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The complete characterization of the charge transport in a mesoscopic device is provided by the full counting
statistics (FCS) Pt (m), describing the amount of charge Q = me transmitted during the time t . Although numerous
systems have been theoretically characterized by their FCS, the experimental measurement of the distribution
function Pt (m) or its moments 〈Qn〉 is rare and often plagued by strong back-action. Here, we present a strategy
for the measurement of the FCS, more specifically its characteristic function χ (λ) and moments 〈Qn〉, by a qubit
with a set of different couplings λj , j = 1, . . . ,k, . . . k + p, k = �n/2�, p � 0, to the mesoscopic conductor. The
scheme involves multiple readings of Ramsey sequences at the different coupling strengths λj , and we find the
optimal distribution for these couplings λj as well as the optimal distribution Nj of N = ∑

Nj measurements
among the different couplings λj . We determine the precision scaling for the moments 〈Qn〉 with the number
N of invested resources and show that the standard quantum limit can be approached when many additional
couplings p � 1 are included in the measurement scheme.

DOI: 10.1103/PhysRevB.93.115140

I. INTRODUCTION

Traditionally, electronic transport through a device is
characterized by the current and its noise. Within mesoscopic
physics, Landauer’s scattering matrix approach [1] provides a
very physical and straightforward technique for the calculation
of the average current [1–4] and noise [5–9], as well as
higher moments. The quantity which fully characterizes the
random process of charge transport is given by the so-called
full counting statistics (FCS), telling what charge Q = me

is transmitted through the device during a fixed time t

[10]. The first calculation [11] of the probability distribution
function Pt (m) for the FCS goes back to 1992 and was
quickly developed further [12–14]. Various generalizations
and applications have been proposed, e.g., the current noise in a
normal-metal–superconductor point contact [15], the electron
transfer between superconductors [16], charge pumping [17]
and charge transfer [18] in the Coulomb blockade regime, the
extension to energy-dependent scatterers [19], the statistical
properties of the persistent current in nanostructures [20], and
the fluctuations in the heat current in a quantum conductor [21]
or between two superconductors [22], to name just a few of
the numerous theoretical studies. At the same time, there are
only very few experiments measuring higher-order correlators
[23–25] and one set of experiments measuring directly the
statistics [26–29]. Unfortunately, measurement back-action
is substantial in all of these experiments and a noninvasive
measurement of the full counting statistics remains to be done.
An early suggestion, formulated on the level of a Gedanken
experiment and involving a spin [14], has later given way to
a more concrete proposal based on charge or flux qubits [30].
However, a specific protocol how such a qubit is used in an
optimal fashion is missing and it is the purpose of the present
paper to close this gap.

The distribution function Pt (m) and its moments or cu-
mulants can be obtained from the generating function χt (λ),
the Fourier transform of Pt (m), χt (λ) = ∑

m Pt (m) exp(imλ).
Here, λ not only represents a compact variable in the Fourier

transform, but in its physical role it appears as the coupling
constant between the transported charge and the qubit detector
(here, we have in mind any qubit that couples to the charge
either inductively or capacitively). The basic quantity we are
interested in then is the generating function χ (λ) and its
derivatives with respect to λ. The latter define the moments
(or cumulants) of the distribution function P (m) [here and
below we drop the time-index t on Pt (m) and χt (λ)]. The
issue is to find the generating functions from measured data.
This involves a simple protocol on the qubit with preparation,
measurement, and a binary readout—the probabilities P± for
the binary outcomes + or − at fixed λ then allow for a statistical
estimate χ̃(λ) of the generating function χ (λ). Evaluating χ̃ (λ)
for various values λ = λj then allows for the determination of
derivatives ∂n

λ χ̃ (λ) via finite-difference formulas, from which
estimates for the moments 〈Qn〉 or cumulants can be obtained.
The main question we want to answer in this paper then is,
given a total of N measurements, what is the optimal way
to carry out these measurements? In particular, what number
and distribution of grid points λj shall be chosen, how should
the N measurements be distributed among the grid points,
what accuracy can be achieved, and how does the precision
of the result scale with the number N of invested resources or
measurements?

