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Unconventional features in the quantum Hall regime of disordered graphene: Percolating impurity
states and Hall conductance quantization
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We report on the formation of critical states in disordered graphene, at the origin of variable and unconventional
transport properties in the quantum Hall regime, such as a zero-energy Hall conductance plateau in the absence of
an energy band gap and Landau-level degeneracy breaking. By using efficient real-space transport methodologies,
we compute both the dissipative and Hall conductivities of large-size graphene sheets with random distribution
of model single and double vacancies. By analyzing the scaling of transport coefficients with defect density,
system size, and magnetic length, we elucidate the origin of anomalous quantum Hall features as magnetic-field-
dependent impurity states, which percolate at some critical energies. These findings shed light on unidentified
states and quantum-transport anomalies reported experimentally.
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I. INTRODUCTION

The role of disorder in the quantum Hall effect (QHE) [1]
has been essentially related to the existence of a localization-
delocalization transition between electronic states, with the
formation of critical (extended) states at the center of Landau
levels (LLs) [2]. In very clean samples, the presence of this
transition is ensured by the system edges, which force the
formation of extended states, while bulk states are localized
by the magnetic field. The robustness of the QHE in the bulk
limit is guaranteed by the contribution of either weak impurity
potentials satisfying the so-called weakness condition [3,4],
strong scattering centers sufficiently far away from each
other [5–7], or smooth potentials with long-range spatial
variation [7–15]. Whenever disorder becomes too strong, all
QHE features eventually vanish.

Under high enough magnetic fields, the electronic prop-
erties of graphene are characterized by the presence of a
fourfold-degenerate zero-energy LL (where electrons and
holes coexist) together with nonequidistant LLs at energies
En = sgn(n)

√
2�vF

2eB|n| (where vF is the Fermi velocity, B
is the magnetic field, and n is the integer LL index) [16–20].
This electronic spectrum results in a Hall conductance
quantization σxy = 4e2

h
(n + 1

2 ) [20], which is weakly affected
by electron-hole puddles or weak surface disorder, but can
exhibit further fragmentation of the plateau structure whenever
additional symmetry-breaking mechanisms lift the fourfold
degeneracy [21,22]. The presence of an additional quantized
Hall plateau σxy = 0 at low energy in high-mobility samples
has been assigned, for instance, to Zeeman splitting or to
the formation of quantum Hall ferromagnetism [23–25], with
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B-field-dependent transport scaling behavior conveyed by the
dominant symmetry-breaking mechanism at play [25,26].

Recently, several experiments have reported unexplained
QHE features in disordered graphene, including sets of
extended states in Hall measurements and the formation of
a zero-energy Hall plateau [27–31]. These features do not fit
the usual energy quantization scheme of massless and massive
Dirac charge carriers and are, as such, often generically
attributed to disorder. Additionally, the observation of a quan-
tized Hall conductance in highly resistive (millimeter-scale)
hydrogenated graphene, with mobility less than 10 cm2/(V s)
and estimated mean free path far beyond the Ioffe-Regel
limit [32], suggests some unprecedented robustness of the
QHE in damaged graphene [33].

These findings are considered unconventional in the sense
that common belief often states that high concentrations of
strong disorder are detrimental to the Hall quantization in two-
dimensional electron gases (2DEGs). In graphene, however, a
variety of literature suggests that things are different and more
subtle. The topological contribution to the Berry phase [34],
which is basically a winding number of the pseudospin
1/2 [35,36], is predicted to be more robust under disorder, as
it should persist even in the presence of sublattice symmetry
breaking and associated gap opening. Such behavior has been
demonstrated experimentally in hydrogenated graphene [37].
Also, a robust QHE is expected in graphene, even when
strong impurities are at a distance smaller than the magnetic
length from each other. For instance, for dense impurity
concentrations, depending on the symmetry class and impurity
strength, a splitting of the critical energy within a single
Landau level is predicted when disorder introduces valley mix-
ing [38–42], similar to splittings already discussed for 2DEG
under the influence of certain types of smooth potential [43].
In (quasi)periodic systems, impurity-engineered Landau levels
have been proposed to exist as well [44].
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Up to now, a proper quantitative description of these
phenomena for a completely random distribution of disorder
and different types of disorder has been lacking, mostly due to
computational limitations.

