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Low-temperature electron-phonon heat transfer in metal films
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We consider the deformation potential mechanism of the electron-phonon coupling in metal films and
investigate the intensity of the associated heat transfer between the electron and phonon subsystems. The
focus is on the temperature region below dimensional crossover T < T ∗ where the thermally relevant vibrations
are described in terms of a quasi-two-dimensional elastic medium, while electron excitations behave as a
three-dimensional Fermi gas. We derive an explicit expression for the power P (T ) of the electron-phonon heat
transfer which explains the behavior observed in some experiments including the case of metallic film supported
by an insulating membrane with different acoustic properties. It is shown that at low temperatures the main
contribution is due to the coupling with Lamb’s dilatational and flexural acoustic modes.
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I. INTRODUCTION

In modern electronic devices the nanoscale miniaturization
and sub-Kelvin temperatures are quite common, however
the physical phenomena taking place in such conditions are
far from complete understanding and attract a great deal of
research interest. In this work we address an aspect of the
electron-phonon interaction in confined systems related to
heat transfer between electrons and phonons. This is an open
problem in the fundamental sense with a direct connection
to current research activity and important applications in a
variety of fields from nanoelectronics to astrophysics. For
instance, in a recent paper [1] the principle of electronic
cooling [2] has been used to realize the “coolest microfridge”
reaching a record temperature of less than 30 mK. In a typical
setup a cooled metal part is suspended or mounted on an
insulating support layer in contact with superconductors form-
ing two symmetrically biased NIS (normal metal-insulator-
superconductor) tunnel junctions. In this setup “hot” electrons
from above the Fermi level are evacuated from the normal
metal island, while “cold” electrons are injected below the
Fermi level. Such microdevices can be mounted directly on a
chip for cooling qubits or ultrasensitive low-temperature de-
tectors, e.g., bolometers or calorimeters, where the biased NIS
tunnel junctions can also be used for precision thermometry
down to milli-Kelvin temperatures [3]. An important physical
phenomenon controlling the cooling power is the heat transfer
between electrons and phonons mediated by their coupling,
He-p, when phonons are emitted and absorbed by electrons.
When electrons are heated by an external source in a stationary
regime one can assume their energy distribution to be charac-
terized by a temperature Te while the distribution of phonons
corresponds to some lower temperature Tp. In many situations
the temperature gradients are sufficiently small so that we also
assume that space variation of Te and Tp can be neglected.
When both subsystems are bulklike (three-dimensional) the
rate P at which electron energy is transferred to phonons
has been obtained by considering the deformation-potential
mechanism of electron-phonon coupling, which relates the
local density fluctuation to the variation of the Fermi energy
[4], and P (T ) has been shown to vary as T 5 at low temperatures
(see, e.g., [5–7]):

P = �Vel

(
T 5

e − T 5
p

)
. (1)

Here Vel is the volume of the metal and � depends on the
electron-phonon coupling and other properties of the sample.
This form has been derived for simple metals in the case when
disorder is not strong (ql � 1, where q is the phonon wave
vector and l is the electron mean free path) and which is also
assumed in the present work. It should be mentioned that for
disordered films a form with a stronger (T 6) low-temperature
behavior has been found [8,9]. The dependence in Eq. (1) was
confirmed in many experimental situations and is a standard
formula assumed for the analysis of experimental data, e.g.,
[1,3]. However, the finite thickness of a film L eliminates
the possibility of longer waves to propagate in this direction.
Consequently, when temperatures fall below the dimensional
crossover threshold T < T ∗ � c�/(kBL), where c is the sound
velocity, the wavelength of the thermally relevant phonons
becomes longer than L and we may treat the phonon subsystem
in terms of a confined elastic medium. Respectively, thermal
properties, including the electron-phonon heat transfer, are
dominated by the vibrational eigenmodes corresponding to
such a quasi-two-dimensional geometry. For values of L of
the order of 100 nm and for sound velocities of the order of
10 km/s, the value of T ∗ is of the order of 1 K. Therefore size
related effects in electron-phonon systems have become an
important part of the physics at the nanoscale, e.g., [10,11].
In a number of experimental studies it has been found that the
temperature dependence is best represented by the T x with
significantly lower values of x [12–14]. On the other hand, a
theoretical investigation of the surface effects for a half-space
geometry [15], including the surface specific Rayleigh
phonon modes, has shown that the value of x is actually
larger than 5 and at sufficiently low temperatures it exceeds
6. It should be mentioned that, since the Rayleigh waves are
localized within a distance of the order of the wavelength
from the surface, this description is valid for sufficiently thick
layers, qL � 1. Thus, the growth of the exponential x with
decreasing temperature has been later qualitatively confirmed
in some experiments when metallic films were deposited
on bulky substrates [13,16]. For a quasi-one-dimensional
geometry (metallic nanowire) the model has been studied
theoretically in [17] where the T 3 analog of Eq. (1) has been
obtained. Although in [18] it was argued that for Al nanowires
with 65×90-nm cross-section a better fit is achieved with the
standard exponential x = 5, the results are still inconclusive
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FIG. 1. Insulating membrane of thickness L − d covered with a
metal film (gray) of thickness d and surface area A.

since no dimensional crossover was observed around the
anticipated temperature, 0.45 K. In contrast, a clear indication
of a quasi-two-dimensional crossover in electron-phonon
dominated heat flow with a distinct power law (x < 4.5) has
been reported in [12,13]. Remarkably, the respective samples
had also a strongly enhanced density of the heat flux compared
to the thicker samples, which remained in the “bulk” regime
and did not show a crossover behavior for the considered
temperature interval. Typically, the metallic film is either
deposited on an insulating membrane, Fig. 1, or suspended
on top of superconducting electrodes [1].

