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Magnetointersubband resistance oscillations in GaAs quantum wells placed in a tilted magnetic field
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The magnetotransport of highly mobile two-dimensional electrons in wide GaAs single quantum wells with
three populated subbands placed in tilted magnetic fields is studied. The bottoms of the lower two subbands have
nearly the same energy while the bottom of the third subband has a much higher energy (E1 ≈ E2 � E3). At
zero in-plane magnetic fields, magnetointersubband oscillations (MISO) between the ith and j th subbands are
observed and obey the relation �ij = Ej − Ei = k�ωc, where ωc is the cyclotron frequency and k is an integer.
An application of in-plane magnetic field produces dramatic changes in MISO and the corresponding electron
spectrum. Three regimes are identified. At �ωc � �12, the in-plane magnetic field increases considerably the gap
�12, which is consistent with the semiclassical regime of electron propagation. In contrast, at strong magnetic
fields �ωc � �12 relatively weak oscillating variations of the electron spectrum with the in-plane magnetic field
are observed. At �ωc ≈ �12, the electron spectrum undergoes a transition between these two regimes through
magnetic breakdown. In this transition regime MISO with odd quantum number k terminate, while MISO
corresponding to even k evolve continuously into the high-field regime corresponding to �ωc � �12.
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I. INTRODUCTION

The quantization of electron motion in magnetic fields
generates a great variety of fascinating phenomena ob-
served in condensed materials. A well-known example is
the Shubnikov–de Haas (SdH) resistance oscillations [1].
The passage of strongly degenerate Landau levels through
the Fermi surface at a low temperature T produces resistance
oscillations due to a modulation of the net number of electron
states in the energy interval kT < �ωc near the Fermi energy
EF that provide the dominant contribution to electron transport
[2,3]. In two-dimensional electron systems, SdH oscillations
can be very pronounced [2], leading to the quantum Hall effect
(QHE) at low temperatures kT � �ωc [4].

Landau quantization produces a remarkable effect on Joule
heating of two-dimensional (2D) electrons [5–8]. The heating
forces 2D electrons into exotic electronic states in which volt-
age (current) does not depend on current [9–11] (voltage [12]).
In contrast to the linear response at low temperatures
kT < �ωc (SdH, QHE), the quantization affects Joule heating
in a significantly broader temperature range. At kT � �ωc

the dc heating produces a multitiered electron distribution
containing as many tiers as the number of Landau levels inside
the energy interval kT : N ≈ kT /�ωc. This quantal heating
preserves the overall broadening (∼ kT ) of the electron distri-
bution [7,13]. Surprisingly the electron distribution resulting
from quantal heating is, in some respect, similar to the one
created by quantum microwave pumping between Landau
levels [14,15]. Indicated phenomena produce a broad variety
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of nonlinear effects in quantizing magnetic fields and present
an exciting area of contemporary research [16].

Two-dimensional electron systems with multiple populated
subbands exhibit additional quantum magnetoresistance os-
cillations [17–24]. These magnetointersubband oscillations
(MISO) of the resistance are due to an alignment between Lan-
dau levels from different subbands i and j with corresponding
energies Ei and Ej . Resistance maxima occur at magnetic
fields at which the gap between the bottoms of subbands
�ij = Ei − Ej equals a multiple of the Landau level spacing
�ωc: �ij = k�ωc, where k is an integer [25–28]. At this
condition electron scattering on rigid impurities is enhanced
due to the possibility of electron transitions between ith and j th
subbands. At magnetic fields corresponding to the condition
�ij = (k + 1/2)�ωc the intersubband electron transitions are
suppressed. As a result, the resistance oscillations are periodic
in inverse magnetic field due to this modulation of electron
scattering. In contrast to SdH oscillations, MISO are less
sensitive to temperature. MISO are observed at temperatures
kT � �ωc at which SdH oscillations (and QHE) are absent.

This paper presents investigations of MISO in wide
quantum wells with three populated subbands placed in a
tilted magnetic field. Studied systems contain conducting
electrons localized near the edges of the quantum wells. The
electrons, thus, form two parallel 2D systems separated by
a distance d. A weak electron tunneling between these two
systems occurs through a relatively wide but shallow potential.
In zero magnetic field, the lateral (along 2D systems) and
vertical (between 2D systems) motions of an electron are
completely disentangled. The vertical tunneling uniformly
splits the electron spectrum originally degenerate in the lateral
directions. The resulting eigenvalues correspond to symmetric
(E1) and antisymmetric (E2) configurations of electron wave
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functions in the vertical direction with the energy gap �12 =
E2 − E1 between two subbands independent of the lateral
wave vector �k.

The bottom of the third subband has a much higher electron
energy E3 � E1,2. Application of perpendicular magnetic
field quantizes the lateral motion in all subbands inducing
MISOs. The MISOs corresponding to electron scattering
between the third and the two lower subbands oscillate at
high frequencies and demonstrate a distinct beating pattern.
This useful property provides a very accurate measurement of
the evolution of the electron spectrum in response to in-plane
magnetic field.

Application of in-plane magnetic field couples the symmet-
ric and antisymmetric states [29,30] leading to a significant
modification of the electron spectrum. Theoretical investiga-
tions of the electronic structure of two parallel 2D electron
systems in tilted magnetic fields have revealed three regimes
occurring at small [�ωc � �12, semiclassical (SC) regime],
strong [�ωc � �12, high-field (HF) regime, and intermediate
[magnetic breakdown (MB) regime] magnetic fields [30].
The intermediate magnetic fields correspond to magnetic
breakdown [31–34] of the semiclassical electron spectrum
leading generally to complex combinations of semiclassical
orbits [34–36]. These regimes have been investigated to a
different extent mainly in double quantum wells using SdH
oscillations and QHE [29,37–40]. However the results have
not been compared coherently with the theory across all three
regimes and important properties of the quantum oscillations
have not been revealed. We note also that in the regime of
QHE the energy spectrum is often sensitive to effects of the
electrostatic redistribution of 2D carriers between different
subbands and quantum levels, which makes a quantitative
comparison between different regimes challenging [42,43].

This paper presents an attempt to study the evolution of
the electron spectrum in wide quantum wells with in-plane
magnetic field using MISO. The experiments are performed
at a high temperature kT � �ωc at which effects of the
electrostatic electron redistribution between Landau levels are,
most likely, not relevant. The paper shows both MISO and
SdH oscillations obtained at different angles α between the
magnetic field and the normal to the 2D systems and yields
a detailed evolution of electron spectrum in multisubband 2D
systems in a broad range of magnetic fields. Presented results
show a termination of the MISO corresponding to �12 = k�ωc

at odd k in the magnetic breakdown regime. The termination is
accompanied by a collapse of the nodes in the beating between
MISOs corresponding to the third subband. The obtained data
demonstrate a good agreement with numerical simulations
based on the existing theory [30] in a broad range of magnetic
fields including all regimes indicated above.

Our experiments have revealed an outstanding sensitivity of
the electron spectrum to the angle α, especially at �ωc ≈ �12.
The sensitivity to in-plane magnetic field is due to both
a strong Lorent’s force, which occurs in studied samples
with high electron density, and a weak tunneling between
2D parallel systems. The presented results indicate that the
recently observed ambiguity in the MISO amplitude at k = 1
is, most likely, related to a small misalignment between the
direction of the magnetic field and the normal to 2D sample in
different measurements [44,45].