In this article, by using efficient computational methods, we
provide tangible numerical insight into the rich physics of the
QHE in disordered graphene, backing up the single-particle
scenarios [38–42,44] in which dense distributions of defects
can explain the formation of a zero-energy plateau in disor-
dered graphene [29,30] and the presence of sets of extended
states in Hall measurements [28,31]. In the presence of single
vacancies (SVs) and double vacancies (DVs), critical states
are found to preclude the formation of the usual graphene LLs.
Rather, two sets of extended states form at energies different
from En, within each LL. Consequently, at low energy, by
tuning the magnetic field and the impurity concentration, a
zero-energy Hall plateau can be engineered. We extend the
present knowledge by characterizing these states following
their real-space behavior. We find that the critical states are
predominantly located in the impurity-dense regions, while
the localized states are trapped inside the pristinelike regions.
This suggests that the disorder is triggering a percolation-of-
states mechanism, which is also supported by our estimation
of the critical exponent. Furthermore, by calculating the
transverse conductivity numerically, we prove that σxy(E)
retains quantized values between Landau levels, even in
a highly disordered environment. Our numerical approach
circumvents the problems commonly associated with Chern
number calculation from (i) a computational point of view,
namely we do not have to diagonalize matrices containing
millions of elements, and (ii) a physical point of view, as the
Chern number approach might become ill defined when the
gaps between extended states close due to increasing disorder
contributions.

II. MODEL AND METHODS

A single-orbital first-neighbor tight-binding (TB) model
restricted to pz orbitals is used to describe graphene, with
hopping terms equal to γ0 and zero on-site energies. Model SVs
and DVs are described by removing the corresponding carbon
orbitals and are randomly distributed on graphene samples
containing up to 12 × 106 atoms. SV and DV are short-range
scatterers that entail intervalley scattering [38–40], but with
genuine differences. Indeed, SVs locally break the sublattice
symmetry and induce stronger localization effects, whereas
DVs locally preserve the sublattice symmetry. Both of these
defect models retain electron-hole symmetry, which simplifies
calculations and analysis of the physics at play, unhindered by
the full complexity of density-functional-theory-fitted models,
such as for oxygenated graphene [45].

The order-N method to obtain the dissipative bulk con-
ductivity by wave-packet evolution is already well estab-
lished [46,47]. By following the time evolution of the wave
packets, length-dependent conductivities σxx(L) can be ex-
tracted, probing diffusive and localization regimes. The effect
of a perpendicular magnetic field is modeled through a Peierls
phase substitution [48]. As the spin polarization is neglected
in present simulations (a factor of 2 is included to take into
account the spin degree of freedom), Zeeman splitting is not

considered. We do not expect this to alter our conclusions, as
is discussed at the end of the paper.

The nondissipative Hall conductivity is calculated using a
newly developed efficient real-space algorithm [49,50] (see
also Ref. [51]) as follows:

σxy(E,t) = − 2

V

∫ ∞

0
dte−ηt/�

∫ ∞

−∞
dE′f (E′ − E)

× �e

[
〈φRP|δ(E′ − Ĥ )ĵy

1

E′ − Ĥ + iη
ĵx(t)|φRP〉

]

with V the volume of the system, the current operator ĵx , f

the Fermi function, and η → 0 a small parameter required
for numerical convergence. |φRP〉 is a random phase state that
allows to drastically limit the computation time.

To simulate two-terminal transport, we consider a standard
configuration composed of a graphene ribbon with a central
region of length L, where DVs are randomly distributed. To
mimic source and drain contacts, graphene is highly doped
outside this region. An on-site energy shift of γ0 in the
Hamiltonian describing the contacts accounts for the doping.
We obtain the differential conductance of the system and the
spatial distribution of the spectral current by means of the
Green’s function approach [52].

III. RESULTS

A. Density of states

As a first step, we calculate the density of states (DOS)
for different vacancy densities in the presence of a magnetic
field of 80 T (see Fig. 1). For the chosen densities, the
average distance d between defects is on the order of the
magnetic length (lB ≈ 25 nm/

√
B/T ), thus favoring strong

coupling between impurity states. For the weakest impurity
concentrations considered in Fig. 1 (0.05% for DV and 0.125%
for SV), LLs still exist at conventional quantization energies
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FIG. 1. DOS for (a) DV and (b) SV at 80 T, for different impurity
concentrations. The curves are symmetric around E = 0, so only the
electron side is plotted. The dashed vertical black lines indicate the
energy positions En of LLs in the conventional pristine quantization.
Insets provide zooms at low energies.
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FIG. 2. (a) σxx(E) (dark-colored diamonds) and σxy(E) (light-
colored crosses) compared with the DOS (dashed black lines) for
1% of DVs at 80 T. Horizontal dotted lines give the expected Hall
plateaus for integer QHE (IQHE) filling factors. Vertical dashed lines
in (a) locate the energies E+

c and E−
c . (b) Impurity density Wi (see

text), (c) PDOS for critical states at E+
c and E−

c , and (d) PDOS
for E0.