The phonon spectrum of a quasi-two-dimensional system
is quite different from that of a bulk. Vibrational eigenstates
of such a slablike structure cannot be separated into longitu-
dinal and transverse waves; instead in the elastic continuum
approximation the spectrum is given by the Lamb eigenmodes
(in addition to shear waves) actually representing a mixture of
both [19]. The electron scattering by Lamb phonon modes has
been studied earlier for semiconductor quantum wells (QWs)
in [10,20] and in a double heterostructure QW including the
piezoelectric coupling in [21]. It has been shown that the
scattering rate τ−1 is dominated by coupling to the flexural
acoustic mode (e.g., τ−1 ∼ T 5/2,T 7/2) due to its characteristic
quadratic dispersion and high density of states, in contrast to
the “standard” linear dispersion of the, e.g., dilatational Lamb
mode, which has a negligible contribution (e.g., τ−1 ∼ T 6).
In the present work the electron excitations in the metal film
are treated as a three-dimensional Fermi gas interacting with
the quasi-two-dimensional phonon subsystem. Thus, electrons
are described by the parabolic dispersion with an effective
electron mass εk = �

2k2/2m [notations for the components
of the wave vector k =(k‖,kz) correspond to Fig. 1] and
a plane-wave function �k(r,t) = exp (ikr − iεt/�)/

√
Ve =

ψ(kz; z) exp (ik‖r‖ − iεt/�)/
√

A, where the electronic vol-
ume is Ve = dA and ψ(kz; z) is given in the next section. We
will use alternatively either the cylindrical coordinate system
with kz normal to the film and the in-plane vector k‖ at angle
φ or the spherical system with the two angles denoted as θ and
ϕ and k = |k|. It should be mentioned that in ultrathin metal
films electron confinement can result in the formation of the
quantum-well state with ψ(kz; z) ∼ sin (kzz) and kz = nπ/d,
where the quantum numbers n = 1,2,3, . . . correspond to the
electron quasi-two-dimensional energy sub-bands. However,
in contrast to semiconductors, the QW state is more difficult
to observe in metal films thicker than a few nm (see, e.g., [22]),
because the electron de Broglie wavelength is comparable to

the interatomic distance and signatures of size quantization are
easily smeared out by film imperfections of the same length
scale, e.g., surface roughness. Thus, the plane-wave form of
ψ(kz; z) is an approximation, which is meant to describe the
situation of a not very thin film where electron band structure
can still be viewed as bulklike, while the phonon spectrum
is dominated by quasi-two-dimensional modes. An important
distinctive feature of this situation is that, although the phonons
propagate parallel to the plane of the film, they can nevertheless
produce electron scattering with a change of momentum in the
direction normal to the plane, i.e., �k′

z 	= �kz. This paradox is
due to the displacement field pattern characteristic of the Lamb
waves (see below) which allows electrons to couple both to lon-
gitudinal (in-plane) and transverse (out-of -plane) components
of the vibrations (see also the discussion in [23] for the case of
a nanowire). The effect pertains primarily to the flexural modes
and leads to a nontrivial modification of the heat transfer.

In an often used experimental setup the metallic strip is in
contact with an insulating support membrane which can mod-
ify both the phonon spectrum and the flow of the heat produced
in the metal and transmitted through the boundaries (e.g., [24]).
Thus, the boundary can give rise to interface guided Stoneley
phonon modes [25,26]. However, for a solid-solid boundary
the conditions on the parameters of the media (densities and
sound velocities) required for the existence of Stoneley modes
are very restrictive (see, e.g., [27]). We return to this issue in the
next chapter. The heat transfer can also depend on the coupling
of phonons in the film to their own bath; e.g., in [16,28] it
has been found that the distribution of phonons available for
interaction with electrons in metal films can remain relatively
unaffected by the substrate. In general, due to a mismatch of
properties on the interface between two materials the phonons
will scatter and produce a thermal boundary resistance; the
associated Kapitza heat flow then depends on the difference of
phonon temperatures of the two materials and is usually given
by κ(T 4

p,1 − T 4
p,2) [29,30]. There are other effects that can

contribute to the heat transport, e.g., related to the operational
principle of electron microcoolers, when there exists a heat
backflow from the superconductor to the metal island [31].

Below we will consider the heat flux derived from the
electron-phonon coupling for the structure shown in Fig. 1
by first assuming homogeneous elastic properties of the
compound slab of volume Vp = L × A [21], its total mass
M , and mass density ρ = M/Vp. The case of a suspended
metallic film corresponds to the condition L = d. To account
for the modification of the phonon spectrum when the metal
film is deposited on the insulating membrane with acoustic
characteristics different from the metal, one can consider
different models of their bonding (see, e.g., [32]), however
we assume that the contact between the two media is rigid. It
should be stressed that knowledge of the phonon spectrum is
not sufficient when considering the coupling to electrons and
one should also determine the properly normalized amplitudes
of the phonon field.