In Sec. II below, we will first describe the measurement
protocol providing estimates for the real and imaginary parts
of the characteristic function χ (λ) and analyze the statistical
distribution (or precision) of the measured results. The mo-
ments of transferred charge involve higher-order derivatives
of the characteristic function χ (λ) and Sec. III is devoted
to their construction out of measured values of χ through
finite-difference formulas. The choice of grid points in these
finite-difference formulas interferes with the statistical errors
from the measurements and one has to find the optimal grid
and measurement strategy to minimize the total error for the
charge moments; this task is discussed in Sec. III A for an
equidistant set of coupling strengths and in Sec. III B for a
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nonequidistant set of grid points. The optimal measurement
strategy involves a nonequidistant set of points and we find
the optimal distribution of the number of measurements as
well as the precision scaling with the total number N of
measurements. Specific results in the form of tables are given
for the measurement of the third-order cumulant 〈Q3〉. In Sec.
IV we present a summary, emphasize our main results, and
add some concluding remarks on the use of different types of
qubits and the relation to quantum counting [31,32].

II. MEASUREMENT OF THE CHARACTERISTIC
FUNCTION

The full counting statistics of a conductor can be described
through the set of probabilities Pt (m) to transmit m particles
(electrons) in a given time t (in the following we drop the
index t). The discrete probability distribution P (m) can be
characterized by a continuous generating function χ (λ) =∑

m P (m)eimλ. Given the generating function χ (λ), one can
find all moments of the transmitted charge (with the charge Q

measured in units of e),

Qn ≡ 〈Q̂n〉 = (−i)n lim
λ→0

∂n
λχ (λ), (1)

or the charge cumulants,

Kn ≡ 〈〈Q̂n〉〉 = (−i)n lim
λ→0

∂n
λ ln χ (λ). (2)

In order to find the above quantities in an experiment,
we consider a qubit locally interacting with the conductor as
described by the Hamiltonian Ĥint = (�λ/e)σ̂zÎ (x,t), where
Î (x,t) is the electric current operator in the conductor
providing the transmitted charge at a position x behind the
scatterer (see Fig. 1 for an illustration). Such a linear coupling
is appropriate when the interaction point x resides away from
the scattering region in the conductor (see Bachmann et al.
[33]). The qubit-current interaction leads to a rotation of the
qubit state around the z axis by an angle ϕ = mλ, where
m is the transmitted charge. Consider a standard Ramsey
sequence of qubit rotations R̂(ϕ) = Ûy(−π/2)Ûz(ϕ)Ûy(π/2),
where Û	n(α) = 1̂ cos(α/2) − i	n · 	̂σ sin(α/2), where the first

z qubit
counter

λ
x

B

y

qpc
qpc

e
t qpc

r

FIG. 1. Measurement of transmitted charge, e.g., across a quan-
tum point contact with transmission and reflection amplitudes tqpc and
rqpc, respectively, by a qubit. The passage of an electron through the
outgoing conductor generates a magnetic field pulse that rotates the
qubit state (drawn as a vector on the Bloch sphere) by λ.

and last rotations describe ±π/2 rotations around the y axis
and the intermediate rotation is due to the interaction with the
conductor. Applying this Ramsey sequence to an initial qubit
state |↑〉 (with σz = 1), one arrives at the final state:

|m〉 = R̂(ϕ = mλ)|↑〉 = cos
mλ

2
|↑〉 + i sin

mλ

2
|↓〉. (3)

The probabilities to observe the qubit in a state σz = ±1 then
are given by

P±(mλ) = 1
2 ± 1

2e−t/τϕ cos(mλ). (4)

The exponential damping in Eq. (4) accounts for the finite
dephasing time τϕ of the qubit that we may model through a
stochastic Gaussian H field. Such a finite dephasing time τϕ

ultimately limits the time t during which the FCS Pt (m) can
be measured. For a particular run of the Ramsey sequence,
the random number m of transmitted charges is unknown but
governed by the FCS distribution P (m), hence the probabilities
for the two final qubit states can be found by averaging over
m:

P±(λ) =
∑
m

P (m) P±(mλ). (5)

These probabilities are conveniently expressed through the real
part of the FCS characteristic function:

P±(λ) = 1
2 ± 1

2e−t/τϕ Reχ (λ). (6)

Hence, repeating the Ramsey sequence N � 1 times and
observing N± final outcomes with σz = ±1, one can directly
estimate the real part of the characteristic function for a given
dimensionless interaction parameter λ:

e−t/τϕ Reχ̃(λ) = N+ − N−
N+ + N−

, (7)

where the tilde χ̃(λ) refers to a statistical estimate of χ (λ). The
imaginary part of the characteristic function can be estimated
in a similar way by applying the alternative Ramsey sequence
R̂′(ϕ) = Ûx(−π/2)Ûz(ϕ)Ûx(π/2) to the initial state σz = 1 of
the qubit.

