
PHYSICAL REVIEW B 93, 115146 (2016)
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We study an effective model of two interacting species of bosons in two dimensions, which is amenable to sign
problem free Monte Carlo simulations. In addition to conventional ground states, we access a paired superfluid
which is also a topological phase, protected by the remaining U (1) × Z2 symmetry. This phase arises from the
condensation of a composite object, the bound state of vortices and antivortices of one species, to a boson of
the second species. We introduce a bulk response function, the Ising analog of the quantized Hall effect, to
diagnose the topological phase. The interplay of broken symmetry and topology leads to interesting effects such
as fractionally charged vortices in the paired superfluid. Possible extensions towards realistic models of cold
atomic bosons are discussed.
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I. INTRODUCTION

At low temperatures, interacting bosonic systems are
expected to either be in a superfluid or an insulating phase.
This classification follows from the conventional Landau
theory which is based on symmetry breaking. Recently, it
was realized that the insulating phase, in which the symmetry
is preserved, can host additional phases characterized by
nontrivial topological properties termed symmetry protected
topological (SPT) phases [1].

More broadly, SPT phases are defined through an equiva-
lence relation between ground states of gapped Hamiltonians
that are symmetric under a symmetry group G and have no
topological order (i.e., a unique ground state on a closed
manifold). Two SPT phases are then said to be in the same
equivalence class if they can be adiabatically connected
without breaking the symmetry. These considerations have
led to a classification based on the Borel-group-cohomology
[2], cobordism [3], K-matrix theory [4], and nonlinear sigma
models [5].

In the bosonic case, SPT phases are stable only in the
presence of strong correlations since in the weakly interacting
limit bosons inevitably condense. This is in sharp contrast
to the noninteracting, band structure picture of electronic
topological insulators.

Experimentally, the topologically protected spin one half
edge states of the Haldane chain, a prime example of SPT
phases in one spatial dimension [6], have been observed in
neutron scattering experiments on Y2BaNiO5 compounds [7].
However, in spatial dimensions greater than one, bosonic SPT
phases have not been demonstrated experimentally yet. In
that regard, cold atomic systems, with their high flexibility
in manipulating lattice structures and interactions [8], offer a
promising experimental testbed for future realizations of SPT
phases.

In certain cases, the physical mechanism underlying the
SPT phase is based on real space binding of symmetry charges
to topological defects [9,10]. A notable example is the bosonic
quantum Hall (BQH) state [4,11] that can be realized by
binding particles (holes) to vortex (antivortex) defects [12].
Proliferating the charge decorated vortices gives rise to a
topologically nontrivial insulating state characterized by a Hall
conductance that is quantized to even integers σxy = 2 n e2/h.

In a similar manner, binding vortices to spin degrees of
freedom yields a time reversal invariant SPT phase [13].

Despite the appeal of the above mentioned approaches,
current proposals pose experimental difficulties. More specifi-
cally, the BQH state breaks time reversal symmetry (TRS) and
models realizing it [14–18] require a strong magnetic field or
significant magnetic flux [19] within a unit cell. In this extreme
regime, the BQH state competes with fractional and even
non-Abelian topological phases. One may have hoped that
realizing the BQH, a bosonic analog of the integer quantum
Hall state, would be less demanding.

In this paper, we construct a two dimensional bosonic SPT
phase that respects TRS and is composed solely of bosonic
degrees of freedom. We implement our program of creating
and identifying properties of this phase in an effective loop
model using a sign problem free Monte Carlo (MC) simulation.
To identify the SPT phase we introduce a procedure that
directly measures the topological response of the SPT phase.
In addition, we study the protected gapless edge states on a
cylindrical geometry.

II. PROPOSED CONSTRUCTION

The construction is briefly summarized as follows. We
begin with two species of bosons, labeled by A and B,
with U (1) × U (1) symmetry corresponding to particle number
conservation of each species separately. Let us assume that
both species are in a superfluid phase. We then bind both the
vortices and the antivortices of type A to the bosons of B,
and condense this composite object. The choice of binding to
bosons (rather than vacancies as in the BQH state) is crucial
to ensure time reversal symmetry.

Condensing the charged A vortices forms an insulator,
while B bosons remain in a superfluid state. However, the
superfluid is one of boson pairs, so the original symmetry is
broken down to U (1) × Z2. This residual symmetry protects
a bosonic topological phase with nontrivial edge states.

