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Within the framework of density functional theory and Hedin’s GW approximation for single-particle
excitations, we present quasiparticle band structures and densities of states for two gallium oxide polymorphs:
rhombohedral α-Ga2O3 and monoclinic β-Ga2O3. The gap problem is attacked. In addition, their electron effective
mass tensors are given. Solving the Bethe-Salpeter equation we also calculate excitonic optical spectra of the two
polymorphs. The treatment of excitonic effects allows for a trustable prediction of optical properties from the
band gap to the ultraviolet region. In addition, for few other polymorphs we also discuss the frequency-dependent
dielectric tensor within the independent-particle approximation (random phase approximation) and densities of
states on density functional level. We demonstrate that apart from subtle details, the overall densities of states
and optical spectra, in particular the isotropically averaged spectra, are rather similar for all polymorphs, while
the electronic dielectric constants vary with the structure. For all polymorphs, complete sets of elastic constants
are given.
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I. INTRODUCTION

Gallium oxide is a transparent conducting oxide which
gained increasing interest in recent years due to its high
electrical conductivity [1] and transparency in the ultraviolet
(UV) region. This makes it a promising material for transparent
electronic [1,2] and optoelectronic [3] but also conventional
electronic devices as field effect transistors [4]. The interest
in its electronic and optical properties has recently increased
because of its potential application as an UV transparent
conducting oxide (TCO) [5,6]. Such a TCO is widely used
as transparent electrodes for flat panel displays and solar
cells. Despite its widespread applications, the fundamental
properties are poorly understood. Among the experimental
obstacles are the difficulties in preparing single crystals
and thin films with sufficient quality. The difficulties of a
theoretical, especially ab initio, treatment are mainly due to
many atoms in the unit cell and, hence, many structural degrees
of freedom.

Another difficulty is the fact that gallium oxide exhibits
a pronounced polymorphism similar to aluminum oxide or
indium oxide. Already in 1952 Roy et al. reported the existence
of five different polymorphs of Ga2O3 [7]. In 2008, Yusa et al.
claimed even the possibility of a sixth polymorph [8]. The TCO
Ga2O3 crystallizes in monoclinic (β-Ga2O3), rhombohedral
(α-Ga2O3), defective spinel (γ -Ga2O3), cubic (δ-Ga2O3), or
orthorhombic (ε-Ga2O3) structure. In particular, a theoretical
study based on density functional theory (DFT) of Yoshioka
et al. [9] shed light on the different structures and their
thermodynamic stability. Overall, there exist already many
DFT studies for Ga2O3, not only about structural properties
but also about band structures (employing DFT or the B3LYP
hybrid functional [10]) and optical properties [11,12], or
employing a scissors operator correction for the band gap and
for optical spectra [13]. However, these DFT studies are by
far not complete. Although hybrid functionals as B3LYP may
give improved band structures, it is well known that DFT
eigenvalues do not include any excitation aspect and even
hybrid functionals mimic excitation aspects only partly in a

very crude approximation. Also independent-particle optical
spectra do not reflect measured spectra at all because they lack
excitonic effects. The DFT results cannot explain the measured
data, especially not the fundamental gap. However, also the
experimental studies of β-Ga2O3 exhibit features in optical
absorption and angular-resolved photoelectron spectroscopy
(ARPES) which are controversially discussed, in particular, in
the context of the gap [14–17].

The DFT studies may give a first impression and general
trends but no final answer yet. Apart from one exception [18],
there exist no studies on a more elaborate many-body level like
Hedin’s GW approach [19] for the band structures or calcula-
tions of full excitonic spectra solving the Bethe-Salpeter equa-
tion (BSE) of many-body perturbation theory (MBPT) [20,21].
But, even the study of Varley et al. [18] treated the band
structure only on the level of DFT plus a scissors shift for the
band-gap correction. Their BSE calculation was only based
on an approximate screened Coulomb potential W employing
a simple model screening. The variety of the optical spectra,
especially not with respect to the low crystal symmetry, has
not been considered. Only the imaginary parts of the diagonal
components of the dielectric tensor were displayed. In this
paper, we present a fully elaborated study employing DFT,
GW , and BSE calculations for different polymorphs of Ga2O3.
In particular, quasiparticle band structures and spectra for
the complete dielectric tensor are calculated. After a short
description of the theoretical and computational methods in
Sec. II, results are presented in Secs. III (structural and elastic
properties), IV (band structures), and V (optical spectra).
Finally, in Sec. VI a brief summary and conclusions are given.

II. COMPUTATIONAL DETAILS

All calculations have been carried out with the Vienna ab
initio simulation package (VASP) [22] within the framework
of DFT and MBPT. For all ground-state calculations, we
employed the so-called AM05 [23] generalized gradient
approximation (GGA) to describe exchange and correlation.
It has been demonstrated that this exchange-correlation
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functional gives rise to atomic geometries of wide-gap semi-
conductors with strong ionic bonds in excellent agreement with
measured values [24]. For single-quasiparticle band structure
calculations we used Hedin’s GW [19] approach in order to
account for the excitation aspects which are lacking within
the DFT-GGA approach [21]. In order to improve the quality
of the starting electronic wave functions and the dielectric
function entering the screened Coulomb interaction W for the
single-shot G0W0 calculation, we use a HSE06 [25] hybrid
functional electronic structure calculation as a starting point
instead of a DFT starting point. In addition, we have altered
the original HSE06 reciprocal screening length from about
0.2 Å−1 to 0.3 Å−1 as suggested and well tested in a study of
Fuchs et al. [26]. After tests with up to 768 bands, 512 bands
are used in the GW self-energy calculation. The frequency-
dependent dielectric tensor is computed by solving the BSE
introducing a two-particle Hamiltonian which accounts for the
excitonic effects, screened electron-hole attraction and bare
electron-hole exchange [21,27]. The screened potential W is
taken from the GW calculations. For the BSE calculations,
the number of bands has been limited to the possibility to
describe energy distances between conduction and valence
bands up to 28 eV (8 × 8 × 8 k points) and 44 eV (6 × 6 × 6 k
points). The resulting excitonic Hamiltonians have ranks up to
about 433 000. Therefore, the imaginary part of the dielectric
tensor is computed using a time-propagation technique [28].
A Lorentzian broadening of 0.2 eV width has been used
for all spectra to simulate lifetimes of excitons and possible
instrumental broadenings.

We use the frozen-core all-electron projector-augmented
wave (PAW) method [29,30] to describe wave functions and
potentials. A plane-wave cutoff energy for the expansion of the
pseudopartial waves of 410 eV (about 30 Ry) has been chosen
for all total-energy, band structure, and spectra calculations.
This cutoff energy has been proven to provide a very good
accuracy for total energies (better about 1 meV/atom). Due to
the fact that several polymorphs possess a rather complicated
crystallographic structure (e.g., base-centered monoclinic for
the ground-state structure, see following section), it is much
too time consuming to sample the total-energy surface for
a sufficiently large set of a, b, and c lattice constants and
in addition also some monoclinic angle β. Therefore, we
employ a much more efficient strategy: For several volumes
we use the built-in stress tensor to fully relax not only the
atomic coordinates, but also the full cell shape. This is then
followed by a simple energy-volume fit using Vinet’s equation
of state [31]. A pre-estimate of the equilibrium volume is
achieved by a full relaxation including also volume relaxation.
In order to avoid spurious Pulay stresses [32], such kind of
relaxation strategies formally require absolute convergence
with respect to the plane-wave cutoff energy or at least a very
high cutoff. For that reason, all structural optimizations have
been performed with an increased plane-wave cutoff energy of
820 eV (about 60 Ry). Tests for varying cutoffs (up to 950 eV)
have proven that the estimated error should be less than 1 kbar
in the stresses leaving a maximum uncertainty in the lattice
constants of 0.1% or less (or few mÅ in absolute numbers).
All structures have been relaxed until the forces on the atoms
dropped below 1 meV/Å and the anisotropy of the stress tensor
was less than 0.1 kbar.