FIG. 1. Dependencies of the longitudinal resistance ρxx on the
inversed component of the magnetic field, which is perpendicular
to the 2D sample 1/B⊥, obtained at different angles α between the
total magnetic field �B and the normal to the samples as labeled.
Integer values of index k correspond to the maximums of LF-MISO
at �12 = k�ωc [see Eq. (1)] and to antinodes of the beat pattern
of HF-MISO. Half-integer value of k corresponds to the minimums
of LF-MISO and the nodes of the HF-MISO beat pattern at angle
α = 0◦. Sample A. The inset presents the energy diagram of studied
samples.

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate.
The material was fabricated from a selectively doped GaAs
single quantum well of width d = 56 nm sandwiched between
AlAs/GaAs superlattice barriers. The heterostructure has three
populated subbands with energies E1 ≈ E2 � E3 at the bot-
toms of the subbands. The subband energies are schematically
shown in the inset to Fig. 1.

The studied samples were etched in the shape of a Hall
bar. The width and the length of the measured part of the
samples are W = 50 μm and L = 250 μm. AuGe eutectic
was used to provide electric contacts to the 2D electron gas.
Two samples were studied at temperature 4.2 K in magnetic
fields up to 4 T applied in situ at different angle α relative
to the normal to 2D layers and perpendicular to the applied
current. The angle α has been evaluated using Hall voltage
VH = B⊥/(enT ), which is proportional to the perpendicular
component B⊥ = B cos(α), of the total magnetic field B. The
total electron density of samples nT ≈ 8.6 × 1011 cm−2 was
evaluated from the Hall measurements taken at α = 0◦ in
classically strong magnetic fields [3]. An average electron
mobility μ ≈ 1.6 × 106 cm2/Vs was obtained from nT and
the zero-field resistivity. Sample resistance was measured
using the four-point probe method. We applied a 133-Hz
ac excitation Iac = 1 μA through the current contacts and
measured the longitudinal and Hall ac voltages (V ac

xx and V ac
H )

using two lock-in amplifiers with 10 M� input impedances.
The potential contacts provided insignificant contribution to
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the overall response due to small values of the contact
resistance (about 1 k�) and negligibly small electric current
flowing through the contacts. The measurements were done in
the linear regime in which the voltages are proportional to the
applied current.

III. RESULTS AND DISCUSSION

A theoretical analysis yields the following expression for
the amplitude of MISO due to the scattering between the ith
and j th subbands in weak (ωcτ

(i)
q < 1) perpendicular magnetic

fields [27,28]:

�ρ
(i,j )
MISO = 2mνij

e2(ni + nj )
cos

(
2π�ij

�ωc

)

× exp

[−π

ωc

(
1
/
τ (i)
q + 1

/
τ (j )
q

)]
, (1)

where ni and τ (i)
q are the electron density and quantum

scattering time [46] in the ith subband, νij is an effective
intersubband transport scattering rate, m is the effective
electron mass, and ωc = eB⊥/m is the cyclotron frequency
[28]. This expression has recently been used in systems with
two and three populated subbands to extract the quantum
scattering rate 1/τ i

q [19–24,44,45]. The expression indicates
that MISO between ith and j th subbands are periodic in inverse
magnetic field 1/B⊥.

Figure 1 presents the longitudinal resistivity ρxx(1/B⊥) of
sample A at different angles α between the magnetic field and
the normal to the sample as labeled. At α = 00 in accordance
with Eq. (1), the frequency of MISO in inverse magnetic
field is proportional to the intersubband energy gap (fij ∝
�ij = Ei − Ej ). This three-subband system should therefore
have MISOs at three different frequencies, corresponding to
resonant scattering between the subbands. MISOs associated
with scattering between the two lowest subbands have a low
frequency (LF-MISO) f21 ∝ E2 − E1 since the energy gap
�21 is very small (E1 ≈ E2). The two sets of MISOs associated
with scattering between the upper band and each of the lower
bands have much higher frequencies f31 ≈ f32 � f12 (HF-
MISO), that are approximately equal since �31 ≈ �32 � �21.
Due to the small difference between energy E1 and E2 the
interference between MISOs with frequencies f31 and f32

produces a beating pattern with a small beating frequency
fbeat ∝ (E2 − E1)/2 � f3i and a high inner frequency f+ ∝
(2E3 − E2 − E1)/2. The resistance oscillations with both the
low (f21) and high (f31,f32) frequencies are shown in Fig. 1.

The significant frequency difference between the low-
and high-frequency contents of oscillations facilitates the
separation of HF and LF-MISOs by fast Fourier trans-
form (FFT) filtering. In Fig. 2, the lower panel presents
the low-frequency content while the upper panel presents the
high-frequency oscillations, which have been filtered from the
curves presented in Fig. 1 [45].

Due to the precise relation between different frequencies
the beating frequency is half of the frequency of MISO
corresponding to the two lower subbands: fbeat = f21/2 at
α = 0◦. This is indeed seen in Fig. 2. Figures 1 and 2
show that at α = 0◦ the nodes of HF-MISO correspond to
the minimums of the LF-MISO. Furthermore, an analysis

FIG. 2. Lower (upper) panel presents LF-MISO (HF-MISO)
obtained by a low- (high-) frequency FFT filtering of the magne-
toresitance oscillations presented in Fig. 1. Sample A.

of the HF-MISO phase indicates that in the k = 2 region
the phase of HF-MISO is shifted by π with respect to the
HF-MISO phase in k = 1 region at α = 0◦. To verify this
π -phase shift, we compare HF-MISO at α = 0◦ with the one
at α = 15.3◦, which demonstrates no nodes and is perfectly
periodic with respect to 1/B⊥. The comparison shows that
in the k = 1 region the maximums of HF-MISO at α = 0◦
correspond to the minimums of HF-MISO at α = 15.3◦,
while in k = 2 region the maximums of HF-MISO at α = 0◦
correspond to the maximums of HF-MISO at α = 15.3◦. Thus,
the observed interference of HF-MISOs at α = 0◦ corresponds
to the beating between two frequencies at fbeat = f21/2.

FIG. 3. Comparison of HF-MISO shown by the black solid line
with the theoretical dependence based on Eq. (1) and shown by
the gray line. Upper inset demonstrates a more detailed view of
the comparison. Lower inset shows a comparison of LF-MISO
with the theory. In both insets, open circles present theoretical
dependencies. Sample A.
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Figure 3 demonstrates the direct comparison of HF-
MISO at α = 0◦ with Eq. (1). The experiment agrees well
with the theory in the whole range of magnetic fields
corresponding to �12 > �ωc. At higher magnetic fields a
quantitative comparison has not been accomplished due to
the presence of SdH oscillations and higher harmonics of
MISO, which are not captured in Eq. (1). Figure 3 presents
also a comparison of LF-MISO with the theory. Shown in
Fig. 1 the monotonic background corresponding to the positive
quantum magnetoresistance [46,47] has been removed by a
procedure reported earlier [45]. However, the relatively strong
increase of the resistance observed at �ωc > �12 interferes
with the low-frequency oscillating content making the applied
procedure to be quite uncertain there. This comparison is
limited to the magnetic fields corresponding to condition
k > 3