To see why this particular composite object condensate
corresponds to a pair condensate, let us label the two composite
objects that we are condensing as ψ+ = vAbB and ψ− =
v
†
AbB , where v

†
A (vA) is the vortex creation (annihilation)

operator and bB is the bosonic annihilation operator. Note,
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a condensate implies 〈ψ+〉, 〈ψ−〉 �= 0. However, from this we
cannot conclude that the B boson is condensed since vortices
are nonlocal objects. The vorticity free combination that is
condensed though is 〈ψ+ψ−〉 = 〈bBbB〉 �= 0, giving rise to a
pair condensate.

It is worth noting two points at this stage. First, the
symmetric charge assignment may be argued to be easier to
realize. The vortex core is associated with a reduced boson
density. Assuming a repulsive interaction between the two
species of bosons, the vortex (and equally the antivortex) will
be seen as a potential well for the opposite species of boson,
potentially leading to a bound state. We caution that obtaining
this binding is one of several ingredients required to create
the desired phase. Second, we note that the symmetry group
protecting the SPT phase is a residual symmetry obtained by
spontaneous symmetry breaking. This situation, to the best of
our knowledge, has not been discussed before in the context
of bosonic SPT phases. It provides a physical mechanism for
introducing “gauge defects” that were suggested previously as
theoretical devices to probe bosonic SPT phases [20]. Here for
example, the pair condensate admits π (or half) vortex defects,
which are predicted to carry a half charge of the unbroken U (1)
symmetry of type A bosons.

Similar to the trivial Bose insulator, condensing the Z2

charged vortices results in a U (1) symmetric state [21–23]. In
addition, the Z2 symmetry is restored. This can be argued by
noting that since the vortex is a nonlocal object one cannot
define a local order parameter for the bounded Z2 charges and
thus the symmetry is preserved.

The above can also be understood by a simple geometrical
argument based on a world-line picture. Following the usual
quantum to classical mapping [24], the partition function of a
Z2 symmetric quantum system in d spatial dimensions can be
reformulated as a statistical mechanics model of unoriented
loops [as opposed to U (1) symmetry for which the loops are
oriented] defined on a d + 1 dimensional Euclidean space-
time. In this language, the world lines carry aZ2 charge and the
total Z2 charge, CZ2 , equals the parity of world-line crossings
at any given imaginary time slice.

Let us recall the description of the conventional phases
in this picture. In the disordered phase, the loop fugacity is
small and hence a typical loop configuration consists out of
small closed loops. In particular, winding around the imaginary
time axis is suppressed by the finite single particle gap. As
a result, the number of world lines crossing, at any given
imaginary time slice, is even and hence CZ2 = 0, as expected.
By contrast, the ordered phase, where the loop fugacity is
large, is characterized by large loops that can wind around
the imaginary time axis giving rise to fluctuations in CZ2 and
breaking of the Z2 symmetry.

Turning back to the nontrivial SPT phase, here theZ2 world
lines are bounded to the world lines of the condensed vortices
as depicted in Fig. 1(a). Seemingly, the large Z2 loops could
potentially lead to fluctuations of CZ2 and breaking of the Z2

symmetry. To understand why this is not the case, we note
that on a closed manifold the total vorticity charge is neutral
[25]. This topological constraint restricts the number of vortex
world lines threading any imaginary time plane to be even.
Consequently, also the total Z2 charge is even, i.e., CZ2 = 0,
yielding a disordered state.

τ

x

τ

x

Φ = Φ0

(a) SPT - even sector (b) SPT - odd sector

FIG. 1. Typical world-line configurations in the SPT phase. Blue
lines and red lines correspond to the Z2 world lines and the vorticity
current, respectively. Threading a unit of flux quantum shifts the total
Z2 charge from the (a) even to the (b) odd sector.

III. SPT INVARIANTS

The symmetry is preserved both in the trivial and nontrivial
SPT phases and hence they cannot be distinguished based on
symmetry probes. The topological invariants characterizing
different SPT phases are uncovered by gauging [20,26,27]
the symmetry and examining the emergent topological field
theory.

