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It is expected that the interplay between nontrivial band topology and strong electron correlation will lead to
very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest.
Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-
Hubbard model on an AA-stacking bilayer honeycomb lattice with interlayer antiferromagnetic interaction. Our
simulation identified several different phases: a quantum spin Hall insulator (QSH), an xy-plane antiferromagnetic
Mott insulator, and an interlayer dimer-singlet insulator. Most importantly, a bona fide topological phase transition
between the QSH and the dimer-singlet insulators, purely driven by the interlayer antiferromagnetic interaction,
is found. At the transition, the spin and charge gap of the system close while the single-particle excitations
remain gapped, which means that this transition has no mean-field analog and it can be viewed as a transition
between bosonic symmetry-protected topological (SPT) states. At one special point, this transition is described
by a (2 + 1)d O(4) nonlinear sigma model with exact SO(4) symmetry and a topological term at exactly � = π .
The relevance of this work towards more general interacting SPT states is discussed.
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I. INTRODUCTION

The interplay between nontrivial band topology and strong
electron interaction is expected to lead to a plethora of new
physical phenomena in strongly correlated systems. Many
exotic phenomena of interacting topological insulators (TIs)
have been predicted/discovered, such as topological Kondo
insulators [1–3], fractionalized TIs [4,5], interaction-reduced
classification of TIs [6–16], and interaction-driven anomalous
topological order at the boundary of TIs [12,17–22]. Besides
fermionic systems, it was also proposed that bosonic systems
can also form exotic states that are similar to fermionic TIs
[23,24], which are generally called the symmetry-protected
topological (SPT) states. Unlike their fermionic counterparts,
bosonic SPT states can only exist in strongly interacting
boson systems, and the interaction must be carefully designed
to avoid the ordinary superfluid and Mott insulator phases.
These studies have tremendously broadened our understanding
of quantum disordered states of matter and revealed the
fundamental role topology plays in condensed matter systems.

Quantum phase transitions between different stable quan-
tum disordered phases is another important subject, and in gen-
eral it can be very different from the standard Ginzburg-Landau
(GL) phase transition paradigm. For example, one expects that
a phase transition between a (2 + 1)d topologically ordered
state (Z2 spin liquid [25]) and a conventionally ordered phase
(superfluid) is beyond the GL paradigm, and that the Landau
order parameter will acquire an enormous anomalous dimen-
sion. This phenomenon is confirmed by unbiased quantum
Monte Carlo simulations [26,27]. In the noninteracting limit,
the quantum critical point between two different topological
insulators is usually described by a gapless Dirac/Majorana
fermion, but the role of strong interaction at this transition has
not been fully explored, although we understand that in some
particular cases interaction can gap out this quantum critical
point and lead to a continuous curve connecting the two sides

of the phase diagram [6,7]. Quantum phase transitions between
bosonic SPT states were even less studied, and it was pointed
out that most generally two bosonic SPT states can be separated
by an intermediate phase [28,29].

With this in mind, it will be of great interest to investigate
a concrete example where in a strongly correlated fermionic
SPT setup there is a purely interaction-driven phase transition
between a topological insulator and a quantum disordered
phase. Such a bona fide interaction-driven topological phase
transition will have no mean-field (noninteracting) correspon-
dence and provide the precious example of a controlled study
of the interplay between nontrivial band topology and strong
electron interaction. And this is what we will focus on in this
paper.

Here, we provide a concrete simple interacting fermion
model that is studied by large-scale unbiased quantum Monte
Carlo (QMC) simulations. The results of this investigation
provide us with the following desired phenomenon: a bona
fide interaction-driven quantum phase transition between a
topological insulator and a strongly interacting Mott insulator
(a quantum disordered phase). We find that this quantum
critical point is fundamentally different from the TI-to-trivial
quantum phase transition in the free-fermion limit, in the
sense that the fermions never close their gap at the transition,
but emergent collective bosonic degrees of freedom become
critical. Thus we can view this transition as a transition
between a bosonic SPT state and a trivial bosonic Mott
insulator. And we demonstrate that at one special point, this
transition is described by a (2 + 1)d O(4) nonlinear sigma
model with exact SO(4) symmetry and a topological term
at exactly � = π . Moreover, we also employ the strange
correlator proposed by Ref. [30] and tested in Refs. [31–34]
to diagnose the topological nature of the interaction-driven
quantum phase transition between a topological insulator and
the strongly interacting Mott insulator.
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FIG. 1. (a) Illustration of AA-stacked honeycomb lattice and
bilayer KMH model with interlayer antiferromagnetic exchange
interaction. The four-site unit cell is presented as the shaded rectangle.
The gray and black lines indicate the nearest-neighbor hopping t on
layers 1 and 2, respectively. The spin-orbital coupling term λ, for
one spin flavor, is shown by the red lines and arrows with νij =
+1. The on-site Coulomb repulsion and interlayer AFM coupling
are represented by the shaded circle and rectangle, respectively.
(b) Illustration of the xy-AFM Mott insulator phase. (c) Illustration of
the interlayer dimer-singlet phase. Shaded ellipses are the interlayer
spin singlets.

II. MODEL AND NUMERICAL METHOD

A. AA-stacked bilayer KMH model
with interlayer AFM coupling

In this work, we employ large-scale QMC simulations to in-
vestigate the AA-stacked bilayer Kane-Mele-Hubbard (KMH)
model with interlayer antiferromagnetic (AFM) coupling; the
Hamiltonian is given by Ĥ = ĤT B + ĤU + ĤJ as

Ĥ = −t
∑

ξ〈i,j〉,α
(c†ξiαcξjα + c

†
ξjαcξiα)

+ iλ
∑

ξ〈〈i,j〉〉,αβ

vij

(
c
†
ξiασ z

αβcξjβ − c
†
ξjβσ z

βαcξiα

)

+ U

2

∑
ξi

(nξi↑ + nξi↓ − 1)2

+ J

8

∑
i

[(D1i,2i − D
†
1i,2i)

2 − (D1i,2i + D
†
1i,2i)

2], (1)

with D1i,2i = ∑
σ c

†
1iσ c2iσ . α, β denote the spin species ↑

and ↓ and ξ = 1,2 stand for the layer index in the AA-
stacked bilayer system, as shown in Fig. 1. HT B describes the
tight-binding part of the Hamiltonian, including the nearest-
neighbor hopping and the spin-orbit coupling [35,36] terms,
and the factor vij = −vji = ±1 depends on the orientation of
the two nearest-neighbor bonds that the electron traverses in

going from site j to i, as shown in Fig. 1(a). The σ z
αβ in the

spin-orbit coupling term furthermore distinguishes the ↑ and
↓ spin states with the opposite next-nearest-neighbor hopping
amplitude. Throughout this work, we take t as the unit of
energy. The second term HU describes the on-site Coulomb
repulsion between electrons, and nξi = ∑

σ nξiσ . The electron
filling is fixed at half filled, i.e., one electron per site on average.
The third term HJ stands for the interlayer antiferromagnetic
spin interaction. As explained in detail in Appendix A, it is
a faithful approximation of the full Heisenberg interaction
J

∑
i S1i · S2i .