2 . In this range of magnetic fields, a very good agreement
between LF-MISO and the theory is found. A joint analysis of
LF-MISO and HF-MISO yields the quantum scattering time
in each subband [45]. In lower subbands, the time is found to
be τ (1,2)

q = 8.2 ± 0.3 ps while in the third subband the time is
τ (3)
q = 3.5 ± 0.3 ps. These values agree with those obtained in

similar systems with three populated subbands [45].
An introduction of a parallel magnetic field B‖ produces

significant changes in MISO. The most notable is the disap-
pearance of the k = 1 maximum, which occurs near angle
α = 9.5◦ in Fig. 2. This disappearance is accompanied by a
spectacular collapse of two nodes of HF-MISO corresponding
to k = 1

2 and 3
2 at α = 0◦. These nodes collapse in the vicinity

of the main LF-MISO maximum k = 1.
Figure 4 presents the evolution of the magnitude of

HF-MISO in the (B⊥-B‖) plane. The HF-MISO magni-
tude (the envelope of HF-MISO) was obtained by a low-

FIG. 4. Dependence of HF-MISO magnitude on B⊥ and B‖.
Black color presents locations of HF-MISO nodes. Open circles
present experimental positions of LF-MISO maximums. White
(black) dashed lines present position of HF nodes (LF maximums)
obtained using numerical calculations of electron spectrum. White
solid line corresponds to 50% probability of magnetic breakdown
of semiclassical trajectories [30]. All spectra are obtained at t0 =
0.215 meV and d = 36 nm. Size of the circles corresponds to
experimental uncertainty of the position. Sample A.

frequency filtering of the square of HF-MISO: δρHF =
[2〈A2cos2(2πf+/B⊥)〉]1/2 = A, where A(B⊥,B‖) is the slowly
varying magnitude of HF-MISO and angle brackets stand
for the low-frequency filtering. The low-pass filter rejects
the high-frequency content of the squared HF-MISO but
passes slow oscillations at the beating frequency. The applied
procedure yields the envelope of the HF-MISO with a standard
deviation within ±0.004 � [48].

Figure 4 shows very different behavior of the odd and even
MISO maximums in response to B‖. The even (k = 2,4, . . .)
maximums of the MISO magnitude evolve continuously into
the high magnetic field region, whereas the odd (k = 1,3, . . .)
maximums terminate within the regions bounded by HF-MISO
nodes as shown in Fig. 4. A transition from an odd region to
an even region changes the phase of HF-MISO by π .

The figure demonstrates an additional interesting MISO
property in the B⊥-B‖ plane: a possibility of the continuous
(without intersection with a node line) transition between even
maximums. Indeed, by an appropriate choice of the B⊥ and
B‖ the MISO maximum at k = 2 can be transferred into k = 4
MISO maximum at α = 0◦ without intersecting the nodal
lines. In this sense, all even maximums are topologically equiv-
alent. This set also includes the k = 0 maximum corresponding
to the limit of strong magnetic fields. In contrast, an odd MISO
maximum presents an energy spectrum, which is topologically
different from the spectrum corresponding to strong magnetic
fields. The latter is the spectrum of uncoupled 2D systems
[1,30].

A. Numerical analysis of electron spectrum

The evolution of MISO with both in-plane and perpen-
dicular magnetic fields is found to be in good agreement
with numerical evaluations of the electron spectrum in those
fields [49]. In this section, we present a theory describing
the effect of in-plane magnetic field on the electron spectrum
of two 2D parallel electron systems [30,41]. The theory
treats the interlayer hopping in a tight-binding approximation
so that the single-particle problem is characterized by the
interlayer distance d and hopping integral t0 [30]. In the tilted
magnetic field �B = (−B‖,0,B⊥) electrons are described by the
Hamiltonian

H = �
2k2

x

2m∗ +e2B2
⊥

2m∗ x2+�
2k2

z

2m∗ + V (z)+e2B2
‖

2m∗ z2+e2B⊥B‖
m∗ xz,

(2)
where m∗ is effective mass and V (z) is the electrostatic
potential between two 2D systems. To obtain Eq. (2) we have
used the gauge (0,B⊥x + B‖z,0) of the vector potential and
applied the transformation x → x − �ky/eB⊥.

The first four terms describe the coupled 2D electron
systems in a perpendicular magnetic field. The corresponding
eigenfunctions of the system are |N,ξ 〉, where N = 0,1,2, . . .

presents N th Landau level (the lateral quantization) and
ξ = S,AS describes the symmetric (S) and antisymmetric
(AS) configurations of the wave function in the z direction
(vertical quantization). Using functions |N,ξ 〉 as the basis set,
one can present the Hamiltonian in matrix form. The matrix
contains four matrix blocks: Ĥ = (ÊS,T̂ ; T̂ ,ÊAS), where the
semicolon separates rows. The diagonal matrices ÊS and ÊAS

represent energy of the symmetric and antisymmetric wave
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functions in different orbital states N :

ES,AS
mn = δmn

[
�ωc

(
(n − 1) + 1

2

)
± t0 + e2B2

‖d
2

8m∗

]
, (3)

where sign − (+) corresponds to symmetric (antisymmetric)
states and indexes m = 1,2, . . . Nmax and n = 1,2, . . . Nmax

numerate rows and columns of the matrix correspondingly.
These indexes are related to the orbital number N : n,m =
N + 1 since the orbital number N = 0,1,2, . . . . In numerical
computations the maximum number Nmax is chosen to be
about twice larger than the orbital number NF corresponding
to Fermi energy EF . Further increase of Nmax shows a very
small (within 1%) deviation from the dependencies obtained
at Nmax ≈ 2NF .

The first term in Eq. (3) describes the orbital quantization
of electron motion while the second term relates to the electron
tunneling between 2D layers. The shape of the wave function
in the z direction [ξ (z)] is determined by the third and
fourth terms in Eq. (2). Due to the complete disentanglement
between the vertical (z) and lateral motions at B‖ = 0 T,
the second term does not depend on N . The tunneling term
reads as 〈ξ |V (z)|ξ 〉 = ±t0. In the tight-binding approximation,
t0 is considered to be independent of B‖ [30]. As shown
below, this approximation provides very good agreement with
experiment. The last term in Eq. (3) describes diamagnetic shift
of the quantum levels and is related to the fifth term in Eq. (2).
In the basis set |N,ξ 〉, the diamagnetic term is proportional
to 〈ξ |z2|ξ 〉 = (d/2)2 since in the tight-binding approximation
the thin 2D layers are located at distance z = ±d/2 from the
origin of z axes. The diamagnetic term does not depend on N .

The off-diagonal matrix T̂ is related to the last term in
Eq. (2), which mixes symmetric and antisymmetric states.
Since x = lB⊥(a∗ + a)/

√
2 works as the raising a∗ and

lowering a operators of the Landau orbits, the last term in
Eq. (2) couples Landau levels with orbital numbers different
by one. Here, lB⊥ = (�/eB⊥)1/2 is the magnetic length in B⊥.
As a result, for n > m the matrix element Tmn between states
|N,S〉 and |N + 1,AS〉 is

Tmn = δm+1,n

e2B‖B⊥lB⊥
m∗ 〈N |a

∗ + a√
2

|N + 1〉〈S|z|AS〉

= δm+1,n�ωc

[
B‖d

2B⊥lB⊥

]
(n/2)1/2. (4)

The matrix T̂ is a symmetric matrix: Tmn = Tnm. The Hamilto-
nian Ĥ is diagonalized numerically at different magnetic fields
B⊥ and B‖. To analyze the spectrum the obtained eigenvalues
of the Hamiltonian are numerated in ascending order using
positive integer index l = 1,2, . . . . The electron transport
depends on the distribution of the quantum levels in the interval
kT near the Fermi energy EF [3]. Below, we focus on this part
of the spectrum.