To see how this applies in our case, it is useful to first
consider the minimal BHQ state with σXY = 2, which at low
energies can be described by an effective two component,
aI=A/B , mutual Chern-Simons (CS) theory [4],

L = 1

4π
(εμλνaA,μ∂λaB,ν + A ↔ B). (1)

Coupling the U (1) currents, J
μ

I = εμλν∂λaI,ν , to an external
probe gauge field AA/B,ν yields a quantized mutual Hall
response, J

μ

A/B = 1
2π

εμλν∂λAB/A,ν . Returning to our case, we
now introduce a Higgs term [26] which breaks the U (1)
symmetry of type B boson down to Z2, such that its charge
is now identified only modulo two. The resulting topological
response is then an Ising version of the quantum Hall effect,
since threading an external unit of flux quantum, 	0 = 2π , of
the U (1) symmetry generates a Z2 charge.

In terms of the world-line picture, see Fig. 1(b), threading
a unit of flux quantum induces one additional unit of vorticity
that, in the SPT phase, carries a Z2 charge. As a result, the total
Z2 charge shifts from the even to the odd sector, namely CZ2 =
1. Repeating the same analysis in the topologically trivial phase
would have no effect since the Z2 charges are decoupled from
the vortices.

An interesting consequence of the enlarged U (1) × U (1)
symmetry is that the pair condensed state supports half-vortex
excitation of type B bosons carrying one-half flux quantum
	B

1/2 = π [28]. Following the mutual Hall response in Eq. (1),
j 0
A = 	B

1/2/2π = 1/2, we see that a fractional one-half U (1)
charge of type B rotors is bounded to the π -vortex core.

IV. COUPLED ROTOR MODEL AND OBSERVABLES

To demonstrate numerically the above phenomenological
approach, we study a classical statistical mechanics model
defined on a discrete 2+1 dimensional Euclidean space-time
lattice. The degrees of freedom are two species of planar rotors
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parametrized by θA and θB that reside on the vertices, ri and Ri ,
of the direct and dual cubic lattice, respectively. The partition
function is given by

Z[αA,αB,λ] =
∫

DθADθBfαA
(θA)fαB

(θB)gλ(θA,θB). (2)

Here, fα(θ ) = ∏
i,μ Vα(θi − θi+μ̂), with μ = x,y,τ , is a

generalized XY model with nearest neighbor Boltzmann
weight Vα(x) = 1 + 2 e−α cos(x). The above three dimen-
sional XY model captures the low energy properties of two
dimensional lattice bosons with particle-hole symmetry (inte-
ger filling) [29]. The atypical choice for the Boltzmann weight
is designed such that in the dual loop current representation
[30] the integer bond currents Ji,μ are restricted to the values
Ji,μ = 0, ± 1. In the quantum analogy, we allow only a single
particle or hole excitation at each site.

The coupling between the rotor models, gλ(θA,θB) =
e−λSC [θA,θB ], is tuned by the coupling constant λ and is defined
through the binding action,

SC =
∑

i

[(∣∣JB
Ri,μ

∣∣ − ∣∣QA
Ri,μ

∣∣)2]
. (3)

Here, JB
Ri,μ

is the integer bond current of type B bosons,
defined before, and QA

Ri,μ
is the vorticity three-current of type

A rotors. In defining the vorticity current we will consider
the more general case where we thread a finite magnetic
flux density φ = 	/L2, with L being the linear system size.
To do so, we minimally couple the bond current of type
A rotors to an external gauge field Ari ,μ through a Peierls
substitution, J A

ri ,μ
= (θA

ri
− θA

ri+μ̂) mod 2π → (θA
ri

− θA
ri+μ̂ −

Ari ,μ) mod 2π . The vorticity current is then given by the lattice
curl, 2πQA

Ri,μ
+ φRi,μ = ∇ × J A. The magnetic flux density

φRi,μ = φδμ,τ is uniform and it is nonvanishing only along
the imaginary time direction. The vorticity is quantized to
integers and on a cubic lattice it is restricted to the values
QA

Ri,μ
= 0, ± 1.