In a realistic situation, the π/2 pulses in the Ramsey
sequence are not perfect, which modifies the statistical analysis
of the data. Let us consider a nonperfect Ramsey sequence
R̂(ϕ) = Ûy(−π/2 + δ′)Ûz(ϕ)Ûy(π/2 − δ) with small devia-
tions δ and δ′. As a result, the perfect qubit probabilities P±(λ)
in Eq. (6) are modified:

P±(λ) = 1 ± sin δ sin δ′

2
± e−t/τϕ cos δ cos δ′

2
Reχ (λ). (8)

The imperfect π/2 pulses affect the result in two ways:
(i) an effective decrease of the visibility factor, e−t/τϕ →
e−t/τϕ cos(δ) cos(δ′), which amounts to a renormalized dephas-
ing time τ̄ϕ (at fixed t), and (ii) a finite bias P+ − P− =
sin(δ) sin(δ′) at λ = 0 that can be accounted for with a
separate measurement. As a result, the estimated value of the
characteristic function is given by

e−t/τ̄ϕ Reχ̃(λ) = N+ − N−
N+ + N−

∣∣∣∣
λ

− N+ − N−
N+ + N−

∣∣∣∣
0

. (9)
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Note that the uncertainty in the dephasing time shows up in
the final results with a small power αn,p [see, e.g., Eq. (29)]. In
the following, we will assume perfect pulses with δ = 0 = δ′.

Next, we derive the statistical bounds for the esti-
mation of χ̃ . The experimental outcomes N± are dis-
tributed according to a binomial distribution, P (N+,N−) =
C

N+
N [P+(λ)]N+[P−(λ)]N− . As follows from Eq. (6) this dis-

tribution can be characterized by a single parameter x =
exp(−t/τϕ)Reχ (λ) or x = exp(−t/τϕ)Imχ (λ). Hence, by
virtue of the Bayes theorem and observing a particular set N±
of results σz = ±1, one can obtain an estimate of the posterior
distribution function for the unknown parameter x ∈ [−1,1]
via

P (x|N+,N−) = (N + 1)!

2N+!N−!

(
1 + x

2

)N+(
1 − x

2

)N−
. (10)

For large N±, the above distribution approaches a Gaussian,
P (x|N+,N−) → N (x̃,σ 2) with mean x̃ = [N+ − N−]/N and
variance σ 2 = 4N+N−/N3 = (1 − x̃2)/N . Then, the statisti-
cal bounds for the estimated mean x ≈ x̃ at a given tolerance
level ε are given by

Prob[|x − x̃| � g(ε)σ ] = 1 − ε, (11)

where g(ε) is determined by 1 − ε = erf(g/
√

2) and the
standard error function erf(x) = (1/

√
π )

∫ x

−x
dt e−t2

, quickly
approaching unity at large x, erf(2) ≈ 0.995. Going back from
the variable x to the characteristic function χ (λ), one finds that
with a probability 1 − ε

|Reχ (λ) − Reχ̃ (λ)| � g(ε)
vRe(λ)√

N
, (12)

where v2
Re(λ) = exp(2t/τϕ) − [Reχ̃(λ)]2 increases exponen-

tially when pushing the measurement time beyond τϕ . The
same estimate holds true for the imaginary part of χ (λ). The
above measurement procedure then reaches the precision of
the standard quantum limit at large N . We will see below that
carrying over this standard quantum limit in the measurement
precision for the moments Qn is a nontrivial task [due to
the appearance of derivatives ∂n

λχ (λ)] and requires special
measures.

Special attention has to be paid to the situation at small
coupling λ � 0, where Reχ (0) = 1 and Imχ (0) = 0. The latter
poses no problem as the distribution function Eq. (10) is
centered around x = 0, away from the boundaries at x = ±1,
and hence well approximated by a Gaussian distribution with
v2

Im(λ) � v2
Im(0) ≈ e2t/τϕ . In contrast, when measuring the real

part Reχ (λ � 0), the distribution function (10) is squeezed
towards the boundary at x = 1. In this situation, N+ ∼ N and
Eq. (10) can be approximated by

P (x|N+,N−) = N
N−+1
+

2N−!