The k-point sampling of the Brillouin zone (BZ) was
performed using standard Monkhorst-Pack [33] meshes for all
structural relaxations. We use a mesh size of 11 × 11 × 11
(9 × 9 × 5, 4 × 4 × 4) for the monoclinic and rhombohe-
dral (orthorhombic, cubic) structures. For band structure
calculations we used �-centered Monkhorst-Pack meshes.
The mesh sizes were 16 × 16 × 16 (16 × 8 × 8, 8 × 8 × 8)
for the monoclinic and rhombohedral (orthorhombic, cubic)
structures in the DFT case and 8 × 8 × 8 for the HSE06,
GW , and BSE calculations in the case of the monoclinic
and rhombohedral structures. For the high-energy tails of the
dielectric tensor on BSE level beyond transition energies of
28 eV we reduce the mesh size to 6 × 6 × 6. For the complex
orthorhombic and cubic structures, we do not perform any
GW calculations because it would be too time consuming and
the monoclinic and rhombohedral phases are the only ones
which can be studied under ambient conditions (whereof the
monoclinic one is the only stable phase).

III. STRUCTURAL, ELASTIC, AND ENERGETIC
PROPERTIES

A. Phases

According to the Introduction, there exist at least five or
even six polymorphs of Ga2O3. We study four polymorphs:
(i) the base-centered monoclinic β phase which is the only
stable phase up to at least T = 1800 ◦C, (ii) the metastable
rhombohedral corundum structure, also called α phase, which
is the only metastable phase that can exist under ambient
conditions, (iii) the cubic bixbyite structure, also called δ

phase, and (iv) the orthorhombic ε phase. The β phase can
be transformed into the α phase under hydrostatic pressure at
higher temperatures [34,35]. The cubic bixbyite polymorph
is the ground-state structure in the case of In2O3 [36]. The
ε phase was found to appear by heating δ-Ga2O3. For the
ε phase we only discuss the structure proposed by Yoshioka
et al. [9] although another orthorhombic high-pressure phase
which could be a Rh2O3(II)-type structure was suggested by
Yusa et al. [8]. The so-called γ phase, suggested to be a
defective spinel-type structure [9], is not examined due to
its high complexity in the description. Yoshioka et al. [9]
optimized the geometry of the γ -Ga2O3 within 14 inequivalent
configurations of defective spinel structures.

As we will demonstrate later, all polymorphs have a lot
in common concerning the electronic structure or dielectric
properties [similar densities of states (DOS) and similar
isotropically averaged dielectric functions], apart from a
varying fundamental band gap. As illustrated and described
in the papers of Geller [37] and Ahman et al. [38] (see Fig. 1
therein), one can build up the crystal structures by different
arrangements of oxygen octahedra and tetrahedra as building
blocks. The occurrence of the same building blocks seems to
be the origin of similar electronic and optical properties and is
the main issue of this paper. At the end our main focus will be
given to the α and β phases only.

The most important characteristics of the ground states
of the four polymorphs under consideration, i.e., all unit-cell
parameters (lattice constants and angles), atomic coordinates,
space group, bulk moduli, pressure derivatives of bulk moduli,
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TABLE I. Calculated key structural and thermodynamic data of
the four polymorphs under consideration. Known experimental data
from Ref. [34] are given in parentheses. The cohesive energy E0 is
taken relative to the energies of free spin-polarized atoms. An exper-
imental value of E0 ≈ −24.7 eV is estimated at room temperature
combining heats of formation of β-Ga2O3, O2 molecules, and Ga bulk
(extracted from Ref. [39]). It is expected that neglecting phonon free
energies the experimental zero-temperature value without phonon
zero-point motion energies (neglected in all calculations) should be
most likely about −24.9 eV.

Phase β α δ ε

Bravais lattice Monocl. Trigonal Cubic Orthorh.
Space group C2/m R3̄c Ia3̄ Pna21

Atoms per unit cell 10 10 40 40
V0 (Å3/formula unit) 52.84 48.48 50.14 51.09

(52.39) (48.07)
B0 (elastic tensor) (MBar) 1.66 2.16 1.95 1.85
B0 (fit) (MBar) 1.65 2.15 1.93

(1.99) (2.20)
B ′

0 3.8 4.5 4.7
(3.1) (5.9)

E0 (eV/formula unit) −25.343 −25.254 −25.213 −25.262

and cohesive energies are summarized in Table I. In this table,
we list first the general cohesive properties for all polymorphs
under consideration. In Tables II –V we summarize then the
detailed crystallographic data of the four polymorphs and the
calculated structural parameters (lattice parameters and atomic
positions).

The energy gain due to chemical bonding per formula unit
Ga2O3 in Table I only weakly varies with the phase by less than
0.14 eV. The β phase is the most favored one, while the cubic
bixbyite structure is less stable compared to the other Ga2O3

polymorphs. The most favorable β phase is the most less
dense arrangement of the Ga and O atoms. Correspondingly,
the bulk modulus B0 and its pressure derivative B ′

0 possess
the smallest values. These trends are in agreement with the

TABLE II. Lattice parameters (a) and atomic coordinates (b)
of the base-centered monoclinic structure with space group C2/m

(space group 12).

(a)
a (Å) b (Å) c (Å) β (o)

This work 12.2894 3.0471 5.8113 103.77
Ref. [9] 12.438 3.084 5.877 103.71
Expt. (Ref. [34]) 12.233 3.038 5.807 103.82

(b)
Atom Structural parameters Symmetry

x z degeneracy

Ga1 0.34192 −0.31441 2
Ga2 0.09016 −0.20508 2
O1 0.17344 −0.43589 2
O2 0.16329 0.10955 2
O3 0.49574 0.25595 2

TABLE III. Lattice parameters (a) and atomic coordinates (b) of
the rhombohedral corundum structure with space group R3̄c (space
group 167).

(a)
a (Å) α (o) ahex (Å) chex (Å)

This work 5.3307 55.905 4.997 13.447
Ref. [9] 5.398 55.889 5.059 13.618
Expt. (Ref. [34]) 5.321 55.795 4.979 13.432

(b)
Atom Structural parameters Symmetry

x z degeneracy
Ga1 0.14396 4
O1 −0.05317 6

experimental findings [34] for the α and β phases. The B

values of In2O3 polymorphs are between those of the α-
and β-Ga2O3 [36], whereas metal monoxides usually exhibit
smaller elastic moduli [40].

The calculated total-energy curves E = E(V ) used to
derive the parameters V0, B0, B ′

0, and E0 = E(V0) listed
in Table I allow the discussion of structural changes in
form of pressure-induced phase transitions via the enthalpy
H = E + pV as a function of the hydrostatic pressure p [40].
The crossing between the H = H (p) curves for two phases
defines the transition pressure pt . We obtain the value pt =
3.4 GPa for the pressure-induced phase transition between
the β phase and α-Ga2O3. This value is not too far away
from the experimentally determined transition pressures at
high temperatures pt = 4.4 GPa [35], but clearly lower than
pt = 19.2 GPa reported under cold compression [41].