The Kane-Mele (KM) model preserves time-reversal sym-
metry ZT

2 and its ground state is a quantum spin Hall
insulator with counterpropagating edge states [35,36]. On
the AA-stacked bilayer honeycomb lattice, the ground state
of the KM model is still a quantum spin Hall (QSH)
insulator but with two sets of counterpropagating edge modes.
As for the symmetry, the model Hamiltonian in Eq. (1)
has charge U (1) × U (1) symmetry, which corresponds to
charge conservation on each individual layer. The SU (2)
spin-rotational symmetry is broken down to U (1) by the
spin-orbit coupling term; the residual U (1) spin symmetry
corresponds to the spin rotation in the xy plane. Therefore,
most generally the total symmetry of the AA-stacked bilayer
model is U (1)spin × [U (1) × U (1)]charge � ZT

2 , which results
in a Z classification. This is because in the noninteracting
limit we can define a Chern number for spin-up and spin-down
electrons separately, and time-reversal symmetry guarantees
that these two Chern numbers must be equal. Thus eventually
the whole system is characterized by one Chern number, which
can take arbitrary integer values. When including interaction
terms, we found that at the limit of U = 0, Eq. (1) has a much
higher SO(4) symmetry, which we will analyze in detail in
Sec. III B.

With interactions, the KMH model on the monolayer
honeycomb lattice has been studied by the Hartree-Fock
mean-field theory [37], cluster (dynamic) mean-field the-
ory [38–40], as well as determinantal QMC simulations
[31,41–48]. For the bilayer model in Eq. (1), at the U = J = 0
limit, the system is a QSH insulator with spin Chern number
Cs = (C↑ − C↓)/2 = 2, where C↑ = +2 and C↓ = −2 are
the Chern numbers for spin-up and spin-down parts. In the
presence of finite interactions, i.e., the U -J phase diagram,
one can expect that in the large-U limit, the bilayer system
will be driven from the QSH state into an xy-plane AFM
ordered (xy-AFM) Mott insulator phase, through a continuous
phase transition, similar to the KMH model on a monolayer
honeycomb lattice [31,37–48], and that the phase transition
should belong to the (2 + 1)d XY universality class [43,48]. At
the large-J limit, the bilayer system should enter the interlayer
dimer-singlet phase with spin singlets formed on the interlayer
bonds due to strong antiferromagnetic coupling J . In the
J → ∞ limit, the interlayer dimer-singlet phase is a product
state of the interlayer singlets in which all the symmetries
are preserved [49]. Combining the spin-orbit coupling term
λ, on-site Coulomb repulsion U , and interlayer coupling J ,
one can expect very interesting competition occurring among
the QSH, xy-AFM, and interlayer dimer-singlet phases, and it
is the quantum phase transitions between these phases (some
of which are of exotic topological nature) that we engaged in
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great effort to unravel in this paper with unbiased large-scale
QMC simulations.

B. Projector quantum Monte Carlo method

The projector QMC (PQMC) method is the zero-
temperature version of the determinantal QMC algorithm
[50]. The PQMC method obtains the ground-state expectation
values of physical quantities by carrying out an imaginary-
time evolution of some trial wave function, which is not
orthogonal to the true many-body ground state. The ground-
state expectation value of physical observable is calculated as
follows,

〈Ô〉 = lim
�→+∞

〈ψT |e−�Ĥ/2Ôe−�Ĥ/2|ψT 〉
〈ψT |e−�Ĥ |ψT 〉 , (2)

where |ψT 〉 is the trial wave function and � is the projection
parameter. In all the simulations, to ensure that the algorithm
arrives at the truly converged ground state of finite-size
systems, we choose � = 60/t,�τ = 0.05/t , in which �τ

is the finite imaginary-time step applied in the Trotter
decomposition of partition function. During the simulations,
we adopt the Hubbard-Stratonovich (HS) transformation with
four-component Ising fields to decouple the interaction terms
[51]. Due to the fact that the two terms in the HJ interaction do
not commute, the systematic error for all physical observables
is at the order of O(�τ ) (Trotter error). During the simulation,
we make sure that the value of �τ is small enough and the
QMC sampling of physical observables is large enough that
the results are numerically exact within well-characterized
statistical errors. We have simulated different linear system
size L = 3,6,9,12 (L = 15 for strange correlator), with
N = L2 as the number of unit cells to extrapolate physical
observables to the thermodynamic limit.

To determine the phase diagram for the bilayer model in
Eq. (1), we first measure static physical quantities, such as
the expectation values of energy densities (both total and each
individual term in the Hamiltonian), double occupancy, and
spin-spin correlation function. The xy-plane AFM order is
expected to have ordering vector � = (0,0) [31,40–49]; the
transverse magnetic structure factor at the � point is measured
as

Sxy(�) = 1

4N

∑
ijγ

〈
Sx

iγ Sx
jγ + S

y

iγ S
y

jγ

〉
, (3)

where i,j = 1,2, . . . ,N run over all unit cells and γ = 1,2,3,4
stands for the four sublattices inside a unit cell. The staggered
magnetic moment mS can be evaluated as mS = √

Sxy(�)/N .
Next, to have the dynamical information of the system, such

as the excitation gaps in single- and two-particle channels, we
need to measure the imaginary-time single-particle Green’s
function,

G(k,τ ) = 1

4N

∑
ijγ σ

eik·(Ri−Rj )〈c†iγ σ (τ )cjγ σ 〉, (4)

where γ is again the sublattice index and σ is the electron
spin, the imaginary-time spin-spin correlation function at the

� point,

Sxy(�,τ ) = 1

4N

∑
ijγ

〈
Sx

iγ (τ )Sx
jγ + S

y

iγ (τ )Sy

jγ

〉
, (5)

and the imaginary-time interlayer pair-pair correlation func-
tion in the charge channel,

P (�,τ ) = 1

2N

∑
ijδ

〈�†
iδ(τ )�jδ + �

†
jδ(τ )�iδ〉, (6)

where �iδ = 1√
2
(c1,i,↑,δc2,i,↓,δ − c1,i,↓,δc2,i,↑,δ) is the inter-

layer Cooper pair operator, which is defined on the two
interlayer bonds δ = 1,2 of each unit cell i. At the τ → ∞
limit, we access the asymptotic behavior G(k,τ ) ∝ e−�sp(k)τ ,
Sxy(�,τ ) ∝ e−�Sτ , and P (�,τ ) ∝ e−�Cτ in which �sp(k) is
the single-particle excitation gap and �S , �C are the two-
particle excitation gaps in the spin and charge channels for the
interacting system [52]. In our bilayer system, the minimum
value of the single-particle gap appears either at k = K or
k = M depending on the parameters U and J , and we measure
the spin and charge gaps at the � point as it is the ordered wave
vector for the gapless Goldstone modes.