(
1 − x

2

)N−
e−N+(1−x)/2. (13)

The maximum of Eq. (13) is attained at x̃ = 1 − 2N−/N+
and provides an estimate for x with an accuracy quantified
by the variance σ 2 = 4(N− + 1)/N2

+ and a precision scaling
as 1/N . With increasing N , the number N− of outcomes
σz = −1 increases and the distribution (10) detaches from
x = 1 with Eq. (13) providing no longer a good approximation.
Rather, the distribution (10) approaches the standard Gaussian

form when 1 − x̃ becomes larger than σ , which is the case
for N− � 1 (using either of the above estimates for x̃ and
σ ). In the following, we assume that N is large enough,
such that the Gaussian approximation for the random variable
x = e−τ/τϕ Reχ (λ) provides a good description at any coupling
strength λ > 0.

III. CALCULATION OF DERIVATIVES

Following Eq. (1), the characteristic function χ (λ) (and its
estimate χ̃) can be used to determine the charge moments Qn.
This requires taking nth-order derivatives of χ (λ) near λ = 0,
which can be found with the help of finite-difference formulas
of the form

∂n
λχ (λ)|λ=0 ≡ χ (n)(0) ≈

∑
λ∈�

w
(n)
λ χ (λ), (14)

where w
(n)
λ is a set of weight coefficients and � =

{λ0,λ1, . . . λm} with m � n is a set of λ values near the origin
λ = 0. For a given � and n, one can find the corresponding
weight coefficients wλ (here and below we drop the index (n)

on w
(n)
λ ) using the procedure described in Ref. [34]: defining

ω(x) ≡ ∏
λ∈�(x − λ), these are given as

wλ = dn

dxn

ω(x)

ω′(λ)(x − λ)

∣∣∣∣
x=0

(15)

with ω′(x) = ∂xω(x). The characteristic function χ (λ) is the
Fourier transform of a real distribution function Pn and
hence χ (λ) = χ∗(−λ). This symmetry motivates the use
of symmetric sets �n,p = {−λk+p, . . . , − λ1,0,λ1, . . . ,λk+p},
where n = 2k or n = 2k − 1 refer to even- or odd-order
derivatives with k > 0 and p � 0. This particular choice of
the grid set �n,p twice reduces the number of points where
χ (λ) has to be measured. Indeed, using Eq. (15), one shows
that wλ = w−λ for even n and wλ = −w−λ when n is odd. In
addition, χ (0) = 1 and one needs to measure χ (λ) only at the
k + p points λj with j = 1, . . . ,k + p. Using the symmetry
of the characteristic function χ (λ), the even (odd) derivatives
of the characteristic function can be expressed through its real
(imaginary) parts, respectively:

χ (n)(0) ≈
{

w0 + 2
∑k+p

j=1 wλj
Reχ (λj ), n = 2k

2i
∑k+p

j=1 wλj
Imχ (λj ), n = 2k − 1

.

(16)
Making use of the Gaussian distributed estimates Reχ (λj ) and
Imχ (λj ) characterized by Eq. (12) the numerical derivatives
Eq. (16) are Gaussian random variables as well with a variance,

Var[χ (n)(0)] = 4g2(ε)
k+p∑
j=1

[wλj
vn(λj )]2

Nj

, (17)

where vn(λ) is equal to v2k = vRe (v2k−1 = vIm) for even
(odd) derivatives n and Nj is the number of measurements
that has been used to estimate the value of the characteristic
function at λ = λj . Given a total number of measurements
N = ∑

j Nj , the question poses itself how to distribute these
resources over the k + p measurement points. Minimizing
Var[χ (n)(0)] under the condition of fixed N one derives the
following expression for the ratios rj ≡ Nj/N optimizing the
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distribution of measurements,

rj = |wλj
|vn(λj )∑k+p

l=1 |wλl
|vn(λl)

, (18)

and the minimal variance is given by

δQ2
n ≡ Var[χ (n)(0)] = 4g2(ε)

N

⎡
⎣k+p∑

j=1

|wλj
|vn(λj )

