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Topological characters in Fe(Te1−xSex) thin films
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We investigate topological properties in the Fe(Te,Se) thin films. We find that the single layer FeTe1−xSex has
nontrivial Z2 topological invariance which originates from the parity exchange at the � point of the Brillouin
zone. The nontrivial topology is mainly controlled by the Te(Se) height. Adjusting the anion height, which can
be realized as the function of lattice constants and x in FeTe1−xSex , can drive a topological phase transition.
In a bulk material, the two-dimensional Z2 topology invariance is extended to a strong three-dimensional one.
In a thin film, we predict that the topological invariance oscillates with the number of layers. The results can
also be applied to iron pnictides. Our research establishes FeTe1−xSex as a unique system to integrate high-Tc

superconductivity and topological properties in a single electronic structure.
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I. INTRODUCTION

Recently, topological insulators (TIs) [1–3] and iron-based
superconductors [4,5] have attracted enormous attention in
condensed matter physics. Most topological insulators are
semiconductors with strong spin-orbit coupling in which
the bulk gap protects surface or edge states depending on
dimensionality. Their band structures are attributed to p

orbitals. Iron-based superconductors, including iron pnictides
and iron chalcogenides, are multiorbital electronic systems in
which the electronic structures are mainly attributed to Fe 3d

orbitals. Therefore, these two systems appear to be distantly
apart. However, the combination of topological insulators
and superconductors is known to generate novel physics, for
example, Majorana fermions [6,7]. The usual way to integrate
TIs and superconductivity is through superconducting prox-
imity effect by making TI-superconductor heterostructures.
Iron-based superconductors, due to their short coherent length
and material incompatibility, are not suitable to such an
integration.

However, recently, pioneer studies suggest that iron-based
superconductors can carry intrinsic nontrivial topological
properties. Two examples have been provided. One is the
single layer FeSe grown on SrTiO3 substrate where nontrivial
Z2 topology can be tuned through the band inversion at the M

point in the Brillouin zone [8]. The other is CaFeAs2 where
nontrivial topology exists on additional As layers that are
inserted between FeAs layers [9,10]. Although these results
are encouraging, in the first case, a fine-tuning is required
and in the second case, the topological properties are not
from the layers that are responsible for high temperature
superconductivity.

In this paper, we report that a single layer FeTe1−xSex

with x less than a critical value xc which is estimated to
around 0.7, carries nontrivial Z2 topological invariance that
originated from the parity exchange at the � point. We identify
that the nontrivial topology is mainly controlled by the Te(Se)
height. Adjusting the anion height, which can be realized as

*jphu@iphy.ac.cn

the function of lattice constants and x in FeTe1−xSex , can
drive a topological phase transition. An effective model is
constructed to explicitly describe the topological physics. In
a thin film, it exhibits oscillation behavior with a trilayer
structure being topologically trivial. The results can also be
applied to iron pnictides. These results establish FeTe1−xSex

as a unique system to integrate high-Tc superconductivity and
topological properties in a single electronic structure.

II. Z2 TOPOLOGICAL INVARIANCE IN THE BAND
STRUCTURE OF A SINGLE LAYER FeTe

The crystal structure of FeTe (FeSe) is shown in Fig. 1. In
order to gain insight into the nontrivial topological properties,
first we analyze a topologically trivial case, the band structure
of monolayer FeTe with lattice constant a = 3.925 Å, where
the lattice constant is close to that of monolayer FeSe on
SrTiO3 [11–13]. In Fig. 2(a), the band structure of monolayer
FeTe is plotted. Comparing the bands with spin-orbit coupling
(SOC) (red lines) and without SOC (gray lines), we find that
SOC has two main effects: (1) the twofold degenerate Eg bands
at � are split into Eg+ and Eg−; (2) the Dirac cone in the �-M
line is also gapped. The latter makes a local gap at every k

point in the Brillouin zone, which is important for defining the
topological invariant discussed in the following. The parities
of the eigenstates at � near the Fermi level are shown in
Fig. 2(a). The odd parity state A2u is contributed by Fe dxy

orbitals strongly coupled with Te pz orbitals. The two even
parity states Eg+ and Eg− are attributed to Fe dxz, dyz strongly
hybridized with Te px , py orbitals, while the other even parity
state is mainly attributed to dxy orbitals. Even though SOC is
relatively weak in iron, the separation between Eg+ and Eg− is
large because the Eg states involve both Fe 3d and Te 5p states.
With SOC, each band at X and M is fourfold degenerate and
contains two Kramers pairs, which are protected by the crystal
symmetry. The two Kramers pairs at M are related to each
other by the mirror reflection on the XZ plane ĝ1 = {σX|00}
but the two Kramers pairs at X are governed by the mirror
reflection on the YZ plane ĝ2 = {σY |00} [14]. As the inversion
operator Î = {i| 1

2
1
2 } anticommutates with ĝ1 at M and ĝ2 at X,

the two Kramers pairs at M and X have opposite parities. The
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FIG. 1. Schematic view of the structure of anti-PbO-type mono-
layer FeTe(FeSe). The space group is P 4/nmm. The X(Y ) is along
Fe-Te/Se direction and x(y) is along Fe-Fe direction.

band structure in Fig. 2(a) is topologically trivial according to
the calculation of parity product of occupied states at the four
time-reversal-invariant momenta [15].