Possible symmetry breaking is probed through the conden-
sate fraction,

C1/2 = 1

L3

∑
r

g1/2(r), (4)

where g1(r) = 〈ei(θi−θi+r )〉 and g2(r) = 〈ei2(θi−θi+r )〉 are the
single particle and pair correlation functions, respectively.
Pair condensation can also be detected from the winding
number distribution, P (Wτ ). The winding number, Wτ =
1/Lτ

∑
i Ji,τ , equals the total current along the imaginary time

direction and can be interpreted as the total U (1) charge in the
quantum language. In a pair condensate, the probability for
odd winding numbers vanishes, P (Wτ |Wτ is odd) = 0 [31].

A key ingredient of our analysis is identifying an order
parameter that discriminates the nontrivial SPT phase from
the trivial disordered phase. In our model the symmetry (Z2)
and its corresponding gauge field are discrete and hence
linear response based observables, such as the quantized Hall
conductance in the BQH case, cannot be defined. To resolve
this, we follow the world-line picture by measuring CZ2 in
the presence of a single flux quantum. A shift in CZ2 from
the even to the odd sector serves as an order parameter that
captures the topological response of this phase. In terms of

the physical U (1) degrees of freedom of type B rotors, CZ2 is
defined through the winding number parity

CZ2 =
〈

1

2
(1 − (−1)Wτ )

〉
. (5)

V. METHODS

We evaluate the partition function in Eq. (2) by means of
a classical Monte Carlo. Type A (B) rotors are represented in
the phase (bond current) representation. This choice enables us
to evaluate the binding action in Eq. (3) since both the vortex
current, QA, and the bond current, JB , can be readily computed
in this representation. The closed loop configurations of type
B rotors are sampled using the classical worm algorithm (WA)
[32]. In most cases we set the system size to be L = 16, a
value for which finite size corrections are controlled. To check
the convergence of our results with system size and to perform
finite size scaling analysis we considered system sizes up to
L = 32. Further details on the MC algorithm can be found in
Appendix B.

VI. RESULTS

In this section, we construct the phase diagram (Fig. 2)
of the coupled rotor model in Eq. (2). Within the range of
parameters investigated we found three phases. Two of them,
denoted by phase I and phase II, can be classified according
to different patterns of U (1) symmetry breaking. In addition,
we find a nontrivial SPT phase, that is distinct from the trivial
disordered state.

The classification to phases is performed in two steps. First
we classify the phases according to U (1) symmetry breaking
of A and B rotors. Following that we identify the SPT phase
by numerically measuring the SPT invariant and studying the
protected gapless edge states in a cylindrical geometry.

Phase I

Superfluid of ”A”

Insulator of ”B”

SPT

Insulator of ”A”
Pair superfluid of ”B”

Phase II
Insulator of ”A”
Superfluid of ”B”

Fig. 4,6,8

Fig. 3

Fig. 7

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

λ

α
B

FIG. 2. Phase diagram of the coupled rotor model in Eq. (2)
as a function of αB and λ for αA = 4. The numerically computed
critical points are marked by black circles. We probed U (1) symmetry
breaking by using the condensate fraction. The SPT phase, which is
also a paired superfluid of type B rotors, is identified by measuring
the topological response to an external flux. Red lines correspond to
parameter cuts along which we perform finite size scaling scans in
the labeled figures.
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(a) (b)

FIG. 3. Single particle condensate fraction of type A rotors. (a)
The condensate fraction, CA

1 , is nonvanishing only in phase II, where
λ and αB are sufficiently large. (b) Ordering transition of type A rotors
for λ = 2 as a function of αB and for system sizes L = 4,8,16,22.

A. U(1) symmetry breaking

In the decoupled limit, i.e., λ = 0, both rotors undergo an
ordering transition belonging to the three dimensional XY
model universality class. We locate the critical point between
the ordered and disordered phase using the standard finite size
scaling analysis of the superfluid stiffness [29,33]. We find that
the critical coupling equals αc = 1.50(1).

According to the phenomenological description of Sec. II,
the SPT phase is realized by condensing a bound state of
type A vortex and type B charge. This is possible only if
both components, type A vortex and type B charge, are not
gapped. To achieve that, in the following, we set αA = 4 > αc

and focus on the parameter range αB < αc. This choice of
parameters ensures that, in the decoupled limit, type A (B)
rotors are in the disordered (ordered) phase.

We map the phase diagram as a function of λ and αB on
an evenly spaced grid of 32 points for the range of values
λ ∈ [0.5,3] and αB ∈ [0.05,0.6].