B. Atomic coordinates

The lattice vectors of the base-centered monoclinic β phase
are given by

a1 = (a/2, − b/2,0),

a2 = (a/2,b/2,0),

a3 = (c cos β,0,c sin β). (1)

Calculated values at zero pressure and zero temperature are
given in Table II(a).

All atoms have Wyckoff positions 4i. Each Wyckoff
position 4i results in two symmetry-equivalent lattice co-
ordinates ±(x a1 + x a2 + z a3). The primitive unit cell
contains 10 atoms at five different Wyckoff positions
which are characterized by 10 different structural parameters

TABLE IV. Atomic coordinates of the body-centered-cubic
bixbyite structure with space group Ia3̄ (space group 206).

Atom Lattice coordinates Symmetry

x1 x2 y2 z2 degeneracy

Ga24d 0.46417 12
O1 0.38917 0.15795 0.38497 24
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TABLE V. Lattice parameters (a) and atomic coordinates (b) of
the orthorhombic structure with space group Pna21 (space group 33).

(a)
a (Å) b (Å) c (Å)

This work 5.0566 8.6867 9.3035
Ref. [9] 5.120 8.792 9.410

(b)
Atom Structural parameters Symmetry

x y z degeneracy

Ga1 0.1793 0.1520 0.9982 4
Ga2 0.8122 0.1616 0.3095 4
Ga3 0.1916 0.1505 0.5872 4
Ga4 0.6789 0.0322 0.7954 4
O1 0.9711 0.3246 0.4262 4
O2 0.5217 0.4885 0.4330 4
O3 0.6511 0.0017 0.2041 4
O4 0.1533 0.1585 0.1977 4
O5 0.8486 0.1709 0.6702 4
O6 0.5208 0.1678 0.9382 4

x1, x2, x3, x4, x5, z1, z2, z3, z4, and z5. The parameters x

and z for the 10 atoms in the unit cell are listed in Table II(b).
The lattice vectors of the rhombohedral α phase can be

chosen as

a1 = (b′,a′,a′), a2 = (a′,b′,a′), a3 = (a′,a′,b′). (2)

It should be noted that this does not refer to the usual standard
setting but is a choice that includes the special cases of
standard cubic lattice vectors for special choices of of b′ and a′,
i.e., special rhombohedral angles. Thereby, the rhombohedral
lattice constant (length of each vector) is a = √

2 a′2 + b′2
and the rhombohedral angle α between the lattice vectors
is α = arccos ([a′2 + 2 a′ b′]/a2). Often also an equivalent
nonprimitive hexagonal cell containing three primitive cells
is used to characterize the structure. The corresponding
hexagonal lattice constants are ahex = a

√
2 [1 − cos (α)]

and chex = a
√

3 [1 + 2 cos (α)]. Calculated values at zero
pressure and zero temperature are listed in Table III(a).

All Ga atoms have Wyckoff positions 4c. Each Wyckoff
position 4c results in four symmetry-related lattice coordinates
±z (a1 + a2 + a3) and ±(0.5 + z) (a1 + a2 + a3). All O
atoms have Wyckoff positions 6e. Each Wyckoff position
6e results in six symmetry-related lattice coordinates of the
form ±[x a1 + (0.5 − x) a2 + 0.25 a3] with three cyclic
permutations of the coefficients x, (0.5 − x), and 0.25. The
primitive unit cell contains 10 atoms with exactly one Wyckoff
position for Ga and O which are characterized by two different
structural parameters z1 and x1 given in Table III(b).

The lattice vectors of the cubic δ phase are given by

a1 = (−a/2,a/2,a/2),

a2 = (a/2,−a/2,a/2),

a3 = (a/2,a/2,−a/2). (3)

Calculated values at zero pressure and zero temperature are
a = 9.292 Å (this work) and a = 9.401 Å (Ref. [9]).

There are four Ga atoms at four different Wyckoff positions
8b which are 0.5(a1 + a2 + a3), 0.5 a1, 0.5 a2, and 0.5 a3.
All other Ga atoms occupy Wyckoff positions 24d. Each
Wyckoff position 24d results in 12 symmetry-related lattice
coordinates of the form ±[0.25 a1 + (x + 0.25) a2 + x a3]
and ±[0.25 a1 + (x − 0.25) a2 + (x + 0.5) a3] with
three cyclic permutations each of the coefficients 0.25,
(x + 0.25), and x or, respectively, 0.25, (x − 0.25), and
(x + 0.5). All O atoms have Wyckoff positions 48e.
Each Wyckoff position 48e results in 24 symmetry-related
lattice coordinates of the four fundamental forms ±[(x +
y) a1 + (y + z) a2 + (x + z) a3], ±[(0.5 − x − y) a1 +
(0.5 − y + z) a2 + (z − x) a3], ±[(0.5 − x + y) a1

+ (y − z)a2 + (0.5 − x − z)a3], and ±[(x − y) a1 +
(0.5 − y − z) a2 + (0.5 + x − z) a3] with again three
cyclic permutations each of the coefficients in front of
a1, a2, and a3. In total, the primitive unit cell contains 40
atoms. The Wyckoff positions 8b of four Ga atoms do not
possess any structural parameters, the Wyckoff position 24d

of the remaining 16 Ga atoms can be characterized by a
single parameter x1. For the O atoms at Wyckoff position
48e we need another three parameters x2, y2, and z2. The
corresponding parameters are listed in Table IV.

The lattice vectors of the orthorhombic ε phase are given
by

a1 = (a,0,0), a2 = (0,b,0), a3 = (0,0,c). (4)

Calculated values at zero pressure and zero temperature are
listed in Table V(a).

There are 16 Ga atoms at four different Wyckoff positions
4a and 24 O atoms at six different Wyckoff positions
4a. Each Wyckoff positions 4a results in four symmetry-
related lattice coordinates of the form x a1 + y a2 +
z a3, (0.5 + x) a1 + (0.5 − y) a2 + z a3, (0.5 − x) a1 +
(0.5 + y) a2 + (0.5 + z) a3, and −x a1 − y a2 + (0.5 +
z) a3. The parameters x, y, and z are given in Table V(b).

The calculated lattice constants for the four considered
polymorphs qualitatively agree with previous results [9].
However, our values are smaller as a consequence of the use of
the PBE approximation for exchange and correlation [42] by
Yoshioka et al. [9]. This discrepancy has been also found for
polymorphs of mononitrides [24] with a clear tendency that the
lattice constants obtained in the AM05 framework are much
closer to measured values. This observation is supported by
Tables II(a) and III(a), which show that our AM05 values better
describe the measured values. Consequently, the predictions
for the δ and ε phases should be reasonable. The rhombohedral
(α) and monoclinic (β) angles are in excellent agreement with
other calculated [9] and measured [34] values. The atomic
coordinates in Tables II(b), III(b), IV, and V(b) agree well with
the results of Yoshioka et al. [9]. Summarizing, we conclude
that the atomic geometries in Tables II, III, IV, and V of
the four polymorphs under consideration are suitable for the
calculation of the electronic and optical properties.

C. Tensor of elastic constants

For the four polymorphs under consideration, we also
determine the full tensor of elastic constants which, to our
knowledge, is completely unknown so far. This can be
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achieved by calculation of the stress-strain relation for different
deformation modes of the unit cell. Thereby, also cell-internal
stress contributions due to atomic relaxations have been taken
into account. In order to avoid too large errors due to Pulay
stresses [32], these calculations have again been performed at
an increased plane-wave cutoff of 820 eV. Four deformation
amplitudes per degree of freedom (two in positive and two
in negative directions) plus the equilibrium position have
been used in order to determine the second derivatives of the
stress with respect to strain at the equilibrium positions. In
the following, we refer to the frequently used Voigt notation
which allows to represent the tensor of elastic constants Cijkl

as a (symmetric) 6 × 6 matrix Cij , with a maximum of 21
independent elements. The mapping of indices is 11 → 1,
22 → 2, 33 → 3, 23 → 4, 31 → 5, and 12 → 6.