⎤
⎦

2

. (19)

Having established the statistical error in the estimates of
the derivatives of χ , one also needs to take into account a
second type of error arising due to approximation given by
the finite-difference formulas. E.g., choosing the grid points
λ ∈ � close to the origin λ = 0 decreases the error in the
finite-difference approximation [since the remainder in the
approximation (14) is of order λn+p+2]; however, the statistical
error Eq. (19) grows due to the larger weights wλ ∝ 1/λn.
Hence, we have to find the optimal grid �opt that minimizes
the total error given by the sum of statistical and approximation
errors. This minimization introduces a dependence λj (N )
which will change (i.e., reduce) the overall precision scaling
for the moments away from the standard quantum limit.

A. Equidistant grids

Consider a measurement of the nth moment of transferred
charge Qn by a set of k + p qubits with equidistant coupling
strengths λj = jλ0, j = 1, . . . ,k + p, where n = 2k or 2k −
1 and p � 0. Making use of Eq. (15), the weights wλj

in
the finite-difference formulas (16) can be written in the form
wλj

= κj/λ
n
0, where the coefficients κj denote the set of

numbers

κj = dn

dxn

ω(x)

ω′(j )(x − j )

∣∣∣∣
x=0

(20)

with ω(x) = x
∏k+p

j=1 (x2 − j 2). Making use of Eq. (17), the
statistical error of the measurement then is given by

δQ2
n

∣∣
stat = 4g2(ε)

λ2n
0 N

k+p∑
j=1

κ2
j

rj

v2
n(jλ0).

In the following, we approximate v2k−1(λ) ≈ eτ/τϕ and
v2k(λ) ≈ eτ/τϕ − 1, hence we assume that vn(λ) no longer
depends on λ near the origin; since vn(0) � vn(λ), this
corresponds to a conservative estimate of the statistical error.

The approximation error δQn|approx originating from the
finite-difference formula approximating the derivative can be
obtained from Eq. (16) by substituting the Taylor expansion
of Reχ (jλ0) or Imχ (jλ0); the first n + 2p terms in this
weighted (with the coefficients wλj

) sum vanish (due to the

very definition of the weights wλj
) and the next term ∝ λ

n+2p+2
j

provides an estimate for the remainder

δQn

∣∣
approx = λ

2p+2
0 |Qn+2p+2| βn,p, (21)

with the numerical (here, we introduce the coefficients νj = j

for later reference; see Sec. III B)

βn,p = 2

∣∣ ∑k+p

j=1 ν
n+2p+2
j κj

∣∣
(n + 2p + 2)!

. (22)

Minimizing the total error δQn = δQn|stat + δQn|approx with
respect to λ0, we find the minimal error

δQn(λ̄0) = An,p |Qn+2p+2|1−2αn,p

[
g2(ε)v2

n

N

]αn,p

, (23)

with the scaling exponent

αn,p = p + 1

n + 2p + 2
(24)

and the optimal distance λ̄0 between the couplings λj :

λ̄0 = Bn,p

[
g(ε)vn

|Qn+2p+2|
√

N

]αn,p/(p+1)

. (25)

The exponent 1/(n + 2) � αn,p < 1/2 describes the precision
scaling of the experiment with the number N of measurements.
The numericals An,p and Bn,p are given by the expressions

An,p = p + 1

n

βn,p

αn,p

[Sn,p]αn,p , (26)

Bn,p = [Sn,p]αn,p/2(p+1), (27)

with

Sn,p = n2 ∑k+p

j=1 κ2
j /rj

(p + 1)2β2
n,p

. (28)

Finding the nth-order moment of the transmitted charge
requires measuring Reχ (λ) or Imχ (λ) in at least at k different
values of the coupling constant λ. Analyzing the scaling of the
net error (23) with respect to the number N of measurements,
one notes that using only a minimal number of points, i.e.,
p = 0, produces a small scaling exponent αn,0 = 1/(n + 2),
and hence reaching a good precision implies a large number N

of measurements. In order to achieve a shorter overall duration
of the experiment one needs to add more measurement points
p > 0; this strategy then allows one to reach the standard
quantum limit δQn ∝ 1/

√
N at large p.