In Fig. 3(a) we depict the single particle condensate
fraction, CA

1 , of type A rotors. In most parts of the phase
diagram the condensate fraction vanishes indicating on a
disordered phase, which is expected from the choice αA > αc.

Interestingly, for sufficiently large αB and λ the condensate
fraction, CA

1 , is finite, implying on an ordered superfluid phase.
To understand this result, we note that for large λ, type A
vortices can form only in the presence of type B charges,
and these charges are suppressed when increasing αB . The
combined effect gaps type A vortices altogether and gives rise
to a condensate of type A rotors.

In Fig. 3(b) we study the convergence of our results with
size near the transition. We set λ = 2.0 and cross the phase
transition towards phase II by increasing αB . The condensate
fraction is well converged within the largest system size
considered, L = 22.

The single particle condensate fraction, CB
1 , of type B rotors

is shown in Fig. 4(a). For weak binding, λ, type B rotors are
condensed as evident from the finite condensate fraction. As
before, in the decoupled limit this result is expected since we
consider the parameter range αB < αc. Increasing the binding
strength, λ, leads to a phase transition at a critical binding
strength λc(αB) that is marked by the vanishing of CB

1 .
The above result does not necessarily imply that the U (1)

symmetry of type B rotors is completely restored. Motivated

(a) (b)

(c) (d)

FIG. 4. Single and pair condensate fraction of type B rotors. (a)
For small values of λ the condense fraction is finite and it vanishes
at a critical coupling λc(αB ). (b) The pair condensate function, CB

2 ,
remains finite even for λ > λc(αB ) and sufficiently small αB . (c),(d)
Finite size scaling analysis of the phases’ transition for αB = 0.05 as
a function of λ and for system sizes L = 4,8,16,32.

by the phenomenological construction of the SPT phase, we
expect that an increase in λ would result in an instability
towards a SPT phase, in which the charged vortex condensate
forms a paired superfluid of type B rotors.

To test this scenario, in Fig. 4(b), we study the pair
condensate fraction, CB

2 . We see that for sufficiently small
values of αB , the pair condensate fraction remains finite even
for λ > λc(αB), where CB

1 vanishes. This result indicates on the
emergence of a paired superfluid of type B rotors. In contrast,
in phase II, both CB

1 and CB
2 vanish such that type B rotors

are disordered. This behavior can be understood following the
same reasoning presented before for the condensation of type
A rotors in phase II.

In Figs. 4(c) and 4(d) we perform a finite size scaling
analysis of the transition to test the convergence of the
numerical result with system size. Specifically, we take αB =
0.05 and cross the transition by increasing λ. We find that for
the largest system we considered, L = 32, the results are well
converged in both phases and display small deviation with
system size.

We further verify the formation of a pair superfluid by
studying the winding number distribution for αB = 0.05 in
Fig. 5. For λ = 1.22 < λc, type B rotors are condensed as
evident from the broad distribution of P (Wτ ). For λ = 2.83 >

λc, while the distribution remains broad, the probability for odd
winding numbers vanishes. This serves as additional evidence
for the formation of a pair condensate.

The winding number distribution analysis can also be
interpreted in the context of the 2 + 1 dimensional quantum
picture of the SPT phase. In this language the winding number
is identified with the deviation of the bosonic particle number,
δnB , from integer filling. The emergent Z2 symmetry then
corresponds to the parity of δnB .
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FIG. 5. Winding number distribution, P (Wτ ), for αB = 0.05.
Below the critical coupling (red), λ = 1.22 < λc, we find a broad
distribution corresponding to a superfluid. Above the critical coupling
(blue), λ = 2.83 > λc, the distribution remains wide but the proba-
bility for odd number of particles vanishes, P (Wτ |Wτ is odd) = 0,
indicating on a paired superfluid.

It is interesting to investigate the nature of the different
phase transitions appearing in Fig. 2. We first consider the
phase transition between phase I and the pair superfluid. The
transition is marked by spontaneous symmetry breaking of a
Z2 symmetry and if, in addition, it is continuous we expect it
to belong to the three dimensional Ising universality class.