In the monoclinic case, one finds 13 independent elastic
moduli by symmetry reduction. Choosing the coordinate
system such that the y axis is parallel to the b axis, x

is parallel to the a axis, and the c axis is in the xz

plane [according to the choice of lattice vectors in Eq. (1),
symmetry enforces C14 = C24 = C34 = C16 = C26 = C36 =
C45 = C54 = C56 = C65 = 0]. In units of kbar (105 kPa) the
elastic tensor in Voigt notation reads as

C =

⎛
⎜⎜⎜⎜⎜⎝

2231 1165 1253 0 −174 0
1165 3332 750 0 122 0
1253 750 3300 0 73 0

0 0 0 503 0 174
−174 122 73 0 686 0

0 0 0 174 0 942

⎞
⎟⎟⎟⎟⎟⎠

. (5)

It should be noted that only accidentally C46 ≈ −C15 holds. In-
deed, they are independent elastic constants and their absolute
values differ numerically by about 0.5 kbar. As a cross-check
one can evaluate the bulk modulus from the relationships
9B0 = C11 + C22 + C33 + 2C12 + 2C23 + 2C13 (Voigt aver-
age) or 1/B0 = S11 + S22 + S33 + 2S12 + 2S23 + 2S13 (Reuss
average) where Sij , the tensor of elastic compliances, is the
inverse of tensor Cij of elastic constants. The Reuss average
is expected to be closest to the value obtained from a Vinet
equation of states (EOS) fit because there a uniform isotropic
stress is assumed reflecting exactly what is done in the fit
procedure. Accordingly, we prefer to give the Reuss average
in the following. One finds a value of B0 = 1664 kbar, in
good agreement with the value of 1650 kbar found from the
Vinet EOS fit. The small discrepancy of about 0.7% can be
attributed to general uncertainties in the fit procedure as well
as small Pulay stresses and numerical errors in the evaluation
of the stress-strain relation. Overall, we expect an uncertainty
of the same order of magnitude (about one percent) for all
components of the elastic constant tensor.

In the rhombohedral case, symmetry reduces the number
of independent tensor components to only six different
components. One has to note that the structure of the tensor of
elastic constants depends on the choice of the lattice vectors.
The standard form which is usually discussed in the literature
requires that the z axis is aligned parallel to the rhombohedral
〈111〉 direction (c axis in a hexagonal representation of the
rhombohedral lattice). This can be achieved by using the lattice

vectors

a1 = (0,
√

3 ahex/3,chex/3),

a2 = (−ahex/2, −
√

3 ahex/6,chex/3),

a3 = (ahex/2, −
√

3 ahex/6,chex/3) (6)

instead of those given in Eq. (2). For the definition of the
hexagonal lattice constants ahex and chex, see Sec. III B. Using
these standard lattice vectors (6) we obtain in Voigt notation
and units of kbar (105 kPa) the elastic tensor

C =

⎛
⎜⎜⎜⎜⎜⎝

3815 1736 1260 −173 0 0
1736 3815 1260 173 0 0
1260 1260 3458 0 0 0
−173 173 0 797 0 0

0 0 0 0 797 −173
0 0 0 0 −173 1040

⎞
⎟⎟⎟⎟⎟⎠

.

(7)

The relation C56 = C14 = −C24 is enforced by symmetry.
Again, as a cross-check the bulk modulus can be calculated.
One obtains B0 = 2157 kbar, again very close to the value
of 2150 kbar found from the Vinet EOS fit (0.3% deviation).
Another excellent check is the verification that C66 = (C11 −
C12)/2, enforced by symmetry and found to be fulfilled
numerically exact.

The cubic bixbyite structure possesses an elastic tensor
of maximum symmetry with only three independent elastic
constants. In Voigt notation and units of kbar (105 kPa), the
elastic tensor is

C =

⎛
⎜⎜⎜⎜⎜⎝

3411 1226 1226 0 0 0
1226 3411 1226 0 0 0
1226 1226 3411 0 0 0

0 0 0 760 0 0
0 0 0 0 760 0
0 0 0 0 0 760

⎞
⎟⎟⎟⎟⎟⎠

. (8)

The bulk modulus is found to be B0 = 1954 kbar, also close to
the the value of 1930 kbar found from the Vinet EOS fit (1.2%
deviation).

Finally, in the orthorhombic case symmetry is a bit reduced
again but still rather high with nine independent elastic
constants. In Voigt notation and units of kbar (105 kPa), the
elastic tensor is

C =

⎛
⎜⎜⎜⎜⎜⎝

3120 1544 1262 0 0 0
1544 2736 1268 0 0 0
1262 1268 2798 0 0 0

0 0 0 724 0 0
0 0 0 0 473 0
0 0 0 0 0 920

⎞
⎟⎟⎟⎟⎟⎠

. (9)

Again, we can calculate the bulk modulus and we find a value
of B0 = 1855 kbar. In this case, we have not performed any
Vinet EOS fit and cannot compare.

IV. BAND STRUCTURES

A. General trends: DFT-GGA results

As a preliminary study, we present band structures and
densities of states of all polymorphs on pure DFT-GGA level.
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FIG. 1. Comparison of the DFT band structures of four different Ga2O3 polymorphs: (a) monoclinic, (b) rhombohedral, (c) cubic, and
(d) orthorhombic. In addition, the total (black full line), as well as the s- (red dashed line), p- (green dotted-dashed line), and d-projected (blue
dotted line) DFT DOS is displayed. The valence band maxima are all aligned to zero energy.

Although we lack quasiparticle effects on this level resulting
in too small gaps (and also wrong Ga 3d positions), the band
dispersions (and also band orderings) are widely described
reasonably as well as trends in the gaps with the polymorphs.
The band structures and densities of states displayed in Fig. 1
demonstrate that the energetic positions of the groups of bands
(representing O 2s, Ga 3d, and O 2p in the valence band
region and Ga 4s, Ga 4p, and Ga 4d in the lower part of the
conduction bands) are rather similar. This is clearly reflected
in the densities of states. A comparison of all densities of
states shown in Fig. 2 demonstrates that the overall shapes of
the DOSs are very similar (apart from slightly varying gaps
and some jerkiness due to insufficient k sampling). This will
still be observed later on the GW level for the monoclinic and
rhombohedral phases. One may conclude that due to the strong
ionic Ga-O bonding, the actual arrangement of the Ga and O
atoms has a minor influence on the energy distribution of the
empty and occupied electronic states.

An important question for the optical absorption properties
is whether the polymorphs possess direct or indirect gaps.
Independent of the polymorph, all band structures show
a pronounced conduction band minimum (CBM) at the �
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FIG. 2. Comparison of the total DFT DOS per formula unit (f.u.)
of four different Ga2O3 polymorphs: monoclinic (black full line),
rhombohedral (red dashed line), cubic (green dotted-dashed line), and
orthorhombic (blue dotted line). The valence band maxima (energy
zero) are used for the alignment. A Gaussian broadening of 0.1 eV is
applied.
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TABLE VI. Calculated DFT band structure data for all four
polymorphs under consideration. All values are given in eV.

Polymorph Monocl. Rhomboh. Cubic Orthorh.