Next, let us estimate the optimal coupling parameter λ̄0

as given by Eq. (25). Assuming a driven (or nonequilibrium)
charge transport, the higher moments scale as |Qn+2p+2| ∼
|Q̄|n+2p+2 with Q̄ = Q1 denoting the average transmitted
charge (in units of e). Then,

λ̄0 ∼ Bn,p

|Q̄|
[
g(ε)vn√

N

]αn,p/(p+1)

, (29)

and the relative accuracy of the nth moment δQn/|Qn| ∼
δQn/|Q̄|n is given by

δQn

|Q̄|n = An,p

[
g2(ε)v2

n

N

]αn,p

. (30)

Optimizing the proposed measurement scheme then requires
a weak coupling λ between the conductor and the qubit,
implying that the qubit is typically rotated by an angle
ϕ ∼ Q̄λ̄0 ∼ 1 in the xy plane of the Bloch sphere during
one Ramsey sequence (given the smallness of the exponent,
we drop the factor N−αn,p/2(p+1)). This result is quite natural,
since at large couplings λ the qubit would perform multiple
2π rotations which cannot be distinguished by the proposed
measurement scheme.
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TABLE I. Weight factors κj , scaling exponent α3,p , and numeri-
cals A3,p and B3,p determining the third moment of transmitted charge
for different additional grid points p.

p κ1 κ2 κ3 κ4 κ5 α3,p A3,p B3,p

0 −1 1
2 0 0 0 1

5 1.32 1.78

1 − 13
8 1 − 1

8 0 0 2
7 1.55 1.84

2 − 61
30

169
120 − 3

10
7

240 0 1
3 1.73 1.87

3 − 1669
720

4369
2520 − 541

1120
1261
15120 − 41

6048
4
11 1.89 1.89

1. Third-order charge moment

Let us consider in more detail the measurement of the third-
order charge momentQ3 (n = 3, k = 2) for an equidistant grid
with a different number of points 2 + p, p = 0,1, . . . . The
corresponding weight factors in Eq. (20), scaling exponent
α3,p, and scaling factors A3,p and B3,p are presented in Table I
for p = 0,1,2,3. Note that the numericals A3,p and B3,p are
all of order unity.

The weights κj in the finite-difference approximation
assume higher absolute values near the origin (small j ) and
are almost vanishing at large j . Therefore, most measurements
have to be done for the first few grid points near the origin
λ = 0; the relative number rj = Nj/N of measurements [as
they follow from Eq. (18)], are summarized in Table II [the
point λ0 = 0 requires no measurement as χ (0) = 1].

B. Nonequidistant grids

An equidistant set of grid points may not provide
the optimal result, i.e., the smallest error δQn. Hence,
let us parametrize a nonequidistant set of couplings � =
λ0{1,ν2,ν3, . . . ,νk+p} by the minimal coupling λ0 and an
ordered set of k + p constants ν1 = 1 < ν2 < · · · < νk+p.
According to Eq. (15), the finite-difference weights wλj

have
the form wλj

= κj/λ
n
0 where κj can be found from Eq. (20)

with

ω(x) = x

k+p∏
j=1

(
x2 − ν2

j

)
. (31)

Repeating the above analysis, one can minimize the sum
of statistical and approximation errors as a function of the
coupling strength parameter λ0. The results (23) and (25) then
hold true for the general grid � with the replacement of the
coefficients νj = j in Eq. (22) by the distance coefficients
νj . Dropping the requirement of equidistant grid points, one
may attempt to further optimize the factor An,p in Eq. (23)

TABLE II. Relative number of measurements rj = Nj/N for the
j th grid point.

p r1 r2 r3 r4 r5

0 2
3

1
3 0 0 0

1 0.59 0.36 0.05 0 0
2 0.539 0.373 0.080 0.008 0
3 0.5012 0.3749 0.1044 0.0180 0.0015

for given n and p. Although we have not been able to find an
analytic expression for the coefficients νj , we have performed
a numerical optimization of An,p for n = 3 and p = 0,1,2,3 as
a function of νj with the results shown in Table III (the relative
number rj of measurements remain those given in Table II).