II. ELECTRON-PHONON COUPLING
AT LOW TEMPERATURES

We define the rectangular coordinate system in such a way
that z = ±L/2 corresponds to the top and bottom surfaces of

115405-2



LOW-TEMPERATURE ELECTRON-PHONON HEAT TRANSFER . . . PHYSICAL REVIEW B 93, 115405 (2016)

the slab. Elastic vibrations are described by the vector field of
relative displacements u = u(r) [19] expanded in the series of
quantized eigenmodes of the continuum elasticity equation for
the vibrations of a rectangular plate [20]:

u(r) =
∑
η,q‖

√
�

2ρAωη

[aη(q‖) + a+
η (−q‖)]

×wη(q‖,z) exp(iq‖r‖). (2)

Here a+
η (q‖) and aη(q‖) are phonon creation and annihilation

operators and ωη is the set of normal vibration frequencies
corresponding to the branches (ξ ) of the three types (α)
of eigenmodes η = (α = {h,d,f },ξ = 1,2, . . .), where h is
horizontal shear, d is the dilatational mode, and f is the flexural
mode. The quantum amplitudes wη(q‖,z) are orthonormalized
over the thickness L:∫ L/2

−L/2
wη(q‖,z)†wη′ (q‖,z)dz = δη,η′ . (3)

The deformation potential coupling (see, e.g., [4]) He-p =
2
3EF

∫
Ve

d3r �†(r) �(r) ∇ · u(r) (where EF = �
2k2

F /2m is
the Fermi energy; see also the discussion for Cu in [15]) is
then determined by the divergence of the displacement vector
and takes the following form in the second quantization:

He-p =
∑

k‖,q‖,η,kz,k′
z

[
g

kz,k
′
z

η,q‖ c
†
k‖+q‖,k′

z
ck‖,kz

aη(q‖)

+ (
g

kz,k
′
z

η,q‖
)∗

c
†
k‖−q‖,k′

z
ck‖,kz

a†
η(q‖)

]
. (4)

Here c+
k‖,kz

and ck‖,kz
are the electron creation and annihilation

operators; the electron-phonon matrix elements are given by
the expression

g
kz,k

′
z

η,q‖ = 2

3
EF

√
�

2ρAωη

∫ L/2

L/2−d

ψ∗(k′
z; z)

×ψ(kz; z)

(
iq‖ · wη(q‖,z) + ∂wz

η(q‖,z)

∂z

)
dz. (5)

Note that for the considered quasi-two-dimensional geom-
etry the momentum conservation rule works only for the
in-plane components of the wave vectors, k′

‖ = k‖ ± q‖,
and the electron-phonon coupling allows scattering with
the change of the kz component. The coordinate system
is oriented in the plane as shown in Fig. 1 so that we
choose x to correspond to the propagation direction of the
wave q‖ =(q,0,0). Then from the displacement patterns of
the three eigenmodes, wh(q,z) = (0,w

y

h,0) and wd,f (q,z) =
(wx

d,f ,0,wz
d,f ), one can easily see that only the d and f

modes couple to electrons. The amplitudes resulting from
the solutions of the elasticity equations for the free surface
boundary conditions can be represented as follows (the mode
index is omitted whenever this does not cause confusion) (see
[33,34]):

wx
d = iqtFd

[
2q2 cos

(
qtL

2

)
cos(qlz)

+ (
q2

t − q2
)

cos

(
qlL

2

)
cos(zqt )

]
,

wz
d = qFd

[
−2qtql cos

(
qtL

2

)
sin(qlz)

+ (
q2

t − q2
)

cos

(
qlL

2

)
sin(zqt )

]
(6)

and

wx
f = iqtFf

[
2q2 sin

(
qtL

2

)
sin(qlz)

+ (
q2

t − q2
)

sin

(
qlL

2

)
sin(zqt )

]
,

wz
f = qFf

[
2qtql sin

(
qtL

2

)
cos(qlz)

− (
q2

t − q2) sin

(
qlL

2

)
cos(zqt )

]
. (7)

The multipliers Fd and Ff are determined by the normal-
ization condition (3). The above expressions are equivalent to
Eqs. (10), (11), (15), and (16) obtained in [20], as can be easily
checked by taking into account that the auxiliary parameters
(qt ,ql) satisfy the eigenfrequency equations:

− 4q2qlqt

(q2 − q2
t )2

= tan(qtL/2)

tan(qlL/2)
, (8)

for the dilatational mode, and

− 4q2qlqt

(q2 − q2
t )2

= tan(qlL/2)

tan(qtL/2)
, (9)

for the flexural mode. The closure equation is secured by the
“Snell law”:

ω = cl

√
q2

l + q2 = ct

√
q2

t + q2, (10)

where cl,t are the longitudinal and transverse sound velocities
of the material with the Lame coefficients λ and μ and mass
density ρ:

ct = μ

ρ
; cl = λ + 2μ

ρ
: J ≡ c2

t

/
c2
l < 1/2.

From the analysis of the solutions [20,34], it follows that to
obtain an explicit expression for the leading low-temperature
terms of P it is sufficient to consider the lowest-energy part of
the phonon spectra (i.e., acoustical waves), so that the branch
index ξ = 1 can now be dropped, ωη(q) = ωα=d,f . Then
auxiliary parameters for the f mode are both purely imaginary
(qt.l = ipt,l), while for the d wave qt is real and ql = ipl is
imaginary. After lengthy but straightforward calculations we
obtain the explicit form of the solution of the above equations
in the long-wavelength approximation:

ωd � 2qct

√
1 − J , F−2

d � 16q6(3 − 4J )(1 − J )2L,

qd
t � q

√
3 − 4J , pd

l � q(1 − 2J ), (11)

ωf � q2Lct

√
(1 − J )/3, F−2

f � (q2L)6L(1 − J )2/36,

p
f
t � −q + q3L2(1 − J )/6, p

f

l � −q + q3L2J (1 − J )/6.