In accordance with Eq. (1), a HF node corresponds to an
equal separation (�ωc/2) between nearest quantum levels in
the vicinity of Fermi energy, whereas an HF antinode occurs
when the two nearest levels coincide with each other, thus, the
energy separation between pairs of coinciding levels is �ωc. We
note that, in contrast to the nodes of HF-MISO, the positions of
the maximums of the magnitude of HF-MISO and maximums

of LF-MISO, shown in Figs. 1 and 3, are affected by the
Dingle factor and, therefore, do not exactly correspond to the
magnetic fields at which two nearest Landau levels coincide.
In accordance with Eq. (1), the exponential decrease of the
Dingle factor reduces significantly the beating magnitude at
small magnetic fields and, thus, shifts the maximums of the
beating pattern to higher magnetic fields. Figures 1 and 2
indicate that the shift is more pronounced for maximums of
magnitude of HF-MISO (in comparison with the maximums
of LF-MISO) due to the considerably shorter quantum electron
lifetime τ (3)

q and, thus, stronger effect of the Dingle factor in
the third subband.

Figure 5(a) presents the difference between energies of
l + 1th and lth quantum levels of the full electron spectrum
obtained in the perpendicular magnetic field B⊥ ≈ 0.166 T
at different in-plane magnetic fields as labeled. Each symbol
represents a particular level spacing: δEl = El+1 − El . At
B‖ = 0 and B⊥ ≈ 0.166 T the electron spectrum corresponds
to the k = 3

2 HF-MISO node and the LF-MISO minimum.
At this node the level spacing δEl = �ωc/2 ≈ 14 meV is the

FIG. 5. (a) Level spacing δEl = El+1 − El in the energy spec-
trum of electrons in fixed B⊥ = 0.166 T at different in-plane magnetic
fields as labeled. At B‖ = 0 T, the quantum levels are equally spaced
with the energy separation δEl = �ωc/2 producing k = 3

2 HF-MISO
node. At a finite in-plane field, the level spacing depends on the energy
leading to k = 2 HF-MISO antinode at B‖ = 0.045 T and k = 5

2 HF
node at B‖ = 0.0795 T; (b) level spacing δEl = El+1 − El in the
energy spectrum at different B⊥ and B‖ magnetic fields as labeled.
These fields correspond to the nodal line between k = 3

2 and 1
2 HF

nodes shown in Fig. 4. The inset explains the meaning of the upper
and lower branches of the energy dependence of the level spacing.
All spectra are obtained at t0 = 0.215 meV and d = 36 nm.
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same for all quantum levels except the first two lowest levels,
which are separated by �ωc.

Due to the complete separation between the lateral and
vertical electron motions at B‖ = 0, the level spacing is
independent on energy for any B⊥. However, in general the
level spacing contains two branches corresponding to the
nearest upper and lower neighbors of a quantum level. This
is shown in the inset to Fig. 5(b). In the case of a node at
B‖ = 0 T these two branches coincide everywhere, while
for a node at a finite B‖ the two branches intersect in the
vicinity of the Fermi energy. The numeric evaluation of the
spectrum indicates also that the level spacing does not exceed
the cyclotron energy �ωc and maintains the periodicity of the
spectrum δEl+1 + δEl = �ωc. This is related to the fact that
the Hamiltonian Ĥ is independent on ky , which preserves
the degeneracy of quantum levels g = 1/(2πl2

⊥) in in-plane
magnetic fields [30].

Application of an in-plane magnetic field couples the
vertical and lateral degrees of freedom. This causes the
distribution of level spacing to be energy dependent. The B‖
coupling is due the Lorent’s force and, thus, increases with
the electron velocity (energy). At the bottom of a subband,
the B‖ coupling is small and the spectrum is nearly preserved.
At B‖ = 0.02 T, the level spacing spreads out almost linearly
with the energy. At a higher in-plane field B‖ = 0.045 T, the
spread of the level distribution reaches a maximum �ωc in
the vicinity of EF . At this condition, the two nearest quantum
levels coincide with each other. This is the k = 2 maximum of
HF-MISO magnitude and LF-MISO shown in Fig. 4. Further
increase of the in-plane field decreases the spread of the
level distribution and in the vicinity of Fermi energy the
electron spectrum gradually evolves into a state with nearly
uniform level distribution at B‖ = 0.0795 T (intersection of
two branches). It corresponds to k = 5

2 node shown in Fig. 4. At
this magnetic field, variations of the level spacing are nonlinear
with the energy.

Figure 5(b) presents the level spacing δEl obtained at
different perpendicular and in-plane magnetic fields as labeled.
These fields correspond to the HF node k = 3

2 . The figure
shows that an increase of the in-plane magnetic field shifts the
k = 3

2 node to a higher perpendicular magnetic field. At small
B‖ this behavior corresponds to the semiclassical regime and
is described below.

The numerically obtained evolution of the HF nodes and
LF maximums in the B⊥-B‖ plane is shown in Fig. 4. A
good overall agreement between experiment and the theory is
found. A statistical analysis of the experimental and theoretical
positions of HF nodes indicates the standard deviation below
0.002 T for the k = 3

2 HF-MISO node in the range B⊥ ∈
(0.15–0.35) T. The standard deviation between experiment and
theory in the vicinity of the k = 1

2 node [B⊥ ∈ (0.35–0.5) T]
is found to be significantly larger (0.02 T). In this region, the
experimental data deviate systematically from the theory. The
experimental and theoretical node positions around the k = 3
region [B⊥ ∈ (0.07–0.2) T] demonstrate standard deviation
below 0.005 T and also deviate systematically from each other
near the apex of the k = 3 region in the range B⊥ ∈ (0.15–0.2)
T. The systematic deviations between the experiment and the
theory are discussed below, where we present different regimes
in detail.

B. Semiclassical regime

The semiclassical regime corresponds to weak perpendic-
ular magnetic fields at which the Landau-Zener transitions
(magnetic breakdown) between different semiclassical elec-
tron trajectories are exponentially weak and are neglected
[30]. Electrons perform semiclassical motion along trajectories
corresponding to the symmetric and antisymmetric states. At
α = 0 (B‖ = 0 T) the semiclassical trajectories are circles with
the same origin �k = 0 in the k space. At an energy E the
symmetric wave function propagates along the circle with a
radius kS > kAS and the gap between two subbands �12 does
not depend on the wave vector �k.