C. Coupling strength sensitivity

Another experimental limitation is due to imperfect knowl-
edge of the coupling strengths λj . Assuming an accuracy δλj ,
the weight coefficients wλj

inherit an imprecision

δwλj
=

k+p∑
l=1

∂wλj

∂λl

δλl (32)

and the resulting variation of the charge moment is given by

δQ2
n =

k+p∑
l=1

δλ2
l

λ2
l

⎡
⎣k+p∑

j=1

λl

∂wλj

∂λl

Imχ (λj )

⎤
⎦

2

(33)

for the odd charge moments and a similar expression holds
for the even moments. A conservative estimate is obtained
by replacing |χ (λ)|2 � 1 by unity in the above formula. The
derivatives λl∂λl

wλj
= (νl/λ

n
0)∂νl

κj can be found (numeri-
cally) from Eq. (20) for a given set � of coupling strengths.
For simplicity, we assume that all coupling parameters λj are
known with the same relative accuracy ελ = δλj/λj ; then

δQ2
n �

E2
n,p

λ̄2n
0

ε2
λ, (34)

where we have replaced λ0 by λ̄0 [see Eq. (29)], and

E2
n,p =

k+p∑
l=1

⎡
⎣k+p∑

j=1

νl

∂κj

∂νl

⎤
⎦

2

(35)

is a numerical factor which depends only on the set of relative
coupling strengths νj . Given a relative accuracy ελ, one can
find the total number of measurements N̄ required to give the
same measurement precision δQn as in Eq. (30):

N̄ ∼
[
g(ε) vIm

An,pBn
n,p

En,p

]2 1

ε2
λ

. (36)

A further increase of N beyond N̄ does not improve the
precision of Qn. In Table IV below, we list the corresponding
factors E3,p for the measurement of the third-order charge
moment with an equidistant and an optimal grid. Note that
the measurement involving the optimal grid is less sensitive
to the errors in λj as compared with the measurement based
on the equidistant grid and requires less measurements N̄ .
For example, the measurement with p = 3 provides a scaling
exponent α3,3 = 4/11 and using a nonequidistant optimal grid
one arrives at the results

N̄ ≈ 17.2
g2(ε)v2

Im

ε2
λ

,
δQ3

|Q̄|3 ∼ 0.21 ε
8/11
λ , (37)
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TABLE III. Optimal grid coefficients νj , weight factors κj , and numericals A3,p and B3,p determining the third moment of transmitted
charge for an additional number of grid points p = 0,1,2,3.

p ν2 ν3 ν4 ν5 κ1 κ2 κ3 κ4 κ5 A3,p B3,p

0 2.6180 −0.5125 0.1957 1.29 1.40
1 2.8019 4.0488 −0.6897 0.3182 −0.0499 1.46 1.36
2 2.8793 4.4113 5.4113 −0.7676 0.3770 −0.0941 0.0180 1.59 1.33
3 2.9188 4.6013 5.9109 6.7417 −0.8082 0.4087 −0.1208 0.0380 −0.0080 1.68 1.31

while using an equidistant grid leads to values

N̄ ≈ 18.8
g2(ε)v2

Im

ε2
λ

,
δQ3

|Q̄|3 ∼ 0.22 ε
8/11
λ . (38)

D. Charge cumulants

In addition to the charge moments one might be interested in
the charge cumulants Kn = 〈〈Q̂n〉〉; the latter can be expressed
through a combination of charge moments Qm with m � n,
for example,

K3 = Q3 − 3Q2Q1 + 2Q3
1. (39)

Given a grid �n,p = {λ1, . . . ,λk+p} of k + p measuring
points, one has to measure all charge momentsQm with m � n.
The most imprecise measurement in the above combination is
given by the measurement of the highest charge moment Qn,
hence this measurement has to be fully optimized with respect
to the number of measurement proportions rj as well as optimal
coupling strengths λj . As follows from Eq. (29), the optimal
value of λ0 for each Qm measurement with m � n is given by

λ̄
(m)
0 ∼ Bm,p+n−m|Q̄|−1

[
g(ε)vm√

N

]1/(2n+2p−m+2)

. (40)

The precision scaling in N involves only small exponents
1/(2n + 2p − m + 2) and thus all couplings λ̄

(m)
0 are of the

same order as λ̄
(n)
0 . The lower charge moments with m < n

then can be measured using the same grid �n,p and hence the
same data χ̃ (λj ) with different weights w

(n)
λj

. Finally, as the
main contribution to the measurement error of Kn originates
from the measurement error of the largest charge moment, we
have

δKn ∼ δQn (41)

with an optimized δQn.