(12)
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These expressions can now be used for the calculation of the
electron-phonon matrix elements (5):∣∣gkz,k

′
z

α,q‖

∣∣2 = |Fα|2[qtq
(
q2

l + q2
)]2 8�E2

F

9ρAωα

×
{

cos2 (Lqt/2),α = d

sin2(Lqt/2),α = f

}
S(kz,k

′
z,α,ql), (13)

where the overlap integral S(kz,k
′
z,α,ql = ipl) is

S(kz,k
′
z,α,ql = ipl)

=
∣∣∣∣
∫ L/2

L/2−d

ψ∗(k′
z; z)ψ(kz; z)

{
cosh(zpl),α = d

sinh(zpl),α = f

}
dz

∣∣∣∣
2

. (14)

As we have already mentioned, the scattering processes
described by the Hamiltonian (4) do not require conservation
of the z component of the electron wave vector. However, in
the long wave limit the overlap integrals can be approximated
by taking cosh (zpl) � 1 and sinh (zpl) � zpl in (14) and using
the orthonormality of the ψ(kz; z). The respective expressions
for the d and f modes simplify to

S(kz,k
′
z,d,ql = ipl) = δkz,k′

z
, (15)

and

S(kz,k
′
z,f,ql = ipl) = |pl|2

∣∣∣∣
∫ L/2

L/2−d

zψ∗(k′
z; z)ψ(kz; z)dz

∣∣∣∣
2

.

(16)

Thus, in the long-wavelength approximation the interaction
with dilatational modes effectively preserves the electron
momentum kz, unlike the interaction with flexural modes.
As discussed in the Introduction, we assume the plane-wave
expression for the ψ(kz; z) function:

ψ(kz; z) =
√

1

d
exp[ikz(z + d − L/2)]. (17)

This implies, as pointed out in [23] for the case of a nanowire,
that the electron-phonon coupling containing integrals like that
in Eq. (16) diverges with the thickness of the film. However,
below it will be seen that this divergence is removed by the
proper normalization of the phonon eigenmodes [Fd and Ff

in Eqs. (11) and (12)] in the volume of the sample Vp and the
electron-phonon matrix element (13) remains finite.

III. HEAT FLUX CARRIED BY LAMB MODES

We can now calculate the power function P, i.e., the energy
transferred from hot electrons to phonons in a unit of time:

P = 2
∑

k‖,q‖,α,kz,k′
z

�ωα

[
�em

α,kz,k′
z
(k‖ → k‖ − q‖)

−�ab
α,kz,k′

z
(k‖ → k‖ + q‖)

]
. (18)

The emission and absorption rates � are given by the golden
rule:

�em(k‖ → k‖ − q‖)

= 2π

�

∣∣gkz,k
′
z

α,q‖

∣∣2
[np(�ωα) + 1]f (εk‖,kz

)

× [1 − f (εk‖−q‖,k′
z
)] δ

(
εk‖,kz

− εk‖−q‖,k′
z
− �ωα

)
, (19)

where electron (e) and phonon (p) indices identify the respec-
tive temperature in the Bose distribution function np,e(�ωα) =
{exp (βp,e�ωα) − 1}−1 with βp,e = 1/kBTp,e; in the Fermi
distribution function the chemical potential is replaced by
the Fermi energy for the considered low-temperature regime
f (εk) = {exp [βe(εk − EF )] + 1}−1. The phonon absorption
part of Eq. (18), − �ab

α (k → k + q‖), is obtained from the
emission term �em

α (k → k − q‖) by the space-time inversion
(q‖ → −q‖ and ωα → −ωα) using the identity for the Bose
distribution n(−y) + 1 = −n(y). The power function P (T )
can then be cast in the form of a difference between terms
separately dependent on Te and Tp, as in Eq. (1), with the help
of the following identity for the Fermi and Bose distribution
functions:

f (x)[1 − f (x − y)] = ne(y)[f (x − y) − f (x)]. (20)

Summation over momenta in Eq. (18) is replaced by integra-
tion in a standard way. In calculating the integrals one can
then switch to electron density of states and carry out energy
integration by using the identity∫ ∞

0
[f (x − y) − f (x)]dx

= kBTe ln

(
exp(βey) + exp(−βeEF )

1 + exp(−βeEF )

)
, (21)

where the variable y is defined by the phonon energy y =
±�ωα in the emission and absorption processes [see Eqs. (18)].
Taking into account that �ωα,kBT � EF , the exponentially
small terms in the round brackets on the right-hand side of
Eq. (21) can be neglected and we obtain the relation∫ ∞

0
[f (x − y) − f (x)]dx � y, (22)

also used in [21]. However, a more physically transparent
way is to note that at low temperatures the electron scattering
takes place near the Fermi surface, i.e., �ωα,kBT � εk ∼ EF .
This allows us to approximate the right-hand side of Eq. (20)
with ne(y)yδ(εk − EF ), by using the known expression for the
main term of the expansion f (x − y) − f (x) � −y∂f/∂x �
yδ(εk − EF ) [see, e.g., Eq. (5.42) in [35]]. It can also be seen
that this approximation reproduces the result in Eq. (22); recall
that x = εk . Then the above-mentioned form of Eq. (18) is
easily obtained as follows:

P = P0(Te) − P0(Tp). (23)

Here

P0(Te) =
∑

k‖,kz,k′
z,q‖,α=d,f

32π�
2E2

F

9ρA
ωα|Fα|2[qtq

(
q2

l + q2
)]2

× n(�ωα/kBTe)δ(εk − EF )

{
cos2 (Lqt/2),α = d

sin2(Lqt/2),α = f

}

× S(kz,k
′
z,α,ql)δ(εk‖,kz

− εk‖−q‖,k′
z
− �ωα). (24)

Equation (24) shows that in this leading order of the low-
temperature expansion the initial state of electrons is on the
Fermi surface, while the change of electron energy in the
scattering process is of the order of kBT (the average phonon
energy).
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Let us now consider the energy conservation condition imposed by the last δ function in Eq. (24) on the cosine of the angle
between the electron and phonon wave vectors written in spherical coordinates (sin θ cos ϕ):

δ

{
�

2

m
(kF q sin θ cos ϕ) + �

2

2m

[
k2
z − (k′

z)
2 − q2] − �ωα

}
. (25)

For the dilatational mode (α = d) we have k′
z = kz from Eq. (15) and then from Eq. (24) we obtain

P
FG,d
0 (Te) = 32π�

2E2
F

9ρA

Ad

(2π )3

∫ ∞

0
k2dk

∫ π

0
sin θdθ

∫ 2π

0
dφ

A

(2π )2

(∫ ∞

0

∫ 2π

0
qdqdφd

)

×ωd |Fd |2
[
qtq(q2

l + q2)
]2

ne(�ωd )δ

(
�

2k2

2m
− EF

)
cos2 (Lqt/2)

m

�2kq
δ

(
sin θ cos φ − q

2k
− mωd (q)

�kq

)
. (26)

One can see that due to conservation of the z component of the electron momentum the phonon is actually emitted in the
direction orthogonal to k, i.e., | sin θ cos ϕ| � 1. Indeed, we can estimate mωd/�kF q ∼ ct/vF � 1 and, since kF ∼ π/a0 (a0

is the lattice spacing), also q/2kF � 1. So, the k vector is allowed to rotate without restrictions in the plane orthogonal to q‖,
while q‖ in its turn is free to rotate in the plane of the film. Thus, integration over the electron (θ,φ) and phonon (φd ) angles in
Eq. (26) results in the multiplier (2π )2 (formal derivation is somewhat lengthier and leads to the same conclusion). Integration
over the length of k is trivial and can also be expressed in terms of the electron density of states for the parabolic dispersion,
N (EF ) = AdmkF /(�π )2. We finally obtain the following expression for the d mode:

P0,d (Te) = 32πm2E2
F

9ρ�2

Ad

(2π )3

∫ ∞

0
ωd |Fd |2

[
qtq

(
q2

l + q2)]2
ne(�ωd ) cos2 (Lqt/2)dq, (27)

which after substitution of the expressions in Eq. (11) into Eq. (27) results in

P0,d (Te) = ζ (4)

12π2

Ve(kBTe)4k4
F J 2

ρL�2c3
t (1 − J )3/2 . (28)

Calculation of the heat current due to the flexural phonon modes is more involved since kz is not conserved even in the
long-wavelength approximation and can significantly differ from k′

z, Eq. (16). It is then convenient to express the power function
(24) in the cylindrical coordinates:

P0,f (Te) = 16E2
F

9ρ

Ad4

(2π )4

(
m

�

)2 ∫ ∞

0
dqI (q)|pl|2ωα|Fα|2[qtq

(
q2

l + q2
)]2

n(�ωq/kBTe) sin2 (Lqt/2). (29)

Here

I (q) =
∫ kF

0

dk‖√
k2
F − k2

‖

∫ kF

−kF

dkz

∫ ∞

−∞
dk′

z

[
δ
(
kz −

√
k2
F − k2

‖
) + δ

(
kz +

√
k2
F − k2

‖
)]

×
∣∣∣∣
∫ σ/2

σ/2−1
exp(id(kz − k′

z)z)zdz

∣∣∣∣
2 ∫ 2π

0
dφδ

(
cos φ +

[
k2
z − (k′

z)
2 − q2

]/
2

k‖q
− mωf

�k‖q

)
. (30)

In Eq. (30) we have introduced the ratio σ = L/d with the limit value σ = 1 corresponding to the absence of the insulating
membrane, i.e., to a purely metallic sample. The multiple integral I (q) is calculated analytically in the Appendix and its
substitution into Eq. (29), together with the solution (12) for the flexural mode, leads to the following expression:

P0,f (Te) = Ve(kBTe)4d3m2J 2E2
F

4
√

3π3ρL4c3
t �

6(1 − J )3/2

[
(σ − 1)2

∫ ∞

0
x3(− ln x)n(x)dx

+
[

1

2
+ (σ − 1)2 ln

(
25.53

�Lct

√
(1 − J )/3

d2kBTe

)] ∫ ∞

0
x3n(x)dx

]
. (31)

From Eq. (31) we obtain the final result for the contribution of the flexural modes:

P0,f (Te) = 0.0075Ve(kBTe)4k4
F J 2

ρLσ 3�2c3
t (1 − J )3/2

(
(σ − 1)2 ln

[
4.4

σ 2
�ct

√
1 − J

LkBTe

]
+ 1

2

)
. (32)