To diagnose the topological nature of the quantum phase
transition, we employ the recently developed strange correlator
method [30–34]. In the single-particle and two-particle (spin)
channels, the correlation functions are constructed as

Cσ
kAB = 〈�|c†kAσ ckBσ |�〉

〈�|�〉 , S±
kAA = 〈�|S+

kAS−
kA|�〉

〈�|�〉 , (7)

where c
†
kAσ = 1

L

∑
ξ,i eik·Rξ i c

†
ξi,A,σ and S+

kA = 1
L

∑
ξ,i eik·Rξ i

S+
ξi,A (integer i as unit cell index), with k inside the Brillouin

zone (BZ) region, A, B the sublattices in a unit cell in one layer,
and ξ the layer index, as shown in Fig. 1. The basic idea of the
strange correlator is that, on the left-hand side of the correlation
function, the wave function |�〉 is a trivial band insulator (with
spin Chern number Cs = 0); on the right-hand side of the
correlation function, the projection operator e−�Ĥ guarantees
that |�〉 = e−�Ĥ |�T 〉 is the many-body ground state wave
function of the bilayer KMH Hamiltonian at certain J and U .
If |�〉 is a topologically nontrivial QSH state, i.e., there exist
gapless edge modes at the spatial boundary of |�〉, then after a
space-time rotation, Cσ

kAB will develop a singularity at a certain
symmetric momentum point ks : Ck ∼ 1/|k − ks |α , with
α = 1 for a noninteracting system, α < 1 otherwise. Based
on the effective Lorentz invariant description of topological
insulators [53], the 2D strange correlator Cσ

kAB should behave
very similarly to the (1 + 1)d correlation functions at the
boundary, endowed with a Luttinger liquid description in
the presence of interaction. If |�〉 is on the other hand a
topologically trivial insulator, then the divergence in Cσ

kAB

is no longer present as there are no single-particle edge modes
on the boundary of |�〉. What is more, the spin strange
correlator S±

kAA also has different behaviors, depending on
whether the gapless two-particle edge modes are present or
not. For the QSH insulator, S±

�AA should possess a diverging
behavior faster than ∼ ln L (the case in noninteracting systems)
with increasing system size L, while it should saturate to
finite value (slower than ∼ ln L behavior) in a topologically
trivial insulator. Thus, one can readily detect the topological
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phase transition in the system by monitoring the behavior of
Cσ

kAB and S±
�AA. The strange correlation has been successfully

applied in the QMC investigation of the topological phase
transitions in the monolayer KMH model; readers are referred
to Ref. [31] for more details on its physical meaning and
technical implementation.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Phase diagram

The U -J phase diagram for λ = 0.2t,0.3t is shown in
Fig. 2, and this is one of the main results of the paper. QSH,
xy-AFM, and interlayer dimer-singlet phases are found from
QMC simulations. Since there is only a net shift in the phase
boundaries between the λ = 0.2t and 0.3t cases, we will focus
on the detailed results for the λ = 0.2t case in the following.
The orange dotted line in Fig. 2 denotes the J = 2U path
which is studied in Ref. [49]; we note that with more careful
finite-size scaling in our work, we found that it actually goes
through an intermediate AFM region.

Three featuring observations about this phase diagram are
in order. First of all, at small U (U < 0.5t for λ = 0.2t) there is
a direct phase transition from the QSH insulator to interlayer
dimer-singlet insulator (see details in Appendix D). Notice
that since neither the QSH nor the dimer-singlet phase has
symmetry breaking, all the symmetries (such spin-rotation,
charge-conservation, time-reversal, and lattice symmetries)
in the model Hamiltonian Eq. (1) are preserved across this
phase transition, rendering it a bona fide topological phase
transition driven purely by the interlayer antiferromagnetic
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FIG. 2. U -J phase diagram for the AA-stacked bilayer KMH
model with interlayer antiferromagnetic coupling. Shown here are the
phase diagram for λ = 0.2t and λ = 0.3t cases. Solid lines (violet,
green, and black) are the phase boundaries for the λ = 0.2t case. The
red solid dot at (Jc,U = 0) and red open dots at U = 0.25 and 0.5 and
the green line going through them highlight the interaction-driven
topological phase transition between QSH and the dimer-singlet
insulator phase. The orange dotted line highlights the J = 2U path
which is studied in Ref. [49]; it actually goes through a small AFM
region.

interaction J . This is a very unique case and very different
from the transitions in (interacting) topological insulators that
have been studied before [31,37–48,54], where the transitions
are either driven by hopping parameters at free-fermion level
[40,45,47,48,54], or after the transition the symmetry that
protects the nontrivial band topology has been destroyed by
interactions [31,37–48,54]. The nature of this exotic transition
will be further discussed in the next section.

Second, the region of the xy-AFM phase is greatly extended
by an interesting collaboration between the on-site Coulomb
repulsion U and the interlayer AFM coupling J . At J = 0,
for λ = 0.2t , the QSH to xy-AFM phase transition occurs
at U ≈ 5.6(2)t [31], but as J increases, the phase boundary
between QSH and xy-AFM moves towards smaller U , which
means J and U both prefer the AFM state, until J dominates
over U , after which the dimer-singlet phase takes over. The
same phenomenon is also observed for the λ = 0.3t case.

Third, for the direct phase transition from the QSH phase
to the interlayer dimer-singlet phase, we have observed
signatures of continuous phase transitions. This can be seen
from the interlayer spin-spin correlation function per bond,
shown in Fig. 3(a) for an L = 6 system with λ = 0.2t (data
with larger system sizes are shown in Appendix D). For
various U values, as a function of J , the spin-spin correlation
function changes from 0 to −3/4, with the latter signifying the
formation of spin-singlet on every interlayer bond. Moreover,
according to the Hellmann-Feynman theorem, the spin-spin
correlation function per bond is the first-order derivative of
the total energy density over J . Combining the results of
〈S1i · S2i〉 presented in Fig. 3(a) and in Appendix D, the
continuous changing of the first-order derivative of the total
energy density, with increasing J , suggests that the topological
phase transition from the QSH to the dimer-singlet insulator
phase is continuous (at least for U = 0).

To further elaborate upon this point, Figs. 3(b) and 3(c)
show the first-order derivatives of expectation values of 〈HJ 〉
per bond and 〈HU 〉 per site, over the parameter J . The peaks
in Fig. 3(b) indicate the QSH to dimer-singlet (U = 0) and
xy-AFM to dimer-singlet (when U � 2t) phase transitions.
The peaks in Fig. 3(c) indicate not only the same transitions
in Fig. 3(b) at large J and small U , but more interestingly,
also the QSH to xy-AFM phase transitions at small J and
large U (for U � 3t), as there are two peaks in the curves
for U = 3t,4t,5t . The finite-size effects in the energy density
derivatives are small; we only observe a slight shift of
the phase boundaries for L = 9,12 systems, compared with
those for the L = 6 system shown here. In the next section,
we will present the finite-size scaling of the QMC results of
the magnetic order parameter as well as the single-particle and
spin excitation gaps across the topological phase transition
between QSH and dimer-singlet. As we will see, the results
hence obtained are consistent with those in Fig. 2 and Fig. 3
in this section.