III. ANION HEIGHT AND TOPOLOGICAL
PHASE TRANSITION

One can notice that the two states A2u and Eg+ at �,
which have opposite parities, are separated by a small gap
about 0.09 eV. If the gap can be closed and reopened, the
inversion between the two states will drive the system into a
Z2 topologically nontrivial phase because of the change of the
overall parity character.

We find that this inversion takes place in the monolayer FeTe
with a fully relaxed lattice constant parameter a = 3.805 Å. In
Fig. 2(b), we plot the band structure of monolayer FeTe, where
the two states A2u and Eg+ at � are clearly inverted. We further
investigate the origin of this band inversion and find that it is
controlled by the Te height and lattice constants. We define �s

and �n as the energy differences between A2u and Eg+ states
with SOC and without SOC, respectively. The Te height d, �s ,
and �n as functions of lattice constants are shown in Fig. 3(a).
As the lattice constant decreases, the anion height increases
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FIG. 2. Band structures for monolayer FeTe. (a) a = 3.925 Å and
(b) a = 3.805 Å. The red solid lines represent the band with SOC and
the gray lines the band without SOC. The parities of the eigenstates
at � near the Fermi level are shown: blue circles for even parities and
green circles for odd parities.
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FIG. 3. Gaps and anion height as functions of lattice constant
and tight binding band structure. (a) The Te height d and the gaps �n

and �s as functions of the in-plane lattice constant. Both Te height
and lattice constant are given in angstrom. (b) Band structures of
monolayer FeTe without SOC from tight binding model and DFT. The
red lines represent “k” bands and the green lines represent “k + Q”
bands. The black dashed lines represent the DFT bands.

and the A2u state sinks while the Eg+ state rises, resulting in
a decrease of �s and �n. Our calculations with SOC show
that the phase transition occurs at a = 3.905 Å, where the
corresponding Te height is d = 1.535 Å. For a < 3.905 Å,
the system becomes topologically nontrivial. When 3.886 <

a < 3.905, �s is negative but �n is positive, indicating that
the band inversion is completely driven by SOC, similar to
that in Bi2Se3 [16]. �n is negative for a < 3.886 Å and band
inversion has happened without SOC, leaving the two Eg bands
quadratic touching, which is the case shown in Fig. 3(b).

As the anions height can also be tuned by the concentration
of Se in FeTe1−xSex , the topological phase transition can
take place by changing the Se concentration. To estimate the
critical concentration, xc, we take the experimental data of
the lattice constants. The Se heights in FeSe and FeTe0.5Se0.5

are 1.46 Å and 1.589 Å [17,18], respectively. The topological
phase transition point is roughly at xc = 0.7 by assuming that
the anion height is linear with respect to the Se concentration
in FeTe1−xSex [19].

IV. TIGHT BINDING MODEL AND EFFECTIVE MODEL

To understand the parity exchange at �, we start from a
tight binding model of the FeTe system. A general model
including Fe d and X (X = Te,Se) p oribtals for iron-based
superconductors can be written as

Ht =
∑
αβ

∑
mn

∑
ij

(
tmn
αβ,ij + εmδmnδαβδij

)
c†αmσ (i)cβnσ (j ). (1)

Here, α and β label the sublattices (A and B for Fe and Te).
σ labels the spin and m and n label the d and p orbitals. i

and j label lattice sites. tmn
αβ,ij are the corresponding hopping

parameters. εm are the on-site energies of d or p orbitals.
c
†
αmσ (i) creates a spin-σ electron in the m orbital of the α

sublattice at site i. As detailed in Appendix C, we can eliminate
the sublattice index by writing the Hamiltonian in momentum
space with respect to one Fe unit cell,

Ht =
∑

σ,k∈BZ1

φ†
σ (k)A(k)φσ (k). (2)
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FIG. 4. The band structures with different hopping parameters q43
xy . (a) q43

xy = 0.649 eV. (b) q43
xy = 0.624 eV. (c) q43

xy = 0.569 eV. The color
represents the weights of Fe dxy orbitals. The A2u state at � point sinks with the decreasing of q43

xy .

In this case, as the inversion symmetry exchange the two
sublattices, at � and M points the parity of cm(0) is even and
cm(Q) odd for α being d-orbital while the parity of cm(0) is odd
and cm(Q) even for α being p orbital with Q = (π,π ) [20,21].

Without SOC, the Ht can be constructed, as shown in
Fig. 3(b), by fitting the density functional theory (DFT) band
structure and the corresponding hopping parameters are given
in appendix Table II. The red bands are referred to as “k”
bands and the green ones are referred to as “k + Q” bands.
We find that the band inversion is mainly controlled by the
coupling between the Fe d orbital and the Te p orbital, which
is described by the hopping parameter q43

xy , the nearest neighbor
(NN) hopping between Fe dxy and Te pz. As the lattice constant
increases, the height of Te in monolayer FeTe decreases and the
coupling between the Fe d orbital and the Te p orbital becomes
stronger so that q43

xy changes significantly. In Figs. 4(a)–4(c),
we plot the band structures with different q43

xy . As the q43
xy

decreases, the odd parity A2u band sinks below the even parity
bands.

How to understand this effect of q43
xy? From the tight binding

