ α2β2

2
+

∫ 1

0

ln t dt

1 + t
−

∫ ∞

1

ln t dt

(1 + t)t
= α2β2

2
− π2

6
.

The result is

4

β

∫
q

∑
ω′

n

iω′
n

(iω′
n − α)2 − v2

F q2
∼ vF �2 − 2α�

2πvF

+ α2

2πv2
F

− π

6β2v2
F

, (A3)

because the other integrals are of order O(e−βα) � 1. In these
computations, q is upper bounded by � = 2π/a.

APPENDIX B: SELECTING THE CHEMICAL POTENTIAL

Keeping a nonzero chemical potential, (18) and (19) yield

σ = − gα

V (0)
,

α

V (0)
= 4

β

∫
q

∑
ω′

n

iω′
n

(iω′
n − α + μ)2 − v2

F q2

∼
(α − μ − vF �)2 − π2

3β2

2πvF

. (B1)

These are two equations for three unknowns, σ , α and μ, so
that we can give a value to μ and solve for σ and α. We have
already seen the consequences of setting μ = 0. What do we
get from other choices?

(1) Assume that μ is selected so that μ + vF � = 0 and
therefore the right-hand side of (B1) (which represents the
Fermionic propagator in real space for x = 0) becomes finite
as � → ∞. Following the same steps as in previous sections,
e.g., using Eqs. (21) and (29), we get (the minus sign
corresponds to g < 0)

8κπe4

gv2
F ε2

0

γnm = 1 ±
√

1 + 2π2e4

9ε2
0v

4
F β2

R2

β2
. (B2)

The right-hand side of this equation contains the product
R/β = RT . This produces a critical radius (at which the
graphene sheet starts buckling) that decreases when the
temperature increases. This is unphysical because increasing

temperature would favor rippling, contrary to experimental
evidence [16].

(2) Let us set R = ∞ and α = 0 in (B1), thereby obtaining

μ + vF � = ± π√
3β

. (B3)

If α is no longer zero for finite radius, (21) gives

α

(
α ∓ 2π√

3β
− 2πv2

F

V (0)

)
= 0. (B4)

Then either α = 0 and σ = 0, which contradicts (29), or

α = 2π

(
± 1√

3β
+ v2

F

V (0)

)
. (B5)

In this case, the same arguments based on Eqs. (21) and (29)
provide

γ 2
nm = gπv2

F ε2
0

κe4
± gπε0√

3κe2

R

β
. (B6)

Once the numerical values of the constants are taken into
account, we notice that the left-hand side of (B6) is positive,
whereas the second term in the right-hand side of this equation
(the minus sign corresponds to g < 0) is proportional to T R,
and this again produces the same unphysical effect as before.

Thus we conclude that the physically meaningful choice
of chemical potential is μ = 0 as in Ref. [9]. We do not
renormalize the parameters of the model and leave the natural
ultraviolet and infrared cutoffs � = 2π/a and q0 = 2π/R,
respectively, in terms of the lattice constant a and the
radius R.
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