B. Topological phase transition

1. Excitation gaps

As mentioned in the preceding section (Sec. III A),
one of the most exciting features in the phase diagram
(Fig. 2) is the exotic topological phase transition purely
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FIG. 3. (a) The interlayer spin-spin correlation function for the
L = 6,λ = 0.2t system with various U values, as a function of
J . The continuous variation of this correlation function indicates
that the topological phase transition from QSH to dimer-singlet is
a continuous one. At large J , the correlation saturates at −3/4
which signifies the formation of interlayer dimer singlets. (b)
First-order derivative of 〈HJ 〉 per bond over J for L = 6,λ = 0.2t .
The peak in every curve explicitly indicates phase transition from
QSH insulator (or xy-AFM) phase to interlayer dimer-singlet phase.
(c) First-order derivative of 〈HU 〉 per site over J . The peaks in
these curves indicate all three possible phase transitions: QSH
to dimer-singlet, QSH to xy-AFM, and xy-AFM to dimer-singlet
transitions. For U < 2t , the peak in d〈HU 〉/dJ corresponds to the
QSH to dimer-singlet transition; for U > 3t , the two independent
peaks as a function of J correspond to the QSH to xy-AFM
transition at small J and xy-AFM to dimer-singlet transition at
large J .

driven by the interlayer antiferromagnetic interaction J ,
between the QSH and dimer-singlet phases.

In a free-fermion system, topological phase transitions
between SPT states are driven by tight-binding parameters.
The single-particle excitation gap will close to zero and reopen
continuously at the transition, as long as the symmetries
protecting the topologically nontrivial phase are still preserved.
However, the topological phase transitions in interacting
systems seem to be much more complicated. Of course, they
can still be driven by some tight-binding hopping parameter
in the model Hamiltonian, such as the third-nearest-neighbor
hopping [40,45,47,48], dimerized nearest-neighbor hopping
[46–48], Rashba spin-orbit coupling [54], and Kekulé distor-
tion [55] in the monolayer KMH model. In these cases, the
single-particle gap closes and reopens at the topological phase
transition, just as in their noninteracting counterparts. But,
they can furthermore be driven purely by interactions, such
as on-site Coulomb repulsion in the monolayer KMH model
[31,37,38,41–44,48], interlayer AFM exchange coupling in
the AA-stacked bilayer KMH model [49], and the more
complicated form of interaction in the interacting Bernevig-
Hughes-Zhang model [55].

For interaction-driven topological phase transitions, the on-
site Coulomb repulsion in the monolayer KMH model drives
the QSH phase into an antiferromagnetically ordered phase
with broken time-reversal and spin-rotational symmetries.
Precisely speaking, this is still not the topological phase
transition we are after in this paper: what we found here
is a purely interaction-driven topological phase transition
without any symmetry breaking on either side of the transition.
Examples of this type of phase transition have been discussed
in 1-dimensional [56] and 2-dimensional [49] interacting
systems. In Ref. [49], the single-particle gap remains gapped at
the transition and it is the spin excitation gap and Cooper pair
gap that close and reopen. This implies that in the low-energy
limit such topological phase transition only involves bosonic
degrees of freedom, allowing the fermionic excitations to be
integrated out from the field theory [49].

Following Ref. [49], we perform a detailed study on the
topological phase transition between QSH and dimer-singlet
phases in the phase diagram of Fig. 2. To characterize this
phase transition, we measured the single-particle gap, two-
particle spin and charge gaps, as well as the strange correlator
[30–34] in the QMC simulations.

The results of single-particle and spin gaps with increasing
J are shown in Fig. 4 for λ = 0.2t,U = 0 in L = 3,6,9,12
bilayer systems. The raw data of the single-particle Green’s
function and dynamic spin-spin correlation function are shown
in Appendix B; the data are of very good quality, upon
which we extracted the excitation gaps reliably. At U = 0,
the topological phase transition point is at Jc � 3.7t–3.8t

in the phase diagram in Fig. 2. As shown in Fig. 4(a), the
single-particle gap only exhibits a very gentle dip around
the topological phase transition point, which suggests that the
single-particle gap of the system remains open as a function
of J . In contrast, we observe in Fig. 4(b) that the spin
gap decreases rapidly in the vicinity of Jc as a function of
system size L. The inset of Fig. 4(b) shows the gap values

115150-5



HE, WU, YOU, XU, MENG, AND LU PHYSICAL REVIEW B 93, 115150 (2016)

FIG. 4. (a) Single-particle gap �sp(K) of λ = 0.2t,U = 0 as a
function of J . The inset shows the �sp(K) in J ∈ [3.4t,3.8t] region.
We have checked that K point is indeed the minimum of single-
particle gap in the whole BZ. As a function of J , the single-particle
gap only shows a gentle dip near the topological phase transition.
(b) Spin gap �S of λ = 0.2t,U = 0 with increasing J . The inset is
the spin gaps in the J ∈ [3.4t,3.8t] region. The spin gap drops very
fast and closes at the topological phase transition point Jc = 3.73(1)t .

in the region J � 3.4t–3.8t . Within an even smaller region
of J ∈ [3.7t,3.8t], we extrapolate the spin gap values for
L = 3,6,9,12 systems in 1/L to estimate the spin gap in the
thermodynamic limit, which is shown in Fig. 5. The main panel
and inset of Fig. 5 deliver a clear message that the spin gap
closing point is around Jc = 3.73(1)t . Furthermore, at U = 0
as a function of J , we do not find a stepping of xy-AFM order
by finite-size extrapolation of the transverse magnetic structure
factor (see details in Appendix D). At J = 3.8t , the spin gap
values for the L = 9 system and L = 12 are almost the same,
indicating that the thermodynamic limit is already reached
and the spin excitations are well gapped here (spin-spin
correlation in real space is exponentially short-ranged). After
the topological phase transition, the bilayer system enters the
interlayer dimer insulator phase, which is schematically shown
in Fig. 1(c).

Combining the results for single-particle and spin gaps, we
find that the topological phase transition driven by interlayer
AFM coupling in our bilayer system is fundamentally different
from that controlled by the hopping parameters, with and
without interactions [31,37–48,54].

FIG. 5. Spin gap in the J ∈ [3.7t,3.8t] region for λ = 0.2t,U =
0 with L = 3,6,9,12 and the extrapolation by third-order polynomial.
The inset shows the extrapolated spin gap as a function of J .