To check this prediction we study the critical properties of
the total Z2 charge, CZ2 . In phase I the symmetry is broken
and hence Z2 fluctuates and averages to one-half, whereas in
the paired superfluid phase the Z2 symmetry is restored and
therefore CZ2 = 0. Since CZ2 is a dimensionless quantity we
expect it to attain a universal value at criticality.

We can therefore consider the following scaling form for
CZ2 near the critical point,

CZ2 (δλ,L) = g(δλL1/ν). (6)

Here δλ = λ−λc

λc
, g(x) is a universal scaling function, and ν is

the correlation length critical exponent.
In Fig. 6(a) we depict CZ2 for αB = 0.05 near the critical

coupling for system sizes L = 8,16,32. Curves for different
system size cross at a single point. By locating the crossing
point, we determine the critical coupling λc = 1.597(1) and the
universal value at the crossing g(0) = 0.230(5). We employed
this method to locate the phase transitions between phase I and
the pair superfluid, in Fig. 2.

In Fig. 6(b) we perform a finite size scaling curve collapse.
We center the horizontal axis around the critical coupling
and scale it according to Eq. (6), i.e., δg → δgL1/ν . For the
correlation length critical exponent we take ν = 0.6296(3), its
value at the three dimensional Ising model universality class as
was computed by high precision classical MC simulation [34].
Indeed, we find that curves for different system sizes collapse
into a single universal curve with high precision. A more
detailed investigation of the critical properties, in particular an
independent estimation of the critical exponents would entail
the use of larger system sizes which are beyond the reach of
our numerics.

Next, we consider the phase transition between phase I
and phase II. Here, the two phases are characterized by

FIG. 6. Finite size scaling analysis of total Z2 charge, CZ2 , at
the phase transition between phase I and the paired superfluid, for
αB = 0.05. CZ2 is a dimensionless observable and thus it is expected
to obtain a universal value at the critical point. This behavior is clearly
since in panel (a) where curves for different system size cross at the
critical coupling, λc = 1.597(1), with small dependence on system
size. (b) Finite sizes scaling curve collapse. The horizonal axis is
rescaled according to Eq. (6).

spontaneous symmetry breaking of two different symmetries
[U (1) symmetry of type A and B rotors]. As a consensus, based
on Landau theory, without further fine-tuning of the parameters
the transition is expected to be generically first order.

To test this numerically, we investigate the absolute value of
type B bond current 〈|JB |〉. This observable serves as a measure
for the classical energy of type B rotors [32]. At a first order
phase transition the distribution of 〈|JB |〉 is expected to develop
a double peak structure corresponding to the coexistence of the
two phases.

In Fig. 7 we fix αB = 0.6 and depict histograms of 〈|JA|〉
at the critical coupling and slightly below and above. At
λ = 1.16 ≈ λc the histogram displays a double-peak structure,
whereas below and above the transition only a single peak is

(a)

(b)

(c)

FIG. 7. Probability histogram of 〈|JA|〉 for αB = 0.6. (b) At the
critical binding, λc = 1.16, the histogram develops a double peak
structure corresponding to coexistence of phase I and phase II and
indicating on a first order phase transition. (a),(c) By contrast, slightly
above and below the critical point the histograms consist of a single
peak.
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FIG. 8. Total Z2 charge of type B rotors as a function λ for L =
4,8,16,32, αB = 0.05 and for magnetic flux 	A = 0 and 	A = 2π .
In phase I, λ < λ, CZ2 fluctuates and average to 1/2. For λ > λc, in
the absence of an external magnetic flux CZ2 vanishes as expected in a
paired superfluid. Threading a magnetic flux 	A = 2π shifts the CZ2

charge from the even to the odd sector of the theory, i.e., CZ2 = 1.

seen. This analysis validates our expectation for a first order
phase transition.

In a similar manner, the transition between phase II and
the paired superfluid involves a simultaneous breaking of two
distinct symmetries and hence it is expected to be first order.
We were unable to confirm this prediction in our numerics due
to the relatively small systems sizes that are accessible to our
Monte Carlo simulation.

Summarizing the above results, we conclude that the pair
condensed phase has an unbroken U (1) × Z2 symmetry and
hence it is a candidate for a nontrivial SPT phase.