En. Yet, they are broadened due to lingering coupling between
impurities (the transition to the noncoupled case is discussed
in Sec. III E). The LLs at conventional energies gradually
disappear for larger density, when impurity states emerge
at energies below and above each pristine LL energy En

for the DV case, and at energies larger than En for the SV
case, in agreement with the predictions for a (quasi)periodic
model [44]. In contrast, the robustness of the zero-energy
states in the SV case in Fig. 1 is explained by the rank-nullity
theorem [53]. This theorem predicts the existence of zero-
energy modes (ZEMs) for dilute concentrations of SVs, while
they should not form for DVs [54].

B. Longitudinal and transverse conductivity

To study the nature of these impurity states, we perform
conductivity calculations for 1% of DV [see Fig. 2(a)] and
for 0.25% of SV in Fig. 3(a). By computing both σxx(E) (dark
color) and σxy(E) (light color), the occurrence of localized and
extended states for different energies is clarified.

Focusing on the low-energy region, Figs. 2 and 3 show
that, for both SVs and DVs, the impurity states of Fig. 1 are
more extended at the energies E+

c and E−
c , where σxx(E) peaks

appear. For DVs, the DOS does not exhibit any double-peak
structure (dashed line in Fig. 2), while the conductivity clearly
resolves it. The different position of the peaks for SVs and
DVs is reminiscent of their behavior when arranged in periodic
arrays [44].

For both SVs and DVs, the height of the two peaks
[σxx(E) 
 1.2e2/h] resembles the value for the case where
intervalley mixing leads to two sets of extended states within
the same Landau level [40]. This explains the modified
transition between quantized Hall plateaus at −2e2/h and
2e2/h, with an additional plateau at E = 0, observed in Fig. 2
and Fig. 3 for DV and SV, respectively. The difference in
strength of DV compared to SV leads to σxy(E) profiles with
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FIG. 3. (a) σxx(E) (dark-colored diamonds) and σxy(E) (light-
colored crosses) in comparison with the DOS (dashed black lines)
for 0.25% of SVs at 80 T. Horizontal dotted lines give the expected
Hall plateaus for IQHE filling factors. Vertical red dashed lines in (a)
locate the energies E+

c and E−
c . The length-dependent conductivities

σxx(L) at selected energies are shown in (b). Solid lines with solid
symbols correspond to localized energies, while dashed lines with
open symbols correspond to extended states. Vertical dashed lines
in (a) correspond to conventional En energies of pristine graphene.
Symbols are only plotted every other ten data points, for clarity.

varying slope between −2e2/h and 2e2/h. Such a gradient in
the localization strength has also been observed in Ref. [42],
where the considered magnetic fields are several orders of
magnitude larger. For the selected DV case in Fig. 2(a), the
slope at E0 is not completely equal to zero, thus still providing
a limited contribution to the longitudinal conductivity (around
0.7e2/h for the calculated length scale).

The impurity states at E−
c and E+

c below and above E0 (the
position of the conventional zero-energy LL) only contribute
2e2/h each to the transverse conductance, indicating that
they originate from the original LL0, which would contribute
4e2/h (spin degeneracy included). Because of the neglected
spin polarization in our simulations, these results support
the valley-mixing scenario predicted theoretically [38–40],
where the existence of the two extended states at E−

c and E+
c

results from the mixing between K and K ′ valleys, within the
same LL.

To illustrate the spatial distribution of extended impurity
states at low energy, we calculate the projected DOS (PDOS)
at E±

c and E0 in Figs. 2(c) and 2(d), respectively, and compare

it to the local impurity density defined as Wi = ∑Nimp

j 1/dij ,
where dij is the distance between atom i and impurity j ,
as displayed in Fig. 2(b). Both states at E+

c and E−
c give

exactly the same density plots, emphasizing that they have
indistinguishable real space distributions. Blue regions in
Fig. 2(b) are less dense in impurities than the red ones. A clear
correlation is observed between the location of the extended
states at E±

c [Fig. 2(c)] and the impurity density [Fig. 2(b)]; i.e.,
the extended states mainly spread over the impurity regions of
the sample, while the localized states [Fig. 2(d)] are bound
to impurity-free areas. The delocalized nature of states at
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E±
c [Fig. 2(c)] is further confirmed by the strongly reduced

maximum in the PDOS (0.06 arbitrary units) compared to
the maximum PDOS for E0 [Fig. 2(d)], which reaches 0.25
arbitrary units.