IV. CONCLUSION

In this paper, we have derived an optimized strategy for
measuring the charge moments Qn = 〈Q̂n〉 (and hence the
full counting statistics) in the random charge transfer across

TABLE IV. Coefficients E3,p quantifying the accuracy δQ3 under
uniform variation ελ = δλj /λj of the couplings λj .

� E3,0 E3,1 E3,2 E3,3

�eq 1.12 1.91 2.49 2.94
�opt 0.55 0.76 0.86 0.91

a mesoscopic device. These moments appear as derivatives
of the generating function χ (λ), which can be measured
with the help of a qubit performing Ramsey sequences at
couplings λ. The derivatives of χ (λ) can be determined
with the help of finite-difference formulas involving a set
of measurements at different couplings λj , j = 1, . . . k + p,
with a minimal number of couplings k = �n/2� and p � 0
additional grid points. Given a total number N of Ramsey
sequences, we have found the optimal distribution Nj of
such measurements among the different couplings λj . For an
equidistant grid, we have found the optimal grid separation
λ̄0 and the exponent α of the precision scaling, δQn ∝ N−α .
The typical coupling λ̄0 then generates a rotation ϕ ∼ 2π

on the passage of the average charge Q̄ during a Ramsey
sequence, Q̄λ̄0 ∼ ϕ/2π ∼ 1. The precision exponent αn,p

depends on the order n of the moment and the number p

of additional grid points. Higher moments come with a poor
scaling αn,0 = 1/(n + 2) for the minimal grid with p = 0. On
the other hand, choosing a large p is beneficial and allows one
to approach the standard quantum limit αsql = 1/2. The best set
of couplings λj is not equidistant; unfortunately, finding this
grid requires a numerical optimization. Such an optimization,
as well as the determination of all other relevant quantities
and numericals, has been done for the measurement of the
third-order moment Q3. Another requirement is the precise
knowledge of the couplings λj , as a relative imprecision ελ of
the couplings λj limits the number N of useful measurements
to a value N̄ ∝ 1/ε2

λ. An interesting observation is that the
nonequidistant optimized grid provides a better precision with
fewer measurements as compared with the equidistant grid,
although the difference is small [see Eqs. (37) and (38)].

Let us also discuss a few more subtle issues related to the
measurement of the full counting statistics. First, we point out
that the measured probability function or correlators depends
on the type of qubit. E.g., a flux qubit measures the passage of
directed charge (plus for right-moving, minus for left-moving)
and hence quantifies the statistics of the net transferred
charge. On the other hand, a charge qubit accumulates the
signal from passing charge independent of its direction of
motion and hence provides a characterization of the total
charge transferred across the detector (in any direction); both
quantities are measured perfectly well with the above recipe.
It is then the experimenter who has to decide about the
appropriate type of qubit that measures the quantity of interest.

A second issue is the location of the qubit detector, close
or far away from the scattering region at x = 0. This question
relates to some fundamental concerns that appeared very early
on in the context of extending the transport characteristic
beyond the noise correlator. In fact, different results have
been obtained for the third-order cumulant, once the quantum
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binomial expression [11] 〈〈Q3〉〉q ∝ −2T 2(1 − T ) when no
time ordering was imposed or when placing the qubit near
the scatterer [35], while the classical binomial result [12,14]
〈〈Q3〉〉c ∝ T (1 − T )(1 − 2T ) has been found when time or-
dering was applied as prescribed through the inclusion of
a spin detector into the description. The problem has been
resolved recently [33] with the demonstration that the classical
binomial result applies everywhere, far away as well as close
to the scatterer, at least for the case of a spin or flux qubit
device.

Another remark concerns the relation of measuring the FCS
to the problem of quantum counting [31,32], where a qubit
register of K qubits with coupling strengths λj = π/2j−1, j =
1, . . . ,K can be used to find the precise number of particles
m < 2K that has been transmitted during a time t . Repeating
the measurement many times and averaging then allows one to

find the FCS Pt (m) as well. However, in this case, the strongest
coupling λ1 = π rotates the qubit j = 1 by π on passage of
a single electron, so much stronger couplings are required
than in the present protocol where λ0 ∼ 1/Q̄. Furthermore,
quantum counting and subsequent averaging provide much
more information than needed if the goal is the measurement
of a cumulant Qn.
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