Gap character Indirect Indirect Indirect Indirect?
Direct gap at � 2.377 3.075 2.696 2.466
Indirect gap 2.356 2.832 2.594 2.465
Valence band width 18.789 18.880 18.950 18.943

point. In contrast, the uppermost O 2p derived valence bands
are relatively flat. The exact position of the valence band
maximum (VBM) therefore depends on the details of the
atomic arrangements. The gap is clearly indirect for the
rhombohedral corundum phase and is about 0.25 eV smaller
than the direct gap at � with a valence band maximum off of
high-symmetry lines, somewhere in the region around the F
point. There is an almost direct gap in the monoclinic β phase.
Although experiments seem to predict a clear indirect gap
(about 0.1 eV smaller than the direct gap at �), we can only see
a small difference of about 21 meV between the indirect gap
from (approximately) M to �. This is in agreement with other
DFT calculations [12,43]. Also, the cubic bixbyite structure
exhibits an indirect gap from about three quarters of the �-N
line to � which is about 0.1 eV smaller than the direct gap at
�. An undetermined situation is found for the orthorhombic
phase. It possesses a quasidirect gap although it seems that the
valence band maximum is a bit off � in the �-X direction but
with a small difference of only 1 meV which is of the order of
the numerical error.

All direct and indirect DFT band-gap values are summa-
rized in Table VI. In addition, also the valence band widths are
listed. One can observe that there are some differences in the
gap values but almost no change in the valence band widths
due to the different atomic arrangements. However, overall all
polymorphs display gaps of similar order of magnitude (order
of 2.5 eV).

B. Quasiparticle bands

In Figs. 3 and 4, we depict the band structures calculated
on GW level over a wide energy range and in a more narrow
energy range close to the fundamental gap region. Compared to
the DFT-GGA results presented in the previous subsection one
can see a clear gap opening within the HSE+G0W0 approach.
Table VII summarizes some key data (direct and indirect gaps)
of the two polymorphs under consideration. The gap openings
within HSE+G0W0 with respect to DFT-GGA amount to
about 2.7 eV (2.55 eV) for the β phase (α phase), i.e., they
are approximately as large as the DFT-GGA gaps of 2.36 eV
(2.83 eV).

The absolute values in Table VII agree well with experi-
mental data. For β-Ga2O3 recent ARPES studies [16] found
a value of 4.9 eV as a lower bound for the size of the
quasiparticle band gap. Optical absorption measurements [3]
seem to indicate slightly lower values but for the optical gap
as will be discussed below. For α-Ga2O3, the fundamental
gap is opened by 0.3–0.6 eV. This trend agrees with optical
transmittance measurements [44] which indicate an optical gap
of 4.98 eV for α-Ga2O3, about 0.2 eV larger than the optical
gap of 4.8 eV estimated for β-Ga2O3.

One of the most remarkable results in Fig. 4 is that for
the monoclinic β phase the valence band maximum near
M is now about 8 meV lower than the maximum at �,
i.e., that on GW level the β phase appears as a direct-gap
semiconductor (in contrast to DFT-GGA and also to HSE
which still yields a difference of about 7 meV in favor of
an indirect gap, consistent with DFT-GGA results). However,
within all numerical uncertainties and error bars, this very
weak direct character or quasidegeneracy between direct and
indirect gaps is not conclusive. To be honest, possible error
bars leave room for uncertainties of ±0.1 eV or even more. In
contrast to these findings, for the rhombohedral α phase we
still clearly find an indirect gap, about 0.24 eV smaller than
the direct one (close to the DFT-GGA result of 0.25 eV and
the HSE result of about 0.23 eV).
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FIG. 3. Quasiparticle band structures at HSE+G0W0 level of the (a) monoclinic and (b) rhombohedral Ga2O3 polymorphs in the full energy
range. In addition, the corresponding total (black full line), as well as the s- (red dashed line), p- (green dotted-dashed line), and d-projected
(blue dotted line) DOS is displayed. The valence band maxima are used as energy zero.

115204-7
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FIG. 4. Quasiparticle band structures at HSE+G0W0 level of the (a) monoclinic and (b) rhombohedral Ga2O3 polymorphs in an energy range
around the fundamental gap. In addition, the corresponding total (black full line), as well as the s- (red dashed line), p- (green dotted-dashed
line), and d-projected (blue dotted line) DOS is displayed. The valence band maxima are used as energy zero.

C. Effective electron mass tensors

For the monoclinic β phase and the rhombohedral α phase,
we also determine the effective mass tensor for electrons at
the conduction band minimum. Due to the complex valence
band structure, we shall not discuss hole masses here. The
reciprocal effective electron mass tensor is defined by

(m∗
ij )−1 = 1

�2

∂2

∂ki ∂kj

Ec(k)

∣∣∣∣
k=0

(10)

with Ec(k) as the dispersion of the lowest conduction band. In
order to obtain a good quadratic fit we need to sample different
directions in k space close to the BZ center very densely. This
becomes practically impossible on the GW level due to CPU
time and memory restrictions. Therefore, we restrict ourselves
to calculations on the HSE level. A comparison of HSE and
GW band structures (not displayed here) shows that the band
dispersions of the lowest conduction band are almost identical
(within few percent) so that we can consider the HSE results
to be of similar quality as GW results.

Very careful fits involving 11 k points (� and five k points
right and left of �) in different directions with a spacing of
0.002 reciprocal lattice constants yield first the inverse mass
tensor. By inversion of this tensor we obtain finally the mass
tensor itself. In the monoclinic case, it possesses three different
diagonal elements and in addition a nonvanishing nondiagonal
element m∗

xz if we choose the a axis to be parallel to the x

axis, the b axis to be parallel to the y axis, and consequently
the c axis to be in the xz plane with an angle β − 90◦ off

TABLE VII. Summary of quasiparticle gap data for the mono-
clinic and rhombohedral polymorphs. All values are given in eV.

Polymorph Monoclinic Rhombohedral

Gap character “Undetermined” Indirect
Direct gap at � 5.038 5.625
Indirect gap 5.046 5.387

the z axis. In the rhombohedral case, we have to determine
two representations: In the rhombohedral representation, all
diagonal elements are identical (and correspond to the average
mass) and all nondiagonal elements are nonvanishing and
identical (representing the anisotropy). A more conventional
and easier representation of this is the hexagonal one: Here,
the matrix is diagonal and assuming the c axis to be parallel
to the z axis, we obtain two identical masses m∗

xx = m∗
yy

(identical to the difference between the diagonal and the
off-diagonal elements in rhombohedral representation) and an
independent second mass m∗

zz (given by m∗
xx plus three times

the off-diagonal element in rhombohedral representation).
The resulting electron effective mass tensors in units of the

free electron mass m0 are

m∗ =
⎛
⎝

0.272 0.000 0.002
0.000 0.270 0.000
0.002 0.000 0.263

⎞
⎠ m0 (11)

in the monoclinic case,

m∗ =
⎛
⎝

0.256 0.003 0.003
0.003 0.256 0.003
0.003 0.003 0.256

⎞
⎠ m0 (12)

in the rhombohedral case (rhombohedral representation), or

m∗ =
⎛
⎝

0.253 0.000 0.000
0.000 0.253 0.000
0.000 0.000 0.262

⎞
⎠ m0 (13)

if we chose the hexagonal representation for the rhombohedral
phase.

As one can see, the anisotropies are rather small (maximum
about 3.5%) and the masses also do not vary too much with
the polymorph (the rhombohedral masses are just about 4%
smaller than the monoclinic ones). The average masses of
0.268 m0 (0.256 m0) for the monoclinic (rhombohedral) phase
match also quite well a recent estimate of Varley et al. [43]
who found a value of 0.28 m0 in the monoclinic case and a
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FIG. 5. Comparison of the total quasiparticle DOS at
HSE+G0W0 level of the monoclinic (red full line) and rhombohedral
(black dashed line) Ga2O3 polymorphs. The valence band maxima
(energy zero) are used for the alignment. A Gaussian broadening of
0.1 eV is applied.

very crude experimental estimate [45] which claims a value of
about 0.3 m0.

D. Density of states

Also, apart from the larger gap of the rhombohedral phase,
the DOSs look again very similar as in the DFT-GGA case,
as demonstrated in Fig. 5. The most significant differences
occur in the lower-energy regions of the conduction bands. So,
implicitly we can speculate that this might also hold for the
other polymorphs (if we could afford a GW calculation). It is
also important to note that, as it can already be observed at DFT
level, there is a clearly visible hybridization between the Ga 3d

and the O 2s states in the l-projected DOS for all polymorphs
under consideration. A detailed analysis (site- and l-projected
DOS) displayed in Fig. 6 for the monoclinic polymorph at the
GW level demonstrates that there is in addition hybridization
between Ga 4s and O 2p states in the lower part of the topmost
group of mostly O 2p related valence bands. But, even to some
extent a Ga 4p character of the states is found in the center
of this band group and finally some small Ga 3d character is
found close to the top of the valence bands. This holds again
for all polymorphs already on DFT level (not shown here). It
is remarkable that exactly the same behavior has been found
for In2O3 [46]. Since the energetic positions of In 4d and O 2s

in In2O3 are not too different from those of Ga 3d and O 2s

in Ga2O3, this result is not surprising because we can expect
similar interactions between these states.

Recent experimental work [47] seems to confirm this result.
However, it seems that the Ga 3d binding energy is a bit
underestimated (by about 1 eV) in the calculation. It cannot
be excluded that we suffer similar convergence problems for
the strongly localized d levels as reported for the case of
ZnO [48]. The consequence seems to be an underestimation
of the O 2s–Ga 3d hybridization. For more details, we point
the reader to Ref. [47] where our calculated l-projected DOS
and corresponding band structure in the valence band region
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FIG. 6. Site- and l-projected DOS at HSE+G0W0 level for the
monoclinic Ga2O3 polymorph: Ga 4s (red dashed line), Ga 4p (green
dotted-dashed line), Ga 3d (blue dotted line), O 2s (orange dotted-
dotted-dashed line), and O 2p (turquoise full line). The valence band
maximum is used as energy zero. A Gaussian broadening of 0.1 eV
is applied.

of β-Ga2O3 has already been published previously along
with core-level photoelectron spectra and a discussion of the
hybridization effects. However, a binding energy of Ga 3d

electrons of about 15.7 eV [12] is difficult to derive from an
x-ray photoemission spectrum (XPS) of a TCO [49] because
of the electrons in the CBM. Its reference to the VBM asks
for the knowledge of the gap. Nevertheless, the main Ga 3d

derived peak in Fig. 6 occurring at about 15.5 eV binding
energy is close to such a binding energy.

V. DIELECTRIC FUNCTION

A. Symmetry and tensor character

The frequency-dependent dielectric function is not a simple
scalar but a symmetric tensor of rank two, i.e., it consists in
the most general case of six components εxx , εyy , εzz, εxy ,
εyz, and εxz. Instead of displaying these six components, one
could as well diagonalize the tensor for each frequency and
display the three eigenvalues plus the orientations of the three
frequency-dependent optical axes (eigenvectors). However, we
prefer to display here just all independent components εij

of the tensor. Symmetry reduces the number of independent
components of the tensor εij to a maximum of four [50].

In the simple case of cubic crystals, for example, the
tensor takes a form proportional to the unit tensor, i.e., one
component (e.g., εxx) is sufficient to characterize the dielectric
tensor. In the case of hexagonal, but also rhombohedral,
structures one obtains two independent components. In the
hexagonal case, the tensor is diagonal if we assume that the
hexagonal c axis is parallel to the Cartesian z axis. In this
case, it holds εxx = εyy 
= εzz and all other components
vanish, i.e., εxx and εzz are sufficient to characterize the
dielectric tensor. In the rhombohedral case, one finds instead
εxx = εyy = εzz but nonzero nondiagonal elements εxy =
εyz = εxz. One of the diagonal and one of the nondiagonal
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elements (εdiag and εnondiag) will then characterize the dielectric
tensor. Many people may prefer a hexagonal representation
of the rhombohedral lattice and like to express the dielectric
tensor in terms of some εxx,h and εzz,h. This is easily achieved
by the transformations εxx,h = εdiag − εnondiag and εzz,h =
εdiag + 2εnondiag. By these transformations it becomes, by
the way, obvious that εdiag itself provides the isotropically
averaged dielectric function and that 3εnondiag gives the
resulting anisotropy εzz,h − εxx,h.

In the orthorhombic case with Cartesian axis aligned to
the three crystal axes, one obtains also a simple form with
three independent diagonal components εxx 
= εyy 
= εzz

which are sufficient to characterize the dielectric tensor. More
complicated is the monoclinic system which has to be handled
in the case of β-Ga2O3. Here, four independent tensor elements
occur and the structure of the tensor depends on the choice of
the Cartesian axis with respect to the crystal lattice vectors. In
our case, we have chosen the Cartesian x axis to be aligned
with the monoclinic a axis and the y axis to be aligned with
the monoclinic b axis (which is orthogonal to both the a and
the c axes). This means the monoclinic c axis is somewhat
off the Cartesian z axis and lies inside the Cartesian xz

plane. This setup results in εxy = εyz = 0. All other four
remaining components (εxx , εyy , εzz, and εxz) are nonvanishing
and different. These four components are displayed in the
following figures for the monoclinic Ga2O3 polymorph.

B. Independent-particle spectra

As in the case of band structures and densities of states, we
also present a preliminary study on the independent-particle
level for all polymorphs. The components of the frequency-
dependent dielectric tensor are computed by means of the
DFT-GGA Kohn-Sham eigenenergies and eigenfunctions. As
we will demonstrate in the next subsections many-body ef-
fects, such as quasiparticle and excitonic effects, significantly
influence optical spectra.

The DFT-GGA spectra are displayed in Fig. 7 for the
four Ga2O3 polymorphs under consideration. Apart from the
off-diagonal elements of the dielectric tensor in the monoclinic
and rhombohedral cases, the diagonal elements, their real and
imaginary parts, are rather similar. This holds especially for
the real parts. For vanishing frequency, the static electronic
dielectric constants ε∞

jj = Reεjj (ω = 0) ≈ ε̄∞ are rather in-
dependent of the polarization direction j and the polymorph.
Within the random-phase approximation, i.e., the DFT-GGA,
it holds ε̄∞ = 4.12 (monoclinic), ε̄∞ = 4.38 (rhombohedral),
ε̄∞ = 4.28 (cubic), and ε̄∞ = 4.26 (orthorhombic). Also the
zeros, Reεjj = 0, appear in the same energy region �ω =
14.6 – 16.6 eV.

The strongest variations with the polymorph happen in
the range of the optical interband transitions as especially
indicated by the imaginary parts. However, the principal
frequency dependence is similar as a consequence of the
weakly varying joint density of states, which follows the
single-particle densities of states in Fig. 2. The spectral
variations are mainly due to slightly modified van Hove
singularities in the band structures in Fig. 1. The variations
in the intensities are considerably related to the optical
transition matrix elements. This is underlined by the averaged

dielectric functions ε̄(ω) = 1
3

∑3
j=1 εjj (ω) displayed in Fig. 8.

Their variation with the polymorph mainly occurs in the
photon energy range �ω = 5 – 10eV. The dielectric function
of α-Ga2O3 is the largest, whereas that of β-Ga2O3 is the
smallest. This fact expresses the (global) oscillator-strength
sum rule which yields the plasmon frequency square and,
hence, a value ∝ V −1

0 [21]. Indeed, the spectra in the energy
range of 5–10 eV follow the volumes V0 in Table I.

C. Global excitonic spectra

Figures 9 and 10 display the excitonic spectra of the
stable β-Ga2O3 and the metastable α-Ga2O3 polymorph.
Also, for comparison spectra in independent-quasiparticle
approximation [51] at GW level (including local-field effects)
are shown in Figs. 9 and 10. In addition, as in the DFT-GGA
case, we also compare the averaged dielectric functions of
the two polymorphs under consideration. This is displayed in
Fig. 11 (again at GW and BSE levels). While the HSE+G0W0

spectra are more or less blue-shifted variations of the DFT-
GGA spectra, there is a significant redistribution of oscillator
strength from higher to lower photon energies in the BSE
spectra. Some additional features become visible for transition
energies below the fundamental gap energy. These features are
related to bound exciton states [21]. Figure 12 displays the
imaginary part of the dielectric function in the onset region
around the fundamental gap energy, i.e., the absorption edge,
in more detail.

Several interesting features can be observed in Figs. 9–12.
Two general features of the excitonic effects are obvious.
The imaginary parts near the absorption edge and in the
range of the interband transitions are increased. The same
trend is visible for the real parts as a consequence of the
oscillator-strength and screening sum rules. The inclusion of
excitonic effects also enhances the differences between the
averaged dielectric functions of both polymorphs, which are
still rather weak in the GW case (as they are in the DFT case).
This holds in particular for the lower-energy range (below
about 13 eV). Surprisingly, despite the low symmetry of both
polymorphs, the anisotropies remain rather moderate to weak.
They are just a bit more pronounced in the energy region of
the main interband transitions. Excitonic effects enhance the
anisotropies but still not in a dramatic way. Very significant
anisotropies can, however, be observed in the onset region
close to the fundamental gap energy. There, the crystal-field
splittings of the O 2p valence band states become visible
in conjunction with their orbital character (mostly px /py-like
or mostly pz-like) and different selection rules for different
light polarization. Although we have no pure px /pz states
due to the monoclinic angle different from 90◦ the character
is still mostly px /pz-like. So, there are no absolutely strict
selection rules, but at least something what one could call
dominating selection rules that give rise to a clear polarization
dependence of the lowest transitions from O 2p valence to Ga
4s conduction band states. From that point of view, one has also
to interpret the excitonic peaks visible in Fig. 12. In any case,
the visible excitonic peaks below the (direct) HSE+G0W0

quasiparticle gaps Eg = 5.04 eV (monoclinic) and Eg =
5.63 eV (rhombohedral) indicate bound electron-hole pairs.
The position of the absorption edge with excitonic effects is
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FIG. 7. Dielectric function of the (a) monoclinic, (b) rhombohedral, (c) cubic, and (d) orthorhombic Ga2O3 polymorphs at DFT level. For
the monoclinic and the orthorhombic cases, the left panels show the real part and the right panels the imaginary part with components xx (blue
dotted line), yy (red dashed line), zz (green dotted-dashed line), and (monoclinic case only) xz (black full line). For the rhombohedral and the
cubic cases, real and imaginary parts are displayed simultaneously with the components xx = yy = zz (black full line for real part, red dashed
line for imaginary part) and (rhombohedral case only) xy = yz = xz (green dotted-dashed line for real part and blue dotted line for imaginary
part).
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FIG. 8. Comparison of the isotropically averaged dielectric function [(a) real part, (b) imaginary part] at DFT level of four different Ga2O3

polymorphs: monoclinic (black full line), rhombohedral (red dashed line), cubic (green dotted-dashed line), and orthorhombic (blue dotted
line).
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FIG. 9. Dielectric function (left real part, right imaginary part) of the monoclinic β-Ga2O3 polymorph at (a) HSE+G0W0 and (b) BSE
level. The four independent components are displayed: xx (blue dotted line), yy (red dashed line), zz (green dotted-dashed line), and xz (black
full line).
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FIG. 10. Dielectric function (left panels real part, right panels imaginary part) of the rhombohedral α-Ga2O3 polymorph at (a) HSE+G0W0

and (b) BSE level. A rhombohedral representation is used with the diagonal elements xx = yy = zz (red full line) and xy = yz = xz (black
dashed line) (see Sec. V A).
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FIG. 11. Comparison of isotropically averaged dielectric function of monoclinic and rhombohedral Ga2O3 polymorphs at (a) HSE+G0W0

and (b) BSE levels: monoclinic real part (green dotted-dashed line), monoclinic imaginary part (black full line), rhombohedral real part (blue
dotted line), and rhombohedral imaginary part (red dashed line).
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FIG. 12. Imaginary part of dielectric function of (a) monoclinic and (b) rhombohedral Ga2O3 polymorphs at BSE level. The components
are xx (blue dotted line), yy (red dashed line), zz (green dotted-dashed line), and xz (black full line) in the monoclinic case and xx = yy = zz

(red full line) and xy = yz = xz (black dashed line) in the rhombohedral case. The position of the direct HSE+G0W0 quasiparticle gap at �

is indicated by a vertical arrow.

much lower in energy in the monoclinic case (at least for x

or z light polarization) compared to the rhombohedral case.
These facts explain the different edges observed in absorption
and transmittance measurements [3,14,44,52].

D. Absorption edges

Since the effective optical gap, i.e., onset of strongly
allowed optical transitions is different for different polar-
izations one has to expect that the same holds also for the
excitonic gaps. In principle, one should find different binding
energies related to different interband transitions for different
polarizations. In Fig. 12, it seems that the excitonic onsets
follow the differences in the splittings of the valence p

states. Since the time-evolution method [28] used to determine
the excitonic spectra does not give access to the excitonic
eigenvalues and eigenfunctions, we cannot really prove which
valence O 2p states are coupled to which conduction Ga 4s

states. But, we can at least analyze the lowest quasiparticle
interband transition energies on GW level. In the onset
region, only transitions from the topmost group of mostly
O 2p related valence bands into the lowest Ga 4s related
conduction band can occur and will contribute significantly
to the excitonic transitions. Some transitions are very weak
or almost forbidden, some of them are very strong and should
explain the observable peaks. It should be noted that transitions
from these states into the second-lowest conduction band at
� behave exactly complementary because of the different
nodal structure of the (still Ga 4s like) wave function enforced
by orthogonality to the lowest conduction band, resulting in
complementary spatial overlaps with the O 2p related valence
band states. Strong or weak spatial overlaps finally determine
the strengths of the interband transitions while the px , py , and
pz character of the valence band states determines the strengths
of the interband transitions for different light polarization.

In order to discuss the selection rules, the monoclinic
β-Ga2O3 is investigated in detail. Table VIII lists all transition

energies in the onset region lower than 6.5 eV at GW level
and gives the orbital character (in terms of px /py /pz) of the
corresponding O 2p states (which is important for the selection
rules for different light polarizations) along with the transition
strength and an attempt to relate this to the observed peaks of
the imaginary part of the dielectric function in the onset region.
From the interband transition energies in Table VIII and the
exciton peak positions in Fig. 12, we conclude that the exciton
binding energies of the lowest excitons (the exciton ground
state) are about 0.4 eV for the s-px and s-pz excitons but only
about 0.1 eV for the s-py excitons. One should, however, note
that the assignment in the case of the py → s transitions is
less clear from that point of view that with a very close look at
εyy there might be an almost invisible shoulder around 5.1 eV
in Fig. 12(a). If this shoulder could be assigned to the 5.6-eV
interband transition (and the 6-eV interband transition to the
excitonic peak at 5.5 eV, the 5.9-eV peak might then result from
a 6.75-eV interband transition not listed above) the exciton
binding energy could be as well about 0.5 eV for the lowest
s-py excitons. Unfortunately, the spectral resolution is not yet
good enough to finally decide which is the right interpretation.
Even the energetic distance of the first two peaks would be

TABLE VIII. Transition energies in eV at the � point at GW

level for the monoclinic polymorph of Ga2O3 along with their orbital
character and selection rules. An assignment to excitonic transition
is provided as well.

Energy Character Strength Excitonic peak

5.04 Mainly pz Strong ≈ 4.65 (εzz)
5.29 Mainly px Strong ≈ 4.90 (εxx)
5.54 Mixed px /pz Very weak ≈ 5.0–5.2 (εxx / εzz)
5.62 py Strong ≈ 5.50 (εyy)
5.69 py Very weak
5.99 py Strong ≈ 5.90 (εyy)
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the same with 0.4 eV. Only the results for the s-px and s-pz

excitons seem doubtless. Anyway, due to the still rather coarse
k mesh it should also be noted that an error bar of about
0.1 – 0.2 eV, at least on the scale of excitation energies, has to
be taken into consideration.

More precise computations of the exciton binding ener-
gies [53] are prohibited because of CPU time requirements.
Moreover, in this case also polaron effects have to be discussed,
despite the fact that their influence on the quasiparticle
transition energy and the exciton binding energy tend to
compensate each other [54]. Nevertheless, the order of magni-
tude of binding energies is confirmed within a Wannier-Mott
picture [21]. The calculated average conduction band mass in
Sec. IV C of m∗ ≈ 0.27 m0 dominates the reduced interband
mass. Together with an average static electronic dielectric
constant of ε̄∞ ≈ 3.55 (see below) an exciton binding energy
of about 0.3 eV is obtained in the range of the discussed values.

Also, in the rhombohedral case an assignment of GW

transition energies at the � point is not easy. In Fig. 12(b),
there are four different transitions at � with GW transi-
tion energies (strengths) 5.63 eV (strong), 5.75 eV (weak),
6.04 eV (weak), and 6.43 eV (strong) in the energy region
below 7 eV. If we assign the shoulder at about 5.25 eV in the
BSE spectra to the lowest transition, then we would again find
an exciton binding energy of about 0.4 eV as in the monoclinic
case (assuming it is a � exciton). The remaining peaks are hard
to assign. The structures at about 5.65, 5.75–5.85, and 6.65 eV
in the BSE spectra might result from transitions (excitons) at
k points off the BZ center where the weak transitions at �

become clearly much stronger but with increased transition
energies due to the strong dispersion of the lowest conduction
band. Which of the structures could result from the strong
transition at 6.43-eV GW transition energy at � is also not
clear.

E. Static dielectric constants

The averaged static electronic dielectric constants ε̄∞ =
1
3 Trεjj (ω = 0) of β- and α-Ga2O3 are clearly visible in
Fig. 11(b). The tensor character of static electronic dielectric
tensor ε∞

ij is indicated in the left panels of Figs. 9 and 10.
For β-Ga2O3 the off-diagonal element of the dielectric tensor
nearly vanishes for ω → 0. Since both quasiparticle effects as
well as electron-hole attraction and electron-hole exchange,
i.e., optical local-field effects, are taken into account, we
also like to compare the calculated static electronic dielectric
constants ε∞ with known experimental values. The calculated
(isotropically averaged) value of 3.55 (3.80) for β-Ga2O3

(α-Ga2O3) matches very well the range of experimental values
of 3.4–3.6 [55–57] (3.7–3.8) [58]. But not only ε̄∞ matches
quite well. For β-Ga2O3, an experimentally determined
frequency-dependent dielectric tensor in the energy range
of 0.5–8.5 eV has already been published along with our
results in the same energy range in a previous paper [59].
It should be noted by the way that these experimental results
are the first successful attempt to obtain the full dielectric
tensor at least in a limited spectral range. Previously, at the
best isotropically averaged spectra in a rather limited spectral
range could be obtained due to the lack of good single-
crystalline samples. A measurement of the full dielectric tensor

for an extended spectral range of up to 30–40 eV is still
missing at all. In addition, corresponding experiments for
α-Ga2O3 are also missing so far. The experimental results
shown in Ref. [59] turn out to match our results rather
well, confirming the high quality and predictive power of
our GW+BSE calculations for the dielectric tensor. The
published dielectric constants without excitonic effects and
G0W0 shifts in Ref. [12] significantly underestimate the values,
indicating again the need for inclusion of the many-body
effects.

VI. SUMMARY AND CONCLUSIONS

We presented a detailed study on the structural, elastic,
electronic, and optical properties of four different Ga2O3 poly-
morphs. This study represents the first high-quality prediction
of the full frequency-dependent dielectric tensor which was so
far completely unknown (α-Ga2O3) or only partially known
(β-Ga2O3) due to a lack of experiments on high-quality single
crystals. The two most important polymorphs β-Ga2O3 and
α-Ga2O3 were treated on an elaborate level using Hedin’s GW

approach for band structures and the Bethe-Salpeter equation
for optical spectra. The other two phases were treated on DFT
level only. The four polymorphs α-, β-, δ-, and ε-Ga2O3

exhibit a correlation between atomic density and energetic
stability. Within the total-energy calculations, the monoclinic
β phase is the most stable one with a relatively low stiffness.
We showed that polymorphs underlie also pressure-induced
phase transitions at zero temperature. The so far unknown full
tensors of elastic constants were predicted as well.

We could show that the electronic properties of the
polymorphs are quite similar (in particular the densities
of states) independent of the quite different space-group
symmetries on both DFT and GW level. This can be traced
back to the fact that polymorphism of Ga2O3 arises just
from different arrangements of tetrahedrally and octahedrally
coordinated Ga atoms, while the bonding of the O atoms
to the Ga neighbors is almost the same. Only details of the
electronic structure such as band gaps and precise position
and character of van Hove singularities are influenced by the
actual atomic arrangement. Rather similar direct and indirect
gaps have been derived for the monoclinic phase, whereas the
indirect gap character of the rhombohedral polymorph is found
independent of the treatment of exchange and correlation. As a
consequence of the similar bonding, the isotropically averaged
dielectric functions of the different polymorphs turned out
to be quite similar, in particular on independent-particle
DFT and independent-quasiparticle GW levels. Nevertheless,
the crystal structure determines the number of independent
components of the frequency-dependent dielectric tensor.
The inclusion of excitonic effects on BSE level gives more
pronounced differences in the region of the main absorption
peaks (up to about 13–15 eV photon energy). They determine
the fine structure of the absorption edge of a polymorph. We
provided a detailed analysis of all (also nondiagonal) elements
of the dielectric tensor. We suggested an exciton binding
energy of about 0.4 eV, which, however, varies with the light
polarization because of the most contributing dipole-allowed
interband transitions. Calculated static electronic dielectric
constants match rather well-known experimental values.
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