In addition, to extend these results to the higher energies and
to LLs different from LL0, length-dependent conductivities
σxx(L) are considered, whose decay is related to the strength
of localization effects [see Fig. 3(b)]. The SV case is chosen
as it depicts better energy resolution between extended and
delocalized states at high energy. New sets of extended
impurity states clearly develop also away from the Dirac
point up to −0.2γ0, witnessed by the longitudinal conductivity.
Extended state energies in σxx(L) are confirmed by the plateau
transitions in σxy(E) [Fig. 3(a)]. Contrary to the LL0 case,
extended impurity states at higher energy contribute to σxy(E)
with integer multiples of 4e2/h; no clear step is observed at
σxy = ±4e2/h, for instance. Traces of quantization are found
at ±6e2/h and ±10e2/h for SVs in Fig. 3(a). Similarly to the
low-energy case, these states form at energies different from
the ones predicted from conventional Hall quantization. The
full 4e2/h steps at higher energies (in contrast with the two
2e2/h steps in LL0) are rationalized by the fact that, even
for the fully periodic case where random disorder broadening
is absent, the two new states within each higher-energy LL
are very close in energy [44]. Thus, unrealistically small
broadening and a complete absence of disorder would be
required to resolve the energy lifting of extended states for
LLs different than LL0.

Finally, from this σxx(L) plot, we also note that, although
SVs significantly contribute to the DOS at E0, these states
(ZEM) turn out to be strongly localized, in sharp contrast with
the DV case where the conductivity at E = 0 remains finite for
much larger length scale. In the next section, this different be-
havior is further scrutinized by simulating different densities.

C. Coupled impurity states

In the very dilute limit (around 0.05%), localized impurity
states can be sufficiently separated to have no significant
overlap. In this limit, the conventional QHE is essentially
preserved [55]. This limiting case is considered separately
in Sec. III E. By increasing the impurity density, noticeably
extended states start to appear when lB is of the order of d as
in the case for 1% of DV in Fig. 2(a) and for 0.25% of SV in
Fig. 3(a), when localized impurity states couple. This condition
can be satisfied by increasing the impurity concentration or the
magnetic length (by decreasing the magnetic field), which we
demonstrate for several cases in Figs. 4(a) and 5(a). Once in
the coupled regime, the energy of the extended states increases
with B [44,56] and concentration; see, for instance, Fig. 4(a)
for 0.5% DV concentration at 320 T.

To analyze the percolation of states driven by impurities,
the extracted localization lengths in the strong localization
regime, using [57]

σxx(L) ∼ exp

[
−L

ξ

]
, (1)

are plotted in Fig. 4(b) for an impurity concentration
of 0.5% (symbols) (similar results are obtained for other
concentrations, not shown here). Percolation theory [38,58]
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FIG. 4. (a) σxx(E) (dashed lines) and σxy(E) (solid lines) for DV
at 80 T. σxx(E) is also calculated for 0.5% at 320 T and 2% at 80 T.
(b) Estimated localization lengths for 0.5% at 80 T with theoretical
critical exponential (ν = 2.34) decay around E+

c .

predicts a critical exponent ν = 2.34 for ξ ∼ |E − Ec|−ν

(solid line). Visual agreement is obtained between numerics
and theory for the right tail of E+

c . However, for the left
tail, towards E0, agreement cannot be claimed. This behavior
results from the set of remnant states in the low-impurity-
density regions of the samples, which are not fully localized for
DV at the considered length scale. To further characterize the
puzzling behavior of states at E = 0, we plot σxx(L) in Fig. 5(b)
for SV and DV. On the one hand, for the SV case the states are
strongly localized. This is in agreement with the localization
behavior of ZEM predicted at zero magnetic field [59,60],
following a power-law behavior σxx(L) ∼ L−2. On the other
hand, for the DV case, σxx(L) exhibits a linear decay. This
explains the finite conductivity contributions observed in
Figs. 2(a) and 4(a). Actually, the highest density concentration
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FIG. 5. (a) σxx(E) (dashed lines) and σxy(E) (solid lines) for SV
at 80 T. (b) σxx(L) for E0 for both SV and DV. Symbols are only
plotted every other ten data points, for clarity. The y-axis label in (b)
is same as in (a).
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(2%), with an increased energy split between extended impu-
rity states, even allows resolving the three sets of states at E±