Application of a parallel field shifts the centers of the two
circles by δk = ±edB‖/2� leading to variations of the gap
between two subbands with �k [29,30]. The inset to Fig. 6
presents an example of the semiclassical trajectories when
a parallel field B‖ is applied. The semiclassical trajectory
enclosing the gray area corresponds to the symmetric wave
function, while the solid line, which is inside the intersection
between two circles, presents the trajectory corresponding to
the antisymmetric wave function. The frequency of quantum
oscillations in the reciprocal magnetic field 1/B⊥ is propor-
tional to the area enclosed by semiclassical trajectory at an
energy E [1,3]. In the case of HF-MISO, the energy E is equal
to the energy at the bottom of the third subband: E = E3. The
symmetric state, thus, has a frequency f31, which is higher than
the frequency of quantum oscillations due to the trajectory
of the antisymmetric state f32. The difference between two
frequencies f12 is proportional to the area A, shown in gray
in the inset. In accordance with Eq. (1) at B‖ = 0, the gap
�12 = 2t0 is proportional to f12 and, thus, to the area A.

FIG. 6. Dependence of the gap �12 on in-plane magnetic field
extracted from positions of LF-MISO maximums and a HF-MISO
node as labeled. Solid lines represent the gap obtained from the
electron spectra evaluated numerically at t0 = 0.215 meV and d =
36 nm for different LF-MISO maximums as labeled. For k = 2, 3,
and 5

2 , standard deviations between experiment and theory are found
to be δ�12 = 0.018, 0.013, and 0.012 meV, correspondingly. Sample
A. Inset shows semiclassical trajectories in k space at finite in-plane
magnetic field B‖.
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An increase of the in-plane field B‖ further shifts the centers
of the two circles increasing the gray area A and, thus, the
gap �12.

Figure 6 demonstrates the increase of the gap with in-plane
magnetic field. Filled (open) symbols present the gap �12

obtained from the relation �12 = k�ωc, using experimental
positions of LF-MISO maximum (HF-MISO node), where the
corresponding index k is an integer (half-integer). Solid lines
present the gap obtained from the same relation, using the
numerical evaluation of the positions of LF-MISO maximums,
which are shown in Fig. 5(a). Figure 6 demonstrates good
agreement between the numerically evaluated gap and experi-
mental data. The HF-MISO node k = 5

2 and k = 3 LF-MISO
maximum are clearly seen at high magnetic fields and, thus, the
corresponding gaps are presented in a broader range of parallel
fields in comparison with the gap obtained from the k = 2 LF-
MISO maximum. The values of experimental and numerical
gaps, obtained from the k = 2 LF-MISO maximum, are found
to be larger than those with higher MISO indexes. These
results are related to magnetic breakdown of semiclassical
trajectories, which is stronger at the k = 2 LF maximum.

Figure 6 shows also that the curves corresponding to the
numerically evaluated gaps collapse at high indexes k. This
collapse is the signature of the semiclassical regime at which
magnetic breakdown is nearly absent and, thus, the obtained
gap does not depend on the perpendicular magnetic field.
The strength of magnetic breakdown is shown in Fig. 4.
A comparison between Figs. 6 and 4 indicates, that for the
gap, obtained from the MISO with high indexes k, magnetic
breakdown is indeed small at B‖ < 0.1 T. For k < 3, the
probability of magnetic breakdown increases exceeding 50%
for k = 2 at B‖ = 0.1 T and B⊥ = 0.27 T.

Finally, we would like to note that the dependence of the
gap �12 on the in-plane field B‖, which is shown in Fig. 6, is
not the dependence of the difference between the bottoms of
the symmetric and antisymmetric bands. As mentioned above,
the bottom part of the spectrum is weakly affected by B‖.
In contrast to the case of pure perpendicular magnetic field
(B‖ = 0 T), a finite parallel magnetic field makes the level
spacing energy dependent and the extracted gap represents the
relative position of the symmetric and antisymmetric levels in
the vicinity of the Fermi energy.

C. High magnetic field regime

In a strong magnetic field B⊥ the cyclotron energy ex-
ceeds the gap: �ωc � �12. In this range of magnetic fields,
Shubnikov–de Haas (SdH) oscillations are well developed.
Figure 7 presents the magnetoresistance taken at different
angles α between the direction of the applied magnetic field
and the normal to the 2D sample. At temperature T = 4.2 K,
SdH oscillations appear in B⊥ exceeding 0.5 T. At a smaller
field, these oscillations are significantly damped and only
MISO are observable at T = 4.2 K [45].

The amplitude of SdH oscillations increases considerably
with angle. Figure 8 demonstrates the angular dependence
of a swing (doubled amplitude) of SdH oscillations taken
at B⊥ = 1.14 T. The swing of SdH oscillations is measured
between upper and lower branches of the envelope of SdH
oscillations. The upper (lower) branches of the envelope are

FIG. 7. Magnetoresistance of GaAs quantum well at different
angles between the magnetic field and normal to the sample. Three
upper curves are shifted for clarity. T = 4.2 K. Sample B.

obtained using a cubic spline between maximums (minimums)
of SdH oscillations [45]. The swing of oscillations increases
monotonically from 2.65 � at tan(α) = 0 to about 4.35 � at
tan(α) ≈ 0.4. Then. the oscillation swing demonstrates small
periodic variations with tan(α).

To evaluate the SdH amplitude, we used the following
expression. The SdH amplitude depends on the level spacing
δEl in the vicinity of the Fermi energy since all quantum
states below EF are completely occupied. This fact allows for
a modification of the actual distribution of the occupied levels
inside subbands to simplify the mathematical description of

FIG. 8. Dependence of the swing of SdH oscillations at B⊥ =
1.14 T on tan(α). Filled squares present experimental data obtained
from the magnetoresistance curves shown in Fig. 7 with an accuracy
approximated by the size of the symbols. Solid line (small open
circles) is a theoretical dependence obtained from numerical (ana-
lytical) evaluation of the electron spectrum at fixed B⊥ = 1.14 T
and different B‖ corresponding to different angles α using ASdH =
2.17 ± 0.01 Ohm and γ = 0.479 ± 0.01 meV as fitting parameters
and t0 = 0.215 meV, d = 36 nm, and EF = 15.1 meV. Big open
circles present the angle dependence of the sample resistance in the
SdH minimum at B⊥ = 1.07 T. T = 4.2 K. Sample B.
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SdH oscillations. Following, we use a level distribution with
equal spacing �ωc inside each subband. The two periodic
sets of levels are shifted with respect to each other by the
value corresponding to the actual spacing δEl between the
nearest quantum levels in the vicinity of the Fermi energy.
The spectrum modification does not change the number of
occupied states preserving the total electron density. The
modified spectrum is similar to the spectrum at B‖ = 0 T
with �12 = δEl and yields SdH oscillations approximated by
a cosine function:

�ρ
(i)
SdH = A

(i)
SdH cos

(
2π (EF − E

(i)
∗ )

�ωc

)
. (5)

The SdH amplitude A
(i)
SdH includes Dingle factor di =

exp(−π/ωcτ
(i)
q ) and a temperature damping factor AT =

x/sinh(x), where x = 2π2kT /�ωc [1]. In contrast to HF-
MISO the phase of the cosine contains the Fermi energy
instead of the energy of the bottom of the third subband E3

[see Eq. (1)]. The energy E
(i)
∗ corresponds to the bottom of the

modified spectrum of the ith subband.
Due to the nearly equal quantum scattering times in the

symmetric and antisymmetric subbands, both SdH oscillations
have the same amplitude ASdH. The sum of the two oscillations
�ρSdH = �ρ

(1)
SdH + �ρ

(2)
SdH can be presented as a product of two

cosines:

�ρSdH = 2ASdH cos

(
πE+
�ωc

)
cos

(
πE−
�ωc

)

≈ 2ASdH cos

(
πE+
�ωc

)[
1 − 1

2

(
E−
γ

)2]
, (6)

where E+ = 2EF − E
(1)
∗ − E

(2)
∗ is the sum and E− = E

(2)
∗ −

E
(1)
∗ is the difference between the energy terms in Eq. (5). The

energy E+ describes the high-frequency content of the SdH
oscillations, which is intact since both the total electron density
and the Landau level degeneracy g = 1/(2πl2

⊥) are preserved
in the modified spectrum. We note also that the difference
between the terms equals the actual level spacing near EF :
E− = δEl . Thus, Eq. (6) provides a description of SdH
oscillations corresponding to the actual spectrum El . Since
in high magnetic fields the cyclotron energy is considerably
higher than the level spacing δEl , the low-frequency cosine,
modulating the SdH amplitude, is approximated by a Tailor
series. At B⊥ = 1.14 T, the factor γ = �ωc/π ≈ 0.63 meV is
larger than �12 = 0.43 meV at B‖ = 0 T.

The approximation of SdH oscillations by a single cosine is
valid when the swing of SdH oscillations is small in compari-
son with the Drude resistance at B⊥ = 0 T. In the studied case,
the oscillation swing is comparable with the Drude resistance
and, thus, higher harmonics of SdH oscillations should be
accounted for. In the case of a small level spacing between
subbands E− � �ωc, variations of the amplitude of the higher
harmonics with the angle α are expected to be also proportional
to E2

−, similar to the variations of the fundamental harmonic in
Eq. (6). Taking this into account, we compare the theory and
experiment using Eq. (6) with ASdH and γ as fitting parameters.

Shown in Fig. 8, the solid line presents the angular depen-
dence of the swing of SdH oscillations yielded by Eq. (6). The
energy E− is extracted from the electron spectra evaluated nu-

merically at fixed B⊥ = 1.14 T and different B‖ = B⊥tan(α).
For each combination of B⊥ and B‖, the energy spectrum El

is computed with the same model parameters t0 = 0.215 meV
and d = 36 nm used in previous spectrum computations shown
Figs. 4–6. The standard deviation between the experimental
data and the numerical evaluation of the SdH amplitude is
found within 0.05 � indicating a good agreement between the
experiment and the proposed model.

Shown in Fig. 8, the small open circles present a the-
oretical dependence obtained from the analytical expres-
sion for the level spacing in high magnetic fields: δEN =
2t0exp(−θ )LN (2θ2), where θ = B‖d/(2B⊥l⊥) [30]. At high
N , the Laguerre function LN (x) is approximated by a
Bessel function J0(x), yielding the level spacing E− = δEl ≈
2t0J0[kF d tan(α)], where kF = (2mEF )(1/2) is wave number
at the Fermi energy. The analytical evaluation of the swing
of SdH oscillations demonstrates better agreement with the
numerical data yielding the standard deviation within 0.01
�. The results indicate that the inaccuracy of the numerical
computations of the electron spectrum is likely not the main
source of the deviations between the experiment and theory.

Figure 8 demonstrates oscillations and the complete re-
duction of the tunneling magnitude in the maximums of the
oscillations. At an angle αn corresponding to nth maximum,
the beating pattern between two SdH oscillations is absent
since the beating period (∼1/E−) is infinite at the angle αn.
The absence of the beating pattern at “magic angles” as well
as the beating of SdH oscillations is observed in strongly
anisotropic layered organic materials [50,51]. These resistance
oscillations with the angle α in high magnetic fields have been
seen recently in double quantum wells in the quantum Hall
effect regime [39,40].

The evolution of the level spacing with the angle α can
be understood using an intuitively appealing picture of the
phenomenon [52,53]. In the bilayer geometry the tunneling
between layers a and b can be described by the Hamiltonian

Ht = t0

∫
φ∗

a (r)φb(r)exp[ieAz(r)d/�]d2r + H.c., (7)

where vector potential Az = B‖x corresponds to the in-plane
magnetic field directed along y axes: �B = (0, − B‖,0). In the
presence of B⊥, an electron with Fermi energy propagates
along the cyclotron orbit with radius rc. The gauge phase
in Eq. (8) oscillates along the electron trajectory leading
to a modification of the tunneling. The effective tunneling
amplitude t is obtained by the phase averaging [52]:

t = t0〈exp[ieB‖x(t)d/�]〉t = t0J0[kF d tan(α)]. (8)

The angular brackets represent a time average over the
period of the cyclotron motion and x(t) = rccos(ωct) is the x

coordinate of the electron. The obtained expression coincides
with the one used for fitting experiment data in Fig. 8.

In Fig. 8 large open circles represent the dependence of
the resistance Rmin in the SdH minimum at B⊥ = 1.07 T
on the in-plane magnetic field. The notable feature of the
observed behavior is the stability of the resistance value in
a broad range of α despite the significant variations of the SdH
amplitude in the same angular range. The stability is found
for all other SdH minimums shown in Fig. 7. The resistance
Rmin starts to decrease with the angle after the level spacing
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E− reaches the first maximum at a finite B‖. In contrast to
the SdH amplitude the Rmin depends on the behavior of the
nonoscillating background which was beyond the scope of
this paper.

Finally, we would like to mention that in the studied samples
SdH oscillations are comparable with MISO near B⊥ ≈ 0.5 T
in the vicinity of the HF-MISO node k = 1

2 shown in Fig. 4
[45]. The presence of SdH oscillations may affect the position
of this node since the phase of SdH oscillations is shifted by π

with respect to the phase of MISO [18,27,45,54]. An analysis
of the beating of quantum oscillations indicates that the nodes
of both SdH oscillations and HF-MISO occur at the same
magnetic field. In accordance with numerical computation
the node k = 1

2 occurs at B⊥ = 0.5 T. If at B⊥ = 0.5 T the
SdH amplitude is larger than the amplitude of HF-MISO,
then the SdH oscillations dominate at B⊥ > 0.5 T since
the oscillations grow faster than MISO due to the additional
temperature factor AT (B⊥) [see Eq. (5)]. At B⊥ < 0.5 T,
the SdH oscillations are comparable with HF-MISO and the
destructive interference between two oscillations reduces the
overall oscillation amplitude. It makes the actual node to
be broader and shifted toward smaller magnetic fields. This
is indeed seen in Fig. 4 near the k = 1

2 node. We suggest
that the systematic deviation between experiment and the
theory observed at the k = 1

2 node is the result of destructive
interference between SdH oscillations and MISO.

D. Magnetic breakdown regime

As mentioned above, an application of parallel field B‖
shifts the centers of cyclotron orbits in two layers by δk =
±edB‖/2� leading to variations of the gap between the two
subbands with �k [29,30]. The smallest gap occurs in a small
region with lateral size �k0(B‖) near the intersections between
two circles shown in the inset to Fig. 6. At small magnetic
fields, electrons circulate along the semiclassical trajectories
�kS(t) and �kAS(t), corresponding to the symmetric and an-
tisymmetric states. The probability of magnetic breakdown
between these trajectories depends strongly on the time �t

during which electrons pass the region with the smallest gap:
�t ∼ ��k0/eVF B⊥. At small magnetic fields, the time �t �
�/t0 is long enough to establish the gap between subbands
and magnetic breakdown is exponentially suppressed [32–34].
An increase of both B⊥ and B‖ increases the probability of
magnetic breakdown. In a WKB approximation, an expression
has been obtained for the breakdown probability PMB [30]:

PMB = exp(−ω∗
c /ωc), (9)

where

ω∗
c = πt2

0

EF (Q/kF )[1 − (Q/2kF )2]1/2
. (10)

Here, Q = deB‖/� is the relative displacement of the two
Fermi circles due to B‖.