The argument in the square brackets is proportional to
T ∗/Te ∼ �c/(LkBTe), so that the log term is positive for
temperature in the interval below the crossover, i.e., where

the description of the phonon subsystem in terms of quasi-
two-dimensional phonon confinement is applicable. Note also
that P0,f (Te) does not vanish even for a purely metallic slab
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(Ve = Vp and σ = 1) when electrons experience an an-
tisymmetric field created by the flexural vibration mode
[Eq. (16)] and the respective overlap function vanishes
S(kz = k′

z,f,ql = ipl) = 0. This result demonstrates the point
made in the Introduction that the nonzero contribution of
the flexural modes to the heat transfer is due to scattering
processes with k′

z 	= kz. One can also see that the above result
scales with the surface of the sample (P ∼ A) for a free
metallic film (σ = 1), but for a composite structure (σ > 1)
the geometry dependence becomes more complicated even for
an acoustically uniform medium.

To simplify the discussion we assume that the phonon
temperature is much lower than Te, so that the total density
of the heat transfer power Q is obtained as the sum of just the
two contributions in Eqs. (28) and (32):

Q = (P0,d (Te) + P0,f (Te))/Ve. (33)

Thus, for the considered case of an acoustically uniform metal-
insulator composite slab we obtain the following expression:

Q = 0.0075(kBTe)4k4
F J 2

ρLσ 3�2c3
t (1 − J )3/2

[
1.2σ 3 + 1

2
+ (σ − 1)2

× ln

(
4.4

�σ 2ct

√
1 − J

LkBTe

)]
. (34)

Its generalization to the case of two acoustically inequivalent
rigidly bonded layers is much lengthier and will be presented
in detail elsewhere. A typical example corresponds to a
Cu film deposited on a silicon-nitride insulating membrane.

Following the guidelines of the standard description of layered
elastic media (see, e.g., [25,26]), one can obtain the analytic
solutions for the acoustic branches of the vibrational modes
and respective normalization factors in the long-wavelength
approximation. The result is that solutions of the Stoneley type
(i.e., interface guided waves with the amplitude decreasing
away from the interface) do not appear in the long-wavelength
limit and it is well justified to keep the two types of modes
considered above solely responsible for the low-temperature
behavior also in this case.

We identify the material parameters corresponding to Cu
and silicon nitride by the respective indices, i = 1 and 2. The
mass of the composite slab is M and the ratio M/A replaces
the product ρL in Eq. (34). Then, with the additional notations

Ri = ρic
2
t,i(1 − Ji), χ = 1

2

(
R2(L − d)2 − R1d

2

R2(L − d) + R1d

)
,

G = 2�

d2

√
[R1d3 + R2(L− d)3]/3 − χ2[R1d + R2(L− d)]

ρ1d + ρ2(L − d)
,

(35)

the long-wavelength dispersion of the dilatational acoustic
mode can be written as

ωd = 2q

√
R1d + R2(L − d)

ρ1d + ρ2(L − d)
. (36)

Equation (36) reproduces the known result [32]. For the
flexural mode we find

ωf = 2q2

√
[R1d3 + R2(L − d)3]/3 − χ2[R2(L − d) + R1d]

ρ1d + ρ2(L − d)
. (37)

It is easy to check that these expressions correctly reproduce the limit of the acoustically uniform medium and amount to an
effective renormalization of the parameters in Eq. (34) without qualitatively changing the temperature dependence. Indeed,
by carrying out the calculations within the lines described in the previous case we obtain the following generalization of
Eqs. (31)–(33) for the power density function Q(Te) = Qd (Te) + Qf (Te), where

Qd = (kBTe)4 ζ (4)

12π2

Ak4
F J 2

1

�2M

(
ρ1d + ρ2(L − d)

R1d + R2(L − d)

)3/2

, (38)

Qf = (κBTe)4

π33227

Ak4
F J 2

1

�2M
{(2χ/d + 1)2[ln(G/kBTe) + 13.3] + 3.247}

(
d2[ρ1d + ρ2(L − d)]

[R1d3 + R2(L − d)3]/3 − χ2[R2(L − d) + R1d]

)3/2

.

(39)

Figure 2 shows the relative contribution of the two modes
as given by Eqs. (38) and (39) to the electron-phonon heat
transfer (Qf /Qd ) for the two samples M1 and M3 which
have been interpreted in [12,13] as demonstrating a crossover
in the sub-Kelvin region. The material parameters can be
found in [12,13,15]: ρ1 = 8940 kg/m3, ρ2 = 3290 kg/m3,

ct,1 =2575 m/s, ct,2 =6200 m/s, J1 =0.27, J2 =0.36, L=
30 nm,A = 600×300(μm)2, d(M1) = 14 nm, d(M3) =
19 nm, to a good approximation M/A � ρ2(L − d) by
taking into account that the surface of the Cu film in these
experiments was smaller than the supporting membrane. The

value of kF = 1. 65×1010 m−1 in the prefactor of the above
equations is discussed below.

We can see that the contribution of the flexural mode to the
heat transfer is comparable to the dilatational one and gains
more “weight” towards lower temperatures due to the presence
of the log term in Eq. (39). Moreover, Fig. 2 indicates that the
sample with a higher thickness ratio between the metal film
and the insulating membrane (i.e., a smaller geometric factor:
σ (M3) = 49/19 < σ (M1) = 44/14 has also a higher value
of the power ratio Qf /Qd . Note also that the ratio Qf /Qd

reduces to a constant (�0.41) for the case of a suspended
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FIG. 2. The relative contribution Qf /Qd , Eqs. (38) and (39), to
the heat flux of the flexural vs dilatational acoustic modes for the two
samples M1 and M3 in [12,13] (see text).

metallic film, as can be easily seen from Eqs. (28) and (32)
with σ = 1.