c

and E0 in the σxx(E) curve. This is counterintuitive in the sense
that increasing the disorder decreases the amount of clean
patches in the sample, the habitat for delocalized states at E0.
σxx(E) at E0 remains, nevertheless, surprisingly robust up to
long length scales, which is not observed for the SV case. This
could either be explained by the weaker DV disorder strength
allowing states to propagate more easily from one pristine
patch to the other, or by referring to Ostrovski et al. [55,61],
who provide an argument against localization at E = 0 for
pointlike chiral disorder. Reference [62] recently demonstrated
through simulations that it is very difficult and computationally
much more demanding to accurately capture the singularity
associated to the ZEM, and even more so for stronger SV
compared to DV. We thus remain cautious about making con-
clusions on the exact localization behavior at the E = 0 point.

D. Two-terminal calculations

To gain complementary insight in the length scaling
and percolation behavior of impurity states, we also use a
different methodology, namely by calculating the two-terminal
conductance of a 100-nm-wide ribbon for B = 80 T. In the
pristine case, the conductance shows a 2e2/h plateau in the
energy region of Fig. 6(a) (see the inset for a larger energy
range). The corresponding spectral current injected from the
left contact and transmitted along the chiral top edge channel
of the ribbon is indicated by the arrows in Fig. 6(b). For
Figs. 6(c)–6(e), 0.5% of DVs are distributed over a ribbon
of length L from 25 to 100 nm. In quantitative agreement
with above calculations in two-dimensional (2D) geometry,

FIG. 6. (a) Conductance of the two-terminal system with a
density n = 0.5% of DV over a ribbon of length L for 25 to
100 nm. Inset: Pristine case for L = 25 nm. (b) Spatial distribution
of the spectral current at E = 0.008γ0 for the pristine ribbon with
L = 25 nm. The arrows indicate the current direction. (c)–(e) Same
as (b) for DV density of 0.5% and L = 25, 50, and 100 nm. All
simulations were carried out at 80 T.

Fig. 6(a) shows that DVs induce bulk states within a certain
energy window (from −0.015γ0 to 0.015γ0), which modify
the pristine conductance. For L = 25 nm, most of these states
are extended enough to connect source and drain contacts
and induce a conductance increase well above the pristine
value. In fact, the observed conductance for this case is
reminiscent of the DOS curve in Fig. 1(a), and the bulk
spectral current distribution in Fig. 6(c) illustrates in real
space that electrodes are connected by the states and explains
the high conductance also seen in 2D simulations. When
increasing L to 50 nm, fewer bulk states are sufficiently
extended to allow the electrons to reach the drain contact.
As a consequence, the conductance decreases and narrow
peaks appear corresponding to the energy regions where
more extended states are concentrated, contributing to the
transport. The current distribution of Fig. 6(d) indicates that,
for this energy, the electron penetration decreases, with a less
efficient bridging between electrodes. Analogous behavior is
observed for L = 100 nm in Fig. 6(e), with a more pronounced
fragmentation into peaks and a weaker conductance decrease
at the center and the sides of the DV energy window [Fig. 6(a)],
in agreement with the 2D simulations. For L > 100 nm, the
peaks reduce to isolated resonances with conductance below or
almost 2e2/h, and a transport gap progressively opens around
E = 0 (not shown here).

Note that, in the 2D results, the narrow resonances
are masked by self-averaging effects. On the other hand,
two-terminal simulations should be performed over a large
ensemble of disorder realizations to recover the statistical
information provided by 2D bulk conductivity simulations,
such as the exact position of the more extended states
corresponding to the critical energies. The broadness of energy
distribution of the DV-induced states and their localization is
inversely proportional to the defect density. In the limit of a
periodic DV distribution [44], the bulk states are completely
delocalized and concentrated around very specific energies.