Also, at U = 0, we have observed that the charge gap �C

and spin gap �S are numerically identical (with difference only
up to 0.001t). There is actually a deep theoretical reason for the
equality between these two-particle gaps: it is due to an exact
SO(4) symmetry at U = 0 (see Appendix C), which rotates
the xy-AFM (spin) fluctuation N i = 1

2 (−1)i+ξ−1c
†
ξiσcξi and

the pairing (charge) fluctuation �i = c1i iσ
yc2i like an O(4)

vector:

ni = (
Nx

i , Im �i, Re �i,N
y

i

)
. (8)

Therefore both the spin and the charge excitation gaps close
identically at the transition point. To better understand the
SO(4) symmetry, we may define two fermion doublets fiσ

(σ = ↑,↓):

fi↑ = (c1i↑$ − 1)ic†2i↑), fi↓ =
(

(−1)ic1i↓
c
†
2i↓

)
. (9)

Then the O(4) vector can be written as

ni = 1

2
f

†
i↑(τ 0,−iτ 1,−iτ 2,−iτ 3)fi↓ + H.c., (10)

where τ 0,1,2,3 are the Pauli matrices acting on the f -fermion
doublets. The SO(4) group is naturally factorized to SU (2)↑ ×
SU (2)↓ as right and left isoclinic rotations, under which the
fermion transforms as f

†
iσ �→ f

†
iσ Uσ with Uσ ∈ SU (2)σ for

both σ = ↑,↓. The model Hamiltonian in Eq. (1) at U = 0
can be written in terms of the SU (2)↑ × SU (2)↓ singlets as

Ĥ =
∑
i,j,σ

χσ (f †
iσ tij fjσ + H.c.) − J

4

∑
i

(P̂ †
i P̂i + P̂i P̂

†
i ), (11)

with

P̂i = 1

2
(−1)i

∑
σ

f
†
iσ iτ 2(f †

iσ )T, (12)

where we have χσ = (−1)σ , and tij = t for hoppings on the
nearest-neighbor bonds and tij = iλ for spin-orbit coupling
on the next-nearest-neighbor bonds. Under arbitrary SU (2)
rotation of the f

†
iσ operator as f

†
iσ �→ f

†
iσUσ , the P̂i operator
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in Eq. (12) is invariant since we have f
†
iσ iτ 2(f †

iσ )T �→
f

†
iσ Uσ iτ 2UT

σ (f †
iσ )T, and the equality Uσ iτ 2UT

σ = iτ 2 for
2 × 2 SU (2) matrix Uσ . Besides, the hopping term f

†
iσ tij fjσ

is explicitly invariant under the SU (2)σ rotation of Uσ .
Combining them, the Hamiltonian in Eq. (12) has independent
SU (2)↑ and SU (2)↓ symmetries for spin up and down
channels, respectively. Thus, the SO(4) � SU (2)↑ × SU (2)↓
symmetry for the bilayer model in Eq. (1) under the U = 0
condition, which can be expressed in Eq. (11), is explicit.

Physically, the SO(4) symmetry rotates the four compo-
nents of ni defined in Eq. (8) to one another. As a result, the
xy-AFM order should be exactly degenerate with the interlayer
spin-singlet s-wave superconducting order under the U = 0
condition due to the SO(4) symmetry, which also indicates
the identical excitation gaps corresponding to these two orders,
i.e., spin gap and charge gap.

2. Theoretical understanding

In our phase diagram, the fermionic single-particle gap
never closes with finite λ, while the two-particle, collective,
bosonic modes (spin and charge gaps) both close at the
QSH-to-dimer-singlet phase transition; this means that at low
energy this model can be well approximated by a bosonic
model. Indeed, Ref. [57] demonstrated that many bosonic
SPT states can be constructed from fermionic topological
insulators/superconductors by confining the fermionic degrees
of freedom. In our case, we propose that the bosonic sector of
our phase diagram, at U = 0, can be described by the following
nonlinear sigma model (NLSM) field theory [49]:

S =
∫

d2xdτ
1

g
(∂μn)2 + i�

�3
εabcdn

a∂xn
b∂yn

c∂τn
d, (13)

where �3 = 2π2 is the volume of a three-dimensional sphere
with unit radius. We will focus on the phase with large g,
namely the vector n is disordered. Equation (13) is exactly
the same field theory introduced by Refs. [58,59] to describe
2d bosonic SPT states, and the physical meaning of the four-
component vector field n was given in Eq. (8). As we show
explicitly in Appendix C, the model Eq. (1) at U = 0 has
exactly SO(4) symmetry; thus we do not need to turn on any
anisotropic term to Eq. (13). When we move away from the
point U = 0, an anisotropy needs to be turned on to split the
degeneracy between (n1,n4) and (n2,n3).

The phase diagram and renormalization group flow of the
(1 + 1)d analog of Eq. (13) were calculated explicitly in
Refs. [60–62], and it was demonstrated that the entire phase
0 � � < π is controlled by the trivial fixed point � = 0,
while the entire phase π < � � 2π will flow to the fixed
point � = 2π . The phase diagram of Eq. (13) was studied
in Ref. [63], and again in the disordered phases (phases with
large g) � = π is the quantum phase transition between the
two phases with 0 � � < π and π < � � 2π ; the stable fixed
point � = 2π describes a bosonic SPT state in (2 + 1)d [59].

The physical meaning of the fixed point � = 2π becomes
explicit when we create a vortex of �, i.e., the vortex of
(n2,n3); then this vortex will acquire spin-1 due to the � term at
� = 2π , which is consistent with two copies of quantum spin
Hall insulator with Sz conservation. Also, at the fixed point
� = 2π , the boundary of Eq. (13) is a (1 + 1)d O(4) NLSM

with a Wess-Zumino-Witten term at level 1 [59,63], whose
SO(4) symmetry factorizes into SU (2)L × SU (2)R [SU (2)
symmetries for left and right moving modes respectively],
where SU (2)L and SU (2)R precisely correspond to SU (2)↑
and SU (2)↓ introduced in the previous subsection. Thus the
field theory Eq. (13) does match with the all the desired physics
of our lattice model. In a later paper by some of us [64], we
demonstrate that the boundary state of our lattice model will
be driven into a purely bosonic conformal field theory, in the
sense that all the fermionic modes are gapped by interaction,
but bosonic modes are gapless. And the remaining gapless
bosonic modes at the boundary are precisely described by the
boundary states of Eq. (13).

In Eq. (13) � = π is the quantum phase transition between
the SPT and trivial phases, and in our phase diagram
� = π corresponds to the direct QSH-to-dimer-singlet phase
transition. Thus our lattice model actually provides a way to
simulate the topological field theory Eq. (13) in QMC without
the sign problem.

3. Strange correlator

Let us now turn to understanding the topological phase tran-
sition from QSH to dimer-singlet phases from the perspective
of edge states. At U = 0, in the QSH phase with J < Jc, there
exist two pairs of gapless edge modes on the boundary of
the bilayer KMH system, i.e., the spin Chern number Cs = 2.
When J > Jc, the system is the dimer-singlet state; it is a
topologically trivial product state hence the edge states are no
longer present; i.e., spin Chern number Cs = 0. Therefore, the
change of the topological nature from QSH to dimer-singlet
can be seen from the presence/absence of the gapless edge
states.

In the QMC simulations, one can explicitly probe the spatial
edge by applying the open boundary condition (OBC), but in
interacting systems, OBC usually has very strong finite-size
dependence. Moreover, to be able to see the edge mode,
one further needs to analytically continue the imaginary-time
correlation functions to have the spectra in real frequency,
but it is well known that analytical continuation usually
generates ambiguous results to the fine features of the spectra.
Hence, to avoid such difficulties, recently there has been
a new diagnosis dubbed the strange correlator, which has
been proposed/tested successfully in probing the edge states
from static, bulk wave functions with the periodic boundary
condition [30–34].