The 50% probability of the magnetic breakdown at different
B⊥ and B‖ is plotted in Fig. 4 for sample A. Figure 4
demonstrates a correlation of magnetic breakdown with the
behavior of the nodal lines. In particular, the collapse of 5

2 and
7
2 nodes occurs at a higher B‖ than the one of 1

2 and 3
2 nodes

that is in qualitative agreement with the behavior of the line
describing magnetic breakdown.

The notable feature of magnetic breakdown is the growth of
quantum oscillations with frequency equal to half sum of the
frequencies corresponding to symmetric and antisymmetric
semiclassical trajectories: f+ = (f31 + f32)/2 [30,37,55]. The
frequency f+ is due to the circular orbital motion of an
electron completely located in one of the layers. The following
consideration helps to understand the origin of the frequency
f+. In accordance with Eq. (9) at small B⊥: ωc � ω∗

c the
probability of magnetic breakdown is exponentially small
and, thus, can be neglected. In the absence of magnetic
breakdown, electrons follow the semiclassical trajectories and
the spectrum of the quantum oscillations contains frequencies
fS = f31 and fAS = f32 corresponding to the symmetric and
antisymmetric subbands. An example of the semiclassical
trajectories corresponding to the two subbands in a finite B‖
is shown in the inset to Fig. 6. Following the semiclassical
trajectory, an electron moves periodically between the top
and bottom layers. An increase of the perpendicular magnetic
field enhances the probability of magnetic breakdown. At
ωc > ω∗

c the electron has a considerable probability to cross the
tunneling gap and to follow a trajectory, which is not perturbed
by the tunneling. This trajectory is a circular orbit located
completely in a single layer. These orbits are presented by
dashed lines in the inset to Fig. 6. The inset indicates that
the total area of the two circles equals the sum of the area
inside the perimeter of the shifted circles (symmetric subband)
and the area of the overlap of the two circles (antisymmetric
subband). Since the frequencies of the quantum oscillations
are proportional to the corresponding areas [1], the relation
between different areas yields 2f+ = (f31 + f32).

Figure 9 shows the increase of the amplitude of quantum
oscillations with frequency f+ as magnetic breakdown in-
creases. At zero angle α magnetic breakdown is absent and
the spectrum of MISO contains only two frequencies f31 and
f32 corresponding to symmetric and antisymmetric subbands.
With an increase of α, the magnitude of parallel magnetic field

FIG. 9. Fourier power spectra of MISO at different angles as
labeled. The spectra are obtained in the interval of reciprocal magnetic
fields between 2 and 10 1/T shown in Fig. 2. The spectra are vertically
shifted for clarity. Sample A.
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and, thus, the probability of magnetic breakdown increase.
The enhanced magnetic breakdown decreases the magnitude
of MISO and increases the magnitude of the oscillations
corresponding to the isolated 2D layers, which appear at
frequency f+ ≈ (f31 + f32)/2. At α > 13◦, the oscillations
at frequency f+ are predominant.

Figure 9 demonstrates also an increase of the difference
between frequencies f31 and f32 corresponding to symmetric
and antisymmetric subbands with the angle α. The increase
of �f = f31 − f32 is related to the increase (decrease) in size
of the symmetric (antisymmetric) orbits with the increase of
in-plane magnetic field [29].

Magnetic breakdown is the origin of the collapse of HF-
MISO nodes and the nodal confinement of LF-MISO with odd
indexes k as shown in Fig. 4. To understand this relation,
we note that the phase of the oscillations with frequency
f+ is the same as the phase of HF-MISO for even k and is
shifted by π for odd k. Figure 2 shows this correspondence:
in the k = 1 region maximums of HF-MISO at α = 0◦ (no
magnetic breakdown) correspond to minimums of HF-MISO
at α = 15.3◦ (strong magnetic breakdown), while in the
k = 2 region these two HF-MISOs are in phase. Magnetic
breakdown admixes oscillations similar to one at α = 15.3◦
to the oscillations at α = 0◦, and, therefore, decreases the
magnitude of the oscillations corresponding to the odd k.
Thus, the magnitudes of odd k HF-MISO and corresponding
LF-MISO maximum decrease.

The mixing moves the nodes, confining an odd-k region,
toward each other. The inset to Fig. 10 presents a phasor dia-
gram illustrating this property. Equation (1) describes MISOs

FIG. 10. (a) Open symbols present contributions of symmetric
and antisymmetric states to population of quantum level |l〉 =
cS |S〉 + cAS |AS〉 in the vicinity of Fermi energy at different B⊥ and
B‖ corresponding to the nodal line shown in (b). The eigenstate |l〉 of
the Hamiltonian Ĥ is computed numerically. (b) Dashed line presents
nodal line enclosing the k = 1 region. Solid symbols show positions
of level |l〉 = (|S〉 + |AS〉)/√2 with the equal population of the
symmetric and antisymmetric states in B⊥-B‖ plane. The dependence
intersects the nodal line at the same magnetic field B⊥ at which two
lines shown in (a) intersect. Sample A. Inset shows phasor diagram
describing interference of MISOs presented by �AS and �AAS with
quantum oscillations, �AMB, induced by magnetic breakdown.

corresponding to symmetric and antisymmetric subbands by
cosine functions with frequencies f3i ∼ �3i . Shown in the
inset, two vectors �AS and �AAS represent the amplitude and
phase of the two cosine functions corresponding to symmetric
and antisymmetric subbands. Without magnetic breakdown,
the two oscillations are in phase and, thus, the two vectors are in
the same direction at HF-MISO antinodes. Below we consider
the k = 1 region. As shown in Fig. 2, the k = 1 antinode occurs
at 1/Ban

⊥ ≈ 4 1/T. A right shift of the 1/B⊥ to the nearest
node k = 3

2 , located at 1/Bn
⊥ ≈ 6 1/T, destroys the parallel

alignment between the two vectors. In a reference frame
rotating with frequency f+ the right shift rotates the vector �AS

( �AAS) counterclockwise (clockwise) yielding a phase angle
π between two vectors, that corresponds to an orientation of
two vectors in opposite directions. At the node, the sum of the
vectors is zero that corresponds to the completely destructive
interference between the two oscillations.