E. Level condensation

In the previous sections, we have always considered a
distance between defects short enough to allow their coupling
and the formation of impurity states at new critical energies.
In Ref. [55], the transition from interacting impurities to
noninteracting impurities in the very low concentration regime
has been considered. A distance criterion is provided at which
so-called level condensation should occur, namely,

r = lB

limp
< 0.39. (2)

For the case of 80 T and the lowest concentration considered
so far (0.05%), r = 0.63. By reducing the concentration to
0.01%, one gets r = 0.28, for which level condensation should
occur. Similarly, by increasing the magnetic field, and keeping
0.05% of DV, one can achieve values of r = 0.32 (for 320 T)
and r = 0.16 (for 1280 T), respectively. The latter approach
(high magnetic field, low concentration) is simpler from a
computational point of view; the former (lower magnetic field,
higher concentration) is more realistic from an experimental
point of view.
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FIG. 7. (a) DOS around the LL0 for DVs. (b) DOS for a larger
energy spectrum. (c) Energy width of LL0 at selected heights [see
dotted and dashed lines in (a)], for different impurity concentrations.

When calculating the DOS, very small impurity concen-
trations can be considered, as reported in Fig. 7. Figure 7(b)
depicts a large energy range, while Fig. 7(a) focuses on the
energy region around the LL0. A logarithmic scale was used for
the zoom, for the sake of clarity. With the broadening energy
set to 0.0005γ0, the concentration-dependent width of the peak
(	E) is reported in Fig. 7(c) for two arbitrary peak heights. For
the dotted line (0.0017 arbitrary units), the value of the splitting
does not vary for concentrations below 0.01%. This confirms
qualitatively and quantitatively (with an uncertainty related
to height and numerical broadening) the level condensation
from a DOS point of view. A conductivity analysis for the
condensated regime is out of the scope of the present study,
because all states become localized due to the magnetic field.
Either edges or additional long-range disorder would have to
be included to allow for extended states to develop at the
energies En of LLs in the conventional pristine quantization.

IV. CONCLUSION

We have investigated numerically the possible origin of
anomalous features reported in the quantum Hall regime
of low-mobility graphene samples [28–30], such as reso-
nances in the dissipative conductivity and a zero-energy
Hall plateau. They result from the formation of disorder-
induced percolating bulk states, whose density and extension
is maximal around two critical energies that depend on the
magnetic field and on the impurity density. The presence
of defect-induced critical states on novel QHE properties
does not seem to depend on the local symmetry breaking
(as induced by SVs), as they also form for DV impurities.
Rather, valley mixing is required. Finally, a vanishing con-
tribution of these defect-induced critical states is observed
in the very low impurity density limit, characterized by
so-called level condensation [41]. Results on highly disordered

graphene using more realistic impurities, with TB parameters
extracted from ab initio simulations, suggest a certain univer-
sality of these impurity-induced extended states [45,63,64],
even in the presence of electron-hole asymmetry. This asym-
metry can provide an additional signature on the nature of the
contaminating impurities [65]. The energy dependence of im-
purity states with magnetic field can be inferred from existing
DOS literature for different types of impurities [44,45,66]. The
study of electron transport, as we performed in this paper, is
nevertheless required to precisely assess the extendedness of
states, as is apparent from the energetically unresolved static
DOS features for the DV case.

The inclusion of a Zeeman term in the present form of our
Hamiltonian, while desirable for high magnetic fields, is not
expected to alter our conclusions, as we do not consider spin-
spin or spin-orbit interactions at this point. Such a term would
then simply induce two spin-dependent copies of the same
physics (and an additional trivial splitting with the Zeeman
energy). We also note that the present conclusions at high
magnetic fields (80 T in this work), which are computationally
less demanding for numerical convergence in the transverse
conductivity than at low magnetic fields, are expected to
be robust for much smaller magnetic fields (where Zeeman
interaction is weakened), as is demonstrated in a separate work
on oxygenated graphene [45]. In our work, we demonstrate
that the unconventional transport features can be explained
even with this simplification in neglecting the Zeeman term.
Finally, we propose two future lines of research. First, the
way the Chern number is modified or not in highly disordered
graphene should be investigated (as well as simply exploring if
Chern number classification is still appropriate). Our method
has the advantage to predict the Hall conductivity even for large
disorder, but we presently do not have any tool to calculate the
Chern number without going through exact diagonalization
of a system containing millions of elements. Second, we
comment on how interaction effects might play a role. Indeed,
high magnetic fields may induce strongly localized states.
The interaction between particles may thus become more
relevant. Possible influences could be an interaction-induced
localization of the critical states, an additional splitting as in the
case of quantum Hall ferromagnetism [25], or a competition
between both mechanisms.
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[35] J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montambaux,
Eur. Phys. J. B 77, 351 (2010).

[36] C.-H. Park and N. Marzari, Phys. Rev. B 84, 205440 (2011).
[37] K. Bennaceur, J. Guillemette, P. L. Lévesque, N. Cottenye, F.
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