In Fig. 3 our result is compared to the temperature
dependence of the total power density Q = Qf + Qd for
the sample M1 (Fig. 3 in [12]) with the material parameters
as given above. The effective value of kF is obtained by
fitting the low-temperature region of Q(T ) and is slightly
larger than 1. 4 × 1010 m−1 following from the known value
of the Fermi energy for copper, 7 eV, if the effective mass
m is estimated from the electron heat capacity (e.g., [36])
for the simple isotropic parabolic dispersion. We mention that
in [15] the deviation of the Fermi surface in noble metals
from a simple spherical shape has been studied in terms
of surface averaged effective electronic parameters and for
Cu the estimated increase of the respective prefactor in the
electron-phonon power function is comparable to our result.

At temperatures above 250 mK the analytical curve starts
to deviate from the experiment as the crossover temperature
is approached and higher-energy branches of the Lamb modes
spectrum should be taken into account. From Eqs. (38) and
(39) it also follows that the M3 sample (not shown in Fig. 3)

FIG. 3. The power density of the electron-phonon heat transfer
for the M1 sample in [12] (squares) and the joint contribution due
to flexural and dilatational acoustical Lamb modes Q = Qf + Qd as
given by Eqs. (38) and (39) (see text).

has a somewhat higher value of the total power density Q than
M1 for the considered temperature region. The quantitative
comparison shows a good agreement with the results presented
in Fig. 4 of [12] and in Fig. 3 of [13].

IV. CONCLUSIONS

We have obtained explicit expressions for the power density
of the electron-phonon heat transfer in a metallic film including
the case when the film is deposited on an insulating membrane
with generally different acoustic characteristics, Eqs. (38) and
(39). The temperature regime covered by the present analysis
corresponds to low temperatures when the phonon spectrum
is dominated by quasi-two-dimensional modes of vibration.
The long-wavelength approximation which considers only
the lowest phonon branches is well justified at lower tem-
peratures and has allowed us to carry out the calculations
analytically. Thus, for the specific example considered above,
e.g., Fig. 3, this description corresponds to temperatures below
0.25 K while the quasi-two-dimensional regime sets in around
0.4–0.5 K [12]. It turns out that the contributions of the flexural
and dilatational phonon modes to the heat flux are of the same
order of magnitude, as illustrated by Fig. 2.

For a suspended metallic film, σ = 1, the heat current
follows a T 4 dependence, i.e., P = �2DA(T 4

e − T 4
p ), which

appears to fit the pattern of the dimensionality dependence
including the integer power x in the T x temperature variation,
namely, when the phonon subsystem corresponds to either a
three-dimensional bulk material with the power index x = 5 as
in Eq. (1), or to a two-dimensional or quasi-two-dimensional
material such as a single or bilayer graphene [37,38] with
x = 4, or to a quasi-one-dimensional nanowire [17] with x =
3. However, this result could seem surprising in the context of
previous works on some other quasi-two-dimensional systems,
e.g., [20,21], for the case of a semiconductor quantum well,
which would rather suggest a fractional value of x due to the
peculiar quadratic dispersion of the flexural mode. Fractional
power, T 2.5 ln T , was also reported for the flexural modes’
contribution to electrical resistivity in free-standing graphene
[39]. The value x = 4 for the heat flux in graphene is actually
due to electron coupling with the dilatational phonons, since
the “troublesome” flexural ones couple to electrons only in
second order in the displacement and can be disregarded for
the graphene on a substrate as well [37]. Moreover, essentially
different contributions of the phonon modes could be expected
to result not only from the linearity and nonlinearity of the
respective dispersion laws but also from the explicit presence
of the size (thickness L) dependence in the dispersion of the
flexural mode [e.g., compare ωd and ωf in Eqs. (11) and
(12)]. Indeed, in the studies on phonon transport and phonon
heat capacity of a free-standing dielectric membrane [40,41]
a striking difference between the thickness dependent and
nondependent behavior has been derived for the two types
of vibration. In contrast, for the electron-phonon heat transfer
we find a comparable contribution for the two modes even
when the metallic film is deposited on an insulating membrane
(σ > 1), when the effect of sample geometry on the power P

is more complicated than a simple scaling with surface area
A [see, e.g., Eqs. (28) and (32) for the acoustically uniform
sample]. As we have shown such unexpected relative similarity
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in the temperature and size (e.g., thickness) dependence
results from several physical factors, so that their combination
differs from the cases studied earlier. For a coupled electron-
phonon system both the dispersions and the amplitudes of the
excitations play an important role. Respectively, a proper nor-
malization of the amplitudes is crucial. One can then see, e.g.,
from Eqs. (11) and (12), that the normalization of the phonon
modes in Eqs. (6) and (7) containing the multipliers Fd,f and
the auxiliary parameters qt,l , moderates to some extent the
sharp differences between the d and f dispersions. It is also
clear that this “compensation” depends on specific quantity
considered, which in our case is the heat flux. Unlike the case of
graphene or that of a semiconductor quantum well, the electron
excitations are described in terms of three-dimensional Fermi
gas with parabolic dispersion. Respectively, the overlap of
the electronic amplitudes in the initial and scattered states
[Eq. (14)] is also a physical factor which differs from the
models considered before. As discussed in the text, this
overlap strongly discriminates between the d and f phonons
and contributes to the above-mentioned “compensation”
as well.