Magnetic breakdown adds an additional vector �AMB to the
phasor diagram. The amplitude of �AMB corresponds to the
amplitude of the quantum oscillations at frequency f+. To
simplify the presentation, we use the magnitude of the vector
�AMB to be the same as the other magnitudes. In the rotating

frame, the vector �AMB is oriented down since in odd-k regions
the phase of oscillations, induced by magnetic breakdown, is
shifted by π with respect to the MISO phase at the antinode.
In the magnetic breakdown regime the node occurs at a phase
difference φ0 between �AS and �AAS , at which the sum of three
vectors �AS + �AAC + �AMB is zero. The angle φ0 is smaller than
π and, thus, corresponds to a node located at 1/BMB

⊥ < 1/Bn

closer to the antinode position at 1/Ban
⊥ . At a larger magnitude

AMB, the angle φ0 is smaller indicating further displacement of
the node position toward the antinode. A similar consideration
of the k = 1

2 node shows the node displacement in the opposite
direction, i.e., again toward the antinode at 1/Ban

⊥ ≈ 4 1/T.
Finally, at | �AMB| = | �AS | + | �AAS | the phase difference φ0 = 0
and the two nodes collapse bounding completely the k = 1
region in the B⊥-B‖ plane.

Following, we consider additional properties of the k = 1
region and the nodal line between k = 1

2 and 3
2 nodes. Figure 10

demonstrates the probabilities of the population of the sym-
metric and antisymmetric states along the nodal line for a
quantum state |l〉 in the vicinity of the Fermi energy. The
probabilities are obtained from an analysis of the eigenvectors
of the Hamiltonian Ĥ [see Eqs. (3) and (4)]. The numerical
computations indicate that at the nodal line the eigenvector |l〉
contains primarily the contributions from one symmetric and
one antisymmetric state: |l〉 ≈ cS |S〉 + cAS |AS〉, where cA and
cAS are the amplitude of the states. All other contributions to
the level population are within a few percent and are neglected.

Figure 10(a) presents the probability PS = c2
S and PAS =

c2
AS at different B⊥ and B‖ corresponding to the nodal line

around the k = 1 region. The figure demonstrates that at
the node k = 3

2 located at B⊥ = 0.166 T and B‖ = 0 T the
quantum state |l〉 is completely antisymmetric: cS = 0 and
cAS = 1. This node is due to the interlayer tunneling only. A
shift along the nodal line increases both B⊥ and B‖ enhancing
the magnetic breakdown, which in turn increases (decreases)
the population of the symmetric (antisymmetric) states. At
B⊥ = 0.268 T, the two states are equally populated and
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|l〉 = (|S〉 ± |AS〉)/√2. Figure 10(b) indicates that an ap-
proach of B⊥ to the k = 1

2 node decreases B‖ and the magnetic
breakdown. Finally, at the node k = 1

2 located at B⊥ = 0.5 T
and B‖ = 0 T the probability of magnetic breakdown is zero
and the state |l〉 is formed again by the interlayer tunneling
only. However, in contrast to the state |l〉 at k = 3

2 the state |l〉
is now completely symmetric. The transformation of the state
symmetry occurs while the state |l〉 was always gapped since
at a nodal line the energy levels are evenly spaced by �ωc/2.

The observed smooth transformation of the level symmetry
is due to a repulsion of the quantum levels induced by magnetic
breakdown. Without the magnetic breakdown at B‖ = 0 T,
the symmetry of the state |l〉 changes abruptly with the
perpendicular magnetic field at B⊥ = 0.25 T corresponding
to the k = 1 LF-MISO maximum. At this magnetic field, the
energies of |N + 1,S〉 and |N,AS〉 states of the symmetric and
antisymmetric bands coincide and, thus, the gap between these
levels is zero. At B⊥ = 0.25 T and B‖ = 0 T, these two levels
cross each other. Magnetic breakdown opens up a gap between
the levels leading to a smooth transformation of the symmetry
of the eigenvector |l〉. The solid symbols show locations of
the quantum level with equal symmetric and antisymmetric
population |leq〉 = (|S〉 + |AS〉)/√2. The line divides the area
under the nodal line on the symmetric and antisymmetric parts.
At high B‖ the location of the level |leq〉 approaches the location
of the k = 2 LF-MISO maximum (not shown).

We note that near B⊥ = 0.25 T and B‖ = 0 T, the numerical
simulations show a substantial increase of the level splitting for
small magnetic breakdown between the two states indicating
a strong sensitivity of the electron spectrum to the parallel
magnetic field at k = 1. Such strong sensitivity of the spectrum
to the B‖ is also seen in the perturbation expansion of the
spectrum vs B‖d/2B⊥l⊥ [30]. Equation (4.7) of the paper
[30] indicates a divergence of the second-order correction to
the level spacing δEl at �ωc = 2t0 corresponding to the k =
1 MISO maximum. These results agree with the presented
experiments demonstrating significant sensitivity of the MISO
maximum at k = 1 to in-plane magnetic field.

Finally, we would like to discuss the discrepancy between
experimental and theoretical positions of the HF-MISO node,
which is observed near the apexes of the odd regions k = 3
and 5, where nodal lines (k ± 1/2) meet each other in Fig. 4.
This discrepancy is not related to SdH oscillations since
the SdH amplitude is negligibly small at these magnetic
fields [45]. Figure 4 demonstrates that the probability of
the magnetic breakdown near the apexes is 50%. Numerical
computations reveal that, near these apexes, the eigenstate of
the studied Hamiltonian Ĥ contains comparable contributions
from symmetric and antisymmetric quantum states of many
Landau levels. Thus, the quantum state possesses a complex set
of semiclassical trajectories. In general, different trajectories

provide different contributions to the transport [30,34–36].
This property of the quantum states has not been taken
into account in the presented model. We suggest that the
observed deviations between experiment and theory are related
to the complex structure of quantum levels near the apexes of
odd-k regions. The complex structure is induced by magnetic
breakdown.

IV. CONCLUSION

Magnetointersubband oscillations of the resistance of
two-dimensional electrons are investigated in wide GaAs
quantum well with three populated subbands placed in
tilted magnetic fields. At zero in-plane magnetic field, the
oscillations demonstrate three distinct frequencies fij ∼ �ij

in reciprocal perpendicular magnetic field 1/B⊥. The low-
frequency oscillations, LF-MISO, are due to enhancement of
the electron scattering when Landau levels of two lowest,
symmetric and antisymmetric, subbands are aligned with
each other. These oscillations obey the relation �21 = k�ωc.
Related to the third subband, two HF-MISOs have much higher
frequencies: f31 and f32 due to the higher-energy difference
between bottoms of the third and lowest subbands: �3i � �21.
HF-MISOs demonstrate a distinct beating pattern with a beat
frequency fbeat = (f31 − f32)/2. A rotation of the direction of
the magnetic field by an angle α from the normal to the samples
produces dramatic changes of MISO. At small α, the LF-MISO
maximum and the corresponding antinode of HF-MISO at k =
1 disappear. In the B⊥-B‖ plane, the k = 1 region is found to be
bounded by a continuous nodal line connecting the k = 3

2 and 1
2

nodes of HF-MISO. Similar nodal bounding is found for other
odd-k regions. This bounding correlates with the probability
of magnetic breakdown P between semiclassical trajectories
corresponding to symmetric and antisymmetric subbands. The
nodal bounding is mostly completed at P < 1

2 for k = 1 and
3 regions. The Fourier analysis of the oscillations beyond
the bounded regions shows the dominant contribution of the
oscillations to be of period f+ = (f31 + f32)/2 corresponding
to the electron orbits located at either side of the quantum
well and populated by magnetic breakdown. The location of
the HF-MISO nodes as well as the evolution of the LF-MISO
maximum on B⊥-B‖ plane are found to be in an excellent
agreement with numerical evaluations of the electron spectra.
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