B. SPT invariant and gapless edge states

Our main result is presented in Fig. 8, where we depict CZ2

as a function of λ both for 	 = 0 and 	 = 	0. For λ < λc,
type B rotors are condensed and thus the charge parity, CZ2 ,
fluctuates and averages to one-half. At λ = λc, CZ2 jumps
abruptly to zero as the Z2 symmetry corresponding to the
charge parity is restored. We now thread the torus with a single
flux quantum; the charge parity rises to CZ2 = 1, where the pair
condensate forms. This provides a direct measurement of the
topological response of the SPT phase.

Finally, we study the edge states in the SPT phase on
a cylindrical geometry. Gapless excitations are expected to
follow an asymptotic power-law form proportional to

g
A/B

1 (τ ) ∼ (τ−γA/B + (β − τ )−γA/B ). (7)

We compute the single particle Green’s function of both rotors
along the edges of the cylinder for αB = 0.05 and λ = 2.5, as
plotted in Fig. 9.

We numerically fit the MC data to the above form and find
good agreement with the exponents γA = 1.0(1) and γB =
1.3(1). Importantly, we have also explicitly verified that the
bulk remains gapped. In the SPT phase, the two edge modes
are conjugate variables [4,12] and hence their Luttinger liquid
parameters are related by a T-duality γA × γB = 1, as shown
in Appendix A. Numerically we find γA × γB ≈ 1.3(2). The

Lx

FIG. 9. Single particle Green’s function, g
A/B

1 , evaluated along
the edges of a cylindrical. The simulation parameters are Ly = Lτ =
20, Lx = 8, αB = 0.05, and λ = 2.5. Solid lines are a numerical fit
to the power law form in Eq. (7).

small deviation from the analytic prediction is most likely
related to finite size effects.

VII. DISCUSSION AND SUMMARY

Realizing a SPT phase in cold atomic systems requires
better understanding of physical mechanisms leading to
binding of vortices to charge degrees of freedom, and con-
densation of these composite objects. While we have used
a loop model for convenience, in the future we anticipate
microscopic implementations utilizing a lattice Hamiltonian
bosonic model. Translating terms from our loop model to
the Hamiltonian formulation provides guidance along this
direction. For example, one promising approach is to introduce
correlated hopping terms that were recently suggested in lattice
realization of the BQH state [16]. Alternatively, a modified
version of the two-component bosnic model studied in [35]
might sustain the SPT phase. We plan to apply this method to
our model in a future study.

As a concrete experimental signature for the SPT phase,
in cold atomic systems, we propose to probe the fractional
one-half charges bounded to the π vortices. Rotating the
optical lattice can, in principle, induce vortices [36], and the
fractional charge can be measured by in situ imaging [37]. We
do not directly demonstrate this effect in the numerical MC
simulation since it introduces a sign problem.

More generally, our numerical method for measuring the
topological response of certain SPT phases protected by
discrete symmetry in MC simulations can be applied to
other examples of SPT phases with different symmetries and
dimensionality.

Summarizing, we proposed a purely bosonic model that
following pair condensation realizes a SPT phase protected by
U (1) × Z2 symmetry. The signatures of the SPT phase were
probed in an effective lattice model, and the interplay with
spontaneous symmetry breaking was discussed. Our approach
could guide the search for possible realizations of SPT phases
in realistic models.
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APPENDIX A: SINGLE PARTICLE GREEN’S FUNCTION
FOR GENERAL EDGE INTERACTIONS

The low energy description of the edge in the SPT phase is
given by the action

L = 1

4π

∫
dx dt

(
∂tφ1∂xφ2 + ∂tφ2∂xφ1

+
∑

I,J=1.2

VI,J ∂xφI ∂xφJ

)
. (A1)

The matrix VI,J is nonuniversal and corresponds to in-

teractions between the edge modes. The K = (0 1
1 0

) and

VIJ matrices can be diagonalized simultaneously since K

is symmetric and V is symmetric and positive definite [40].
Explicitly, we define

φ1 = 1√
2g

(XL + XR),

φ2 =
√

g/2(XR − XL),

where g = √
V11/V22. Substituting in Eq. (A1) gives

L = 1

4π

∫
dx dt[∂xXR(∂t − vR∂x)XR

+ ∂xXL(−∂t − vL∂x)XL], (A2)

where the right and left movers velocities are VR/L =√
V11V22 ± V12,
The two point Green’s function is then given by〈

ei(φ1(x,t)−φ1(0,0))
〉 ∝

∏
R/L

|x − vR/Lt |g,

〈
ei(φ2(x,t)−φ2(0,0))

〉 ∝
∏
R/L

|x − vR/Lt |1/g.