For the case of a metallic film deposited on an insulating
membrane the flexural mode contribution to the power density
of the electron-phonon heat transfer acquires an additional
logarithmic term of the form T 4 ln T [Eq. (39)], while that
of dilatational modes keeps the T 4 dependence [Eq. (38)].
As we have shown, such functional dependence reproduces
well the observed behavior, which was modeled in [12] with a
power law T x with x < 4.5. The dependence on the material
parameters for a metallic film with dielectric backing becomes
more complicated, especially for the acoustically nonuniform

case. This point can be illustrated by a more detailed analysis
of the experimental work cited above. Thus, one generally
expects that reducing the dimensionality would enhance the
electron-phonon heat exchange. This is confirmed by Figs. 2
and 4 in [12] for sufficiently thick samples to be considered
bulklike (e.g., M5 and B1) and which show a much lower
power density Q (=P/Ve) than the thinner samples (like M1
and M3 discussed earlier, with M3 being thicker than M1).
Moreover, if the simple surface area scaling of the power
function (P ∼ A) would be valid for these thinner samples,
then one would expect that Q(M1) > Q(M3). However, the
power density for the thicker of the two (M3) is larger than
for the thinner one (M1) in the considered temperature region.
This nontrivial dependence on the material parameters is well
reproduced by the analytical expressions. Thus, the present
analysis demonstrates that in thin metal films both types of
Lamb’s phonon modes should be taken into account on equal
footing for a better understanding of the electron-phonon heat
transfer at low temperatures.
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APPENDIX

Integration over the angle φ and over kz in Eq. (30) reduces
to a triple integral:

I (q) =
∫ kF

0

dk‖√
k2
F − k2

‖

∫ ∞

−∞
dk′

z

θ
(
1 − {[

k2
F − k2

‖ − (k′
z)

2
]/

2k‖q − Dq/k‖
}2)√

1 − {[
k2
F − k2

‖ − (k′
z)

2
]/

2k‖q − Dq/k‖
}2

×
(∣∣∣∣

∫ σ/2

σ/2−1
exp

(
id

(√
k2
F − k2

‖ − k′
z

)
z
)
zdz

∣∣∣∣
2

+
∣∣∣∣
∫ σ/2

σ/2−1
exp

(
id

(√
k2
F − k2

‖ + k′
z

)
z
)
zdz

∣∣∣∣
2)

, (A1)

where θ (x) is the Heaviside function and we have introduced the constant

D = 1/2 + mLct

√
(1 − J )/3/� > 0,

taking into account the dispersion of the flexural mode in Eq. (12).
We further use the dimensionless variables

x =
√

k2
F − k2

‖/kF , y = k′
z/kF , Q = q/kF . (A2)

Equation (A1) then transforms into

I (q) = 2q

∫ 1

0
dx

∫ ∞

−∞
dy

θ [4Q2(1 − x2) − (x2 − y2 − 2DQ2)2]√
4Q2(1 − x2) − (x2 − y2 − 2DQ2)2

(G− + G+), (A3)

where we have defined the functions

G∓ ≡ G(y ∓ x) =
∣∣∣∣
∫ σ/2

σ/2−1
exp (idkF (y ∓ x)z)zdz

∣∣∣∣
2

. (A4)

We next consider the contribution I−(q) to I (q) corresponding to G− and switch to new variables:

u = y − x, v = x. (A5)
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Then I−(q) takes the following form:

I− = 2q

∫ ∞

−∞
du

∣∣∣∣
∫ σ/2

σ/2−1
exp (idkF uz)zdz

∣∣∣∣
2 ∫ 1

0

θ (c − bv − av2)dv√
c − bv − av2

, (A6)

where a,b, and c are functions of u:

a = 4(Q2 + u2) > 0,

b = 4u(u2 + 2DQ2), (A7)

c = 4Q2 − (u2 + 2DQ2)2.

Integration over v gives ∫ 1

0

θ (c − bv − av2)dv√
c − bv − av2

= 1√
a

[
π

2
− arctan

(
bθ (c)

2
√

ac

)]
. (A8)

Returning then to the definitions in Eq. (A4) and considering G+ we now define the variables u and v by changing the sign,
respectively: u = y + x and v = x. This results in the expression for the I+(q) which differs from I−(q) in Eq. (A6) by the
change of sign in front of b, so that integration over v will differ from Eq. (A8) by the sign in front of the arctan function. These
terms then cancel each other in Eq. (A3) when expressed in the u and v variables, so that our integral simplifies to

I = πq

∫ ∞

−∞

∣∣∣∣
∫ σ/2

σ/2−1
exp (idkF uz)zdz

∣∣∣∣
2

du√
Q2 + u2

. (A9)

The z integral can also be integrated exactly, so that after the replacement of variable x = udkF Eq. (A9) becomes

I =
∫ ∞

−∞

2σ (σ − 2)x2(1 − cos x) + 4x2 + 8(1 − cos x − x sin x)

4x4
√

(dq)2 + x2
dx. (A10)

The last integral can be reduced to the Meijer G function [42], however for the long-wavelength approximation dq < 1 one can
also obtain directly from Eq. (A10) its excellent approximation for dq < 1 by the following expression:

I (q) � πq

(
− (σ − 1)2

2
ln (dq) + 0.81(σ − 1)2 + 1

8

)
. (A11)
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