As explained in the Sec. II B, whether the gapless edge
modes are present in the bilayer system or not can be signified
by the divergence of the single-particle and spin strange
correlator, which are shown in Fig. 6 for λ = 0.2t,U = 0.
From the single-particle strange correlator results in Fig. 6(a),
for J = 3t (J < Jc), |C↑

kAB | of the bilayer KHM mode is
diverging at the M point; correspondingly, 1/|C↑

kAB | vanishes
in a power law (the exponent α is almost 1) to zero. The
data point of 1/|C↑

kAB | exactly at k = M is a finite-size effect
due to the implementation of the strange correlator in QMC
and has been explained thoroughly in Ref. [31]. But when
J = 4t (J > Jc), the divergence of C

↑
kAB is removed; hence

the 1/|C↑
kAB | is no longer vanishing at the M point, resembling
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FIG. 6. (a) The inverse amplitude of single-particle strange
correlator 1/|C↑

kAB | along the high-symmetry path for various J =
3.0t,4.0t . (b) The spin strange correlator S±

kAA at various J values as
a function of linear system size L.

the single-particle edge modes in QSH being gapped out due
to the interlayer antiferromagnetic interaction J . As for the
spin strange correlator shown in Fig. 6(b), S±

kAA diverges with
increasing L at J < Jc, which is faster than the ln L behavior
at the noninteracting limit J = 0. These results indicate the
existence of gapless, spin (bosonic) edge modes [64]. On the
contrary, S±

kAA simply saturate to finite values when J > Jc,
suggesting the absence of gapless edge modes. Combining
the results of the strange correlator in both single-particle
and two-particle channels, the QSH phase (J < Jc) in the
bilayer model has gapless edge modes (bosonic), while they
are absent in the dimer-singlet insulator phase, highlighting
the topological phase transition.

C. x y-AFM order

The xy-AFM order in the phase diagram Fig. 2 corresponds
to the ordered phase g < gc in Eq. (13), with an extra
anisotropy term that favors (n1,n2) over (n3,n4). In the phase
diagram of Fig. 2, one finds that the region of the xy-AFM
phase is greatly extended by an interesting collaboration
between the on-site Coulomb repulsion U and the interlayer
AFM coupling J . Intuitively, the U term favors the xy-AFM
state, while the J term favors the dimer-singlet state. With
increasing U , the QSH to xy-AFM and xy-AFM to dimer-

FIG. 7. (a) Finite-size extrapolation of the transverse magnetic
structure factor for L = 3,6,9,12 systems; the fits are third-order
polynomial in 1/L. The parameters are λ = 0.2t,U = 2t , and J ∈
[2.0t,2.7t]. Inset shows the extrapolated staggered magnetic moment
mS as a function of J . (b) The spin gap for L = 3,6,9,12 systems
and its extrapolated thermodynamic limit (TDL) values for the same
parameter set.

singlet phase transition points all move towards smaller J . This
can be understood as follows: the xy-AFM phase is triggered
by the intralayer antiferromagnetic coupling Jintra ∝ t2/U , the
dimer-singlet phase is triggered by the interlayer J , their phase
transition is determined by the ratio J/Jintra, and since we get a
smaller Jintra for larger U , the critical J for the phase transition
to dimer-singlet is therefore reduced.

Let us be more quantitative about the phase boundary. For
the monolayer KMH model with λ = 0.2t , the system enters
the xy-AFM phase at Uc = 5.6(2)t [31]. In the presence of
interlayer J , QMC results reveal that the xy-AFM phase can be
well established even at U ∼ 2t . As shown in Fig. 7(a), for the
magnetic structure factor for L = 3,6,9,12 systems and their
extrapolation to the thermodynamic limit in J ∈ [2.0t,2.7t],
the extrapolated Sxy(�)/N takes nonzero values for J =
2.3t,2.4t,2.5t [see the inset of Fig. 7(a)]. To further confirm
the long-range magnetic order, we have also measured the spin
gap and the results are shown in Fig. 7(b). The extrapolated
spin gaps at J = 2.3t,2.4t,2.5t are zero and correspond to
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FIG. 8. (a) Finite-size extrapolation of the transverse magnetic
structure factor for L = 3,6,9,12 systems; the fits are third-order
polynomial in 1/L. The parameter sets are λ = 0.2t,U = 4t , and J ∈
[0.6t,2.1t]. Inset shows the extrapolated staggered magnetic moment
mS as a function of J . (b) The spin gap for L = 3,6,9,12 systems
and its extrapolated thermodynamic limit (TDL) values for the same
parameter set.

the Goldstone mode associated with the xy-AFM long-range
order. Combining the data in Figs. 7(a) and 7(b), it is
very convincing that the long-range xy-plane magnetic order
already appears at U ∼ 2t , almost 3 times smaller than that of
the J = 0 case.

When the on-site Coulomb repulsion is further increased
to U = 4t , at λ = 0.2t and J ∈ [0.6t,2.1t], there are two
phase transitions (QSH to xy-AFM and xy-AFM to dimer-
singlet) as J increases. These can be detected by measuring
the magnetic structure factor and the spin gap as well;
the results are shown in Fig. 8. Figure 8(a) shows that
the system is in the xy-AFM phase in J ∈ [1.0t,1.7t] by
finite-size extrapolation. The spin gap result in Fig. 8(b) is
quite consistent with it, as the spin excitations are gapless in
the thermodynamic limit in J ∈ [1.0t,1.7t]. When J � 1.0t ,
the system is inside the QSH insulator where the spin excita-
tions are gapped, and when J � 1.7t , the system is inside the
dimer-singlet phase where the spin excitations are gapped as
well.

IV. SUMMARY AND OUTLOOK

In this work, we have found a bona fide interaction-driven
quantum phase transition between a topological insulator and
a strongly interacting Mott insulator (dimer-singlet). This
quantum critical point is fundamentally different from the
TI-to-trivial quantum phase transition in the noninteracting
limit, in the sense that the fermions never close their gap at
the transition; instead, emergent collective bosonic degrees of
freedom become critical. We also employ the strange correlator
proposed/tested in Ref. [30–34] to diagnose the topological
nature of the quantum phase transitions.

In principle the exotic topological phase transition that we
found in this paper can be generalized to all higher dimensions.
What we need to find is a higher-dimensional fermionic
topological insulator/superconductor that can be mapped to
a bosonic SPT state after confining the fermionic degrees of
freedom; then in principle the similar type of SPT-trivial phase
transition with gapless boson modes but no gapless fermion
mode can be found in these cases. A construction of these
models in higher dimensions was discussed in Ref. [57].

Although we have identified the field theory that describes
this interaction-driven direct TI-to-trivial quantum phase
transition in Eq. (13), we do not yet have a controlled analytical
calculation for the universality class of this transition. It seems
the ordinary calculation techniques such as 1/N or ε expansion
both fail here, because Eq. (13) is defined solely for the
(2 + 1)d and O(4) vector. How we should compare the critical
scaling behavior of the spin gap �S measured in Fig. 5 to
theoretical calculations based on Eq. (13) is an interesting
open question, which we will leave to future study.
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APPENDIX A: APPROXIMATE
HEISENBERG INTERACTION

In Sec. II A, we mention that the interlayer antiferromag-
netic interaction in our Hamiltonian is a faithful approximation
of the full antiferromagnetic Heisenberg interaction. Here we
elaborate more upon this point.
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The interlayer interaction term HJ in Eq. (1) can be written
as summation of the following term on all inter-layer bonds,

Q̂i = 1
8 [(D1i,2i − D

†
1i,2i)

2 − (D1i,2i + D
†
1i,2i)

2]. (A1)

There is an operator identity relating Q̂i to full Heisenberg
exchange coupling [51]; it reads

S1i · S2i = Q̂i − 1
4 [(n̂1,i − 1)(n̂2,i − 1) − 1], (A2)

so the difference between Q̂i and S1i · S2i is at the part
[(n̂1,i − 1)(n̂2,i − 1) − 1] (where indexes 1,2 stand for layers
and integer i for lattice site), but since our system is half filled,
the expectation value of 〈n̂1,i〉 = 〈n̂2,i〉 = 1. That is, the charge
fluctuations are small. This term can be safely considered as a
constant.

Moreover, it is easy to see that S1i · S2i and Q̂i share the
same eigenstates and their eigenvalues are different only up to
a 1/4 shift. The eigenstates for S1i · S2i and Q̂i are spin singlet
and threefold degenerate spin triplet states,

|ψ0,+0〉 = 1√
2

(|↑〉1|↓〉2 − |↓〉1|↑〉2),

|ψ1,+1〉 = (|↑〉1|↑〉2),

|ψ1,+0〉 = 1√
2

(|↑〉1|↓〉2 + |↓〉1|↑〉2),

|ψ1,−1〉 = (|↓〉1|↓〉2). (A3)

For S1i · S2i , it is well known that

S1i · S2i |ψ0,0〉 = − 3
4 |ψ0,0〉,

S1i · S2i |ψ1,m〉 = + 1
4 |ψ1,m〉, m = 0,±1. (A4)

For the Q̂i interaction, it is simple to show that

Q̂i |ψ0,0〉 = −1 · |ψ0,0〉,
Q̂i |ψ1,m〉 = +0 · |ψ1,m〉, m = 0,±1. (A5)

In terms of implementation in the PQMC simulations, for
the Q̂i term, we can directly apply the following Hubbard-
Stratonovich transformation to transform the Q̂i term into the
free-fermion system coupled to 4-component Ising fields,

exp

[
−�τ

J

8
(D1i,2i − D

†
1i,2i)

2

]

= 1

4

∑
l=±1,±2

γ (l)eiξJ η(l)(D1,2−D
†
1,2) + O[(�τ )4],

exp

[
+ �τ

J

8
(D1i,2i + D

†
1i,2i)

2

]

= 1

4

∑
l=±1,±2

γ (l)eξJ η(l)(D1,2+D
†
1,2) + O[(�τ )4], (A6)

with ξJ = √
�τJ/8. For the full S1i · S2i interaction term, we

need to rewrite it into a summation of the Q̂i interaction term,
the on-site attractive interaction [the second term in Eq. (A7)],
and the interlayer density-density attractive interaction
[the third term Eq. (A7)] as follows,

S1i · S2i = Q̂i − 1
4 [(n̂1,i − 1)2 + (n̂2,i − 1)2]

− 1
8 (n̂1,i + n̂2,i − 2)2. (A7)

The problem here is that with J > 0 (the antiferromagnetic
interaction), the simultaneous presence of all these three terms
will generate a minus sign problem to the QMC simulation
under U > 0 condition as the model in Eq. (1), which
effectively means that there is no way to perform QMC
simulation with the full Heisenberg interaction term for large
systems. Although the QMC simulations applying the full
J term as Eq. (A7) for the bilayer model under the U = 0
condition is free from the sign problem, only keeping the Q̂i

in the S1i · S2i interaction during the QMC simulations is still
a good approximation, since the single-particle gap is always
finite with U = 0 and arbitrary J parameter.

APPENDIX B: RAW DATA FOR DYNAMIC
CORRELATION FUNCTIONS

In Sec. III B, we present the single-particle as well as
the spin excitation gaps at the topological phase transition
between QSH and dimer-singlet phases. Here we show some
raw data for imaginary-time single-particle Green’s function
and spin-spin correlation function, to provide the evidence that
the extrapolated excitation gaps are in good numerical quality.

Figures 9 and 10 are the raw data of the single-particle
Green’s function G(K,τ ) and the dynamic spin-spin corre-
lation function Sxy(�,τ ), with parameter set λ = 0.2t,U =
0,J = 3.73t . According to Fig. 4, this is exactly at J = Jc. In
Fig. 9(a), we can observe the single-particle gap at the K point
decaying very fast in imaginary time τ . In Fig. 9(b), with a
semilogarithmic scale, we can see the size of the single-particle
gap almost converging to its thermodynamic limit value for
L = 9,12 systems. Such fast decay and quick convergence
with finite system size actually means the single-particle gap
is indeed finite and large at the topological phase transition. In
fact it is about 0.7t at the transition point.

On the other hand, we can observe that the raw data for
the dynamic spin-spin correlation function in Fig. 10(a) decay
slower with τ . And in Fig. 10(b) with a semilogarithmic scale,
Sxy(�,τ ) shows very good straight lines in imaginary time
τ , and we can hence extract the spin gap value with very
high accuracy. In fact, the 1/L finite-size scaling of the spin

FIG. 9. Single-particle Green’s function for λ = 0.2t,U = 0,

J = 3.73t with L = 3,6,9,12 at K point in (a) linear scale and (b) in
semilogarithmic scale.
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FIG. 10. Dynamic spin-spin correlation function for λ = 0.2t,

U = 0,J = 3.73t with L = 3,6,9,12 at � point in (a) linear scale
and (b) in semilogarithmic scale.

gap at J = 3.73t gives rise to a vanishing spin gap in the
thermodynamic limit.

APPENDIX C: THE SO(4) SYMMETRY

As mentioned in Sec. II A, the bilayer KMH model given by
Eq. (1) has the U (1)spin × [U (1) × U (1)]charge � ZT

2 symmetry
in general. However when the model parameters are tuned
to certain special combinations, the model can have larger
symmetries. In this Appendix, we will focus on the various
unitary symmetries of the model. The antiunitary time-reversal
symmetry ZT

2 is always presented and will be omitted in the
following discussion.

To understand the unitary symmetries systematically, let
us first introduce three sets of competing orders (in terms of
fermion bilinear operators):

SDW: N i = (−1)ξ+ic
†
ξiσcξi,

SC: �i = c1i iσ yc2i ,

exciton: Di = (−1)ic†1ic2i ,

(C1)

where cξi = (cξi↑,cξi↓)ᵀ is the fermion operator on site i

of the ξ layer. (−1)ξ and (−1)i respectively denote the
staggered sign factors between the layers and between the
sublattices. These competing orders anticommute with each
other, and can be organized into an O(7) vector: Qi =
(Nx

i ,N
y

i ,Nz
i , Re �i, Im �i, Re Di, Im Di). Then one can in-

troduce the SO(7) group on each site i that rotates the vector
Qi . The generators of the SO(7) group are given by the
following commutators (for a < b and a,b = 1, . . . ,7):

�ab
i = 1

2i

[
Qa

i ,Q
b
i

]
. (C2)

The fermion operator transforms under the SO(7) rotation
(parametrized by θab ∈ R) as

cξiσ → exp
(
iθab�

ab
i

)
cξiσ exp

( − iθab�
ab
i

)
. (C3)

The model Hamiltonian in Eq. (1) cannot achieve this SO(7)
symmetry, but its achievable unitary symmetries are all
subgroups of this SO(7). Different choices of the model
parameters break the SO(7) symmetry differently.

TABLE I. Linearly independent coefficients in Cab. For example,
in row Nx , column ReD, the numbers J − 2U and λ mean that
the commutation between H and 1

2i
[Nx,ReD] contains an operator

with coefficient J − 2U and another operator with coefficient λ. The
details of the form of the operators are not shown.

SDW SC Exciton

Nx Ny Nz Re� Im� ReD ImD

SDW Nx 0 λ U U J − 2U , λ J − 2U , λ

Ny λ U U J − 2U , λ J − 2U , λ

Nz U , λ U , λ J − 2U J − 2U

SC Re � 0 J , λ J , λ

Im � J , λ J , λ

Exc. Re D 0
Im D

To see how the SO(7) symmetry is broken explicitly by
the Hamiltonian, we can calculate the commutator of the
Hamiltonian H with the global SO(7) generators �ab ≡∑

i �
ab
i :

Cab = i[H,�ab]. (C4)

Cab = 0 means that the Hamiltonian has the symmetry that
rotates Qa and Qb. In general, Cab is a linear combination
of operators with the model parameters t , λ, U , and J as
coefficients:

Cab = tCab
t + λCab

λ + UCab
U + JCab

J . (C5)

Cab
t , Cab

λ , Cab
U , and Cab

J are complicated operators whose
detailed expressions are not of much interest. We only need
to extract the coefficients of linearly independent operators,
which are concluded in Table I.

Most generally, only 3 (out of 21) SO(7) generators �12,
�45, �67 commute with the Hamiltonian, as C12 = C45 =
C67 = 0. They generate the U (1)spin × [U (1) × U (1)]charge

symmetry group. However, when U = 0, we have C14 =
C15 = C24 = C25 = 0 in addition, which enlarges the sym-
metry group to SO(4) × U (1). The SO(4) symmetry rotates
the xy-SDW order and the SC pairing order as an O(4)
vector (Nx,Ny, Re �, Im �), which involves particle-hole
transformations. The U (1) symmetry rotates the exciton order
(Re D, Im D) and corresponds to the conservation of the
charge difference between the layers. When J = 2U �= 0,
we have C36 = C37 = 0, which enlarges the symmetry group
to SU (2) × U (1)spin × U (1)charge as mentioned in Ref. [49].
When the interaction is completely turned off as U = J = 0,
the model has SO(4) × SO(3) symmetry. On the other hand,
in the absence of the spin-orbital coupling, i.e., λ = 0, the
model has even richer symmetry structures, as the spin
SU (2) symmetry is restored. Under generic interaction, the
symmetry group is SU (2)spin × [U (1) × U (1)]charge, which
can be enlarged to SO(5) × U (1) at U = 0, or another
SO(5) × U (1) at J = 2U , or SO(4) × SU (2) at J = 0.
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FIG. 11. Extrapolation of structure factor Sxy(�)/N of xy-AFM order over 1/L for (a) U = 0, (b) U = 0.25t , (c) U = 0.50t , and
(d) U = 1.00t over inverse system size 1/L, at λ = 0.2t . The data points with error bars in the insets are the extrapolated values in the
thermodynamic limit.

APPENDIX D: THE TOPOLOGICAL PHASE
TRANSITIONS AT SMALL-U REGION

In Sec. III, we present/discuss in detail the results about
the J -driven topological phase transition without sponta-
neous symmetry breaking, including the energy derivatives,
excitation gaps, strange correlator, and quantum field the-
ory correspondence. In this part, we show more numerical
data about the topological phase transition at the small-U
region.

As we have mentioned, the xy-AFM order is absent around
the topological phase transition at the small-U region. In
Fig. 11, the extrapolation of structure factors of xy-AFM
order over 1/L for U = 0,0.25t,0.50t,1.0t is shown. From the
results in Fig. 11, the xy-AFM order is explicitly absent for
U = 0 and U = 0.25t, corresponding to which the topological
phase transition points are Jc/t = 3.73t and Jc/t = 3.54t .
For U = 0.5t , only a single point of J/t = 3.37 has nonzero
xy-AFM order applying the step size �J = 0.01t during
QMC simulations. Considering the numerical error existing
in QMC simulations, it is reasonable to terminate the xy-AFM
ordered phase at U = 0.5t in the phase diagram presented in
Fig. 2. For U = 1.0t , the extrapolated xy-AFM order [inset of
Fig. 11(d)] is nonzero in the 3.00 � J/t � 3.07 region, which
explicitly demonstrates the stepping in of the xy-AFM ordered
phase between the QSH insulator and interlayer dimer-singlet
insulator. Based on the results in Figs. 11(a) and 11(b), the

topological phase transition without spontaneous symmetry
breaking is well established for the U = 0 and U = 0.25t

cases, i.e., finite U .
Another question is whether the topological phase transition

at small U is of first order or continuous. Due to the fact
that there is no nonzero local order parameter across the
phase transition, to solve this problem thoroughly is not easy.

FIG. 12. The interlayer spin-spin correlation functions around the
topological phase transitions for U = 0 with λ = 0.2t .
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However, to resolve this problem as best as we can, we
have measured the interlayer spin-spin correlation function
〈S1i · S2i〉 for 5 different system sizes at U = 0 as a function
of J . As discussed in the main text, this quantity can be taken
as the first-order derivative of ground-state energy over the
J parameter of the model in Eq. (1). Depending on whether
this quantity is continuous or not around the quantum phase
transition in the thermodynamic limit, we can determine the
order of the transition.

The results of 〈S1i · S2i〉 for U = 0 across the topological
phase transition are shown in Fig. 12. We can observe that
〈S1i · S2i〉 has almost reached the converged values already in
the L = 12 system, i.e., values at the thermodynamic limit.
This is rather reasonable since the fermionic channel of the
system is always gapped and the finite-size effect should not
be so strong. Most importantly, we indeed observe that 〈S1i ·
S2i〉 changes smoothly across the topological phase transition,
which suggests a continuous phase transition.
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