From the above equations we see that the product of the
Luttinger liquid parameters is unity.

ri

b(ri)

FIG. 10. Combined MC move. A planar angle θA(ri) is drowned
randomly and a bond current loop of type B rotors belonging to the
dual lattice and surrounding the bond b(ri) is constructed.

APPENDIX B: MONTE CARLO ALGORITHM
IMPLEMENTATION DETAILS

In this section we provide a more detailed description of the
MC algorithm used to compute the classical partition function
in Eq. (2). As mentioned in the main text, we reformulated the
action of type B rotors as an integer bond current model. The
closed loop configuration is sampled using the worm algorithm
[32,41]. Type A rotors were represented by an angle variable
and we employed the usual Metropolis-Hastings single site
update scheme.

In the pair condensed phase, worm updates of a single field
insertion, eiθ , are inefficient due to the finite single particle gap.
To address this we introduced updates in which the worm’s
head carries two field insertions, ei2θ . This also enabled us to
directly measure the pair correlation function [31].

In the SPT phase, where the coupling λ is sizable, MC
moves that sample A and B rotors separately are inefficient
since they must overcome an energy barrier in order to generate
a bound state of a Z2 charge and a vortex.

To overcome this difficulty we introduced the following MC
move, depicted schematically in Fig. 10. First, we propose an
angle update to a type A rotor at a randomly selected site ri

(belonging to the direct lattice). Such a move can potentially
generate a vortex loop. We then randomly select a direct
lattice bond b(ri) out of the bonds emanating from the site
ri . Finally, we suggest constructing a loop current of type B
rotors surrounding the bond b(ri) in the dual lattice. The move
is accepted or rejected according to the total Boltzmann ratio.
We found that this simple move allows the formation of Z2

charged vortex loops and the resulting MC correlation time
was significantly reduced.

[1] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,
1604 (2012).

[2] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,
155114 (2013).

[3] A. Kapustin, arXiv:1403.1467.
[4] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119

(2012).
[5] Z. Bi, A. Rasmussen, K. Slagle, and C. Xu, Phys. Rev. B 91,

134404 (2015).

[6] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.
Rev. B 85, 075125 (2012).

[7] J. Darriet and L. Regnault, Solid State Commun. 86, 409 (1993).
[8] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[9] X. Chen, Y.-M. Lu, and A. Vishwanath, Nat. Commun. 5, 3507

(2014).
[10] C. Xu and T. Senthil, Phys. Rev. B 87, 174412 (2013).
[11] T. Senthil and M. Levin, Phys. Rev. Lett. 110, 046801 (2013).

115146-7

http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://arxiv.org/abs/arXiv:1403.1467
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.91.134404
http://dx.doi.org/10.1103/PhysRevB.91.134404
http://dx.doi.org/10.1103/PhysRevB.91.134404
http://dx.doi.org/10.1103/PhysRevB.91.134404
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1016/0038-1098(93)90455-V
http://dx.doi.org/10.1016/0038-1098(93)90455-V
http://dx.doi.org/10.1016/0038-1098(93)90455-V
http://dx.doi.org/10.1016/0038-1098(93)90455-V
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801


SNIR GAZIT AND ASHVIN VISHWANATH PHYSICAL REVIEW B 93, 115146 (2016)

[12] S. D. Geraedts and O. I. Motrunich, Ann. Phys. (N.Y.) 334, 288
(2013).

[13] Z.-X. Liu, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 113,
267206 (2014).

[14] N. Regnault and T. Senthil, Phys. Rev. B 88, 161106 (2013).
[15] S. Furukawa and M. Ueda, Phys. Rev. Lett. 111, 090401 (2013).
[16] Y.-C. He, S. Bhattacharjee, R. Moessner, and F. Pollmann, Phys.

Rev. Lett. 115, 116803 (2015).
[17] A. Sterdyniak, N. R. Cooper, and N. Regnault, Phys. Rev. Lett.

115, 116802 (2015).
[18] Y.-H. Wu and J. K. Jain, Phys. Rev. B 87, 245123 (2013).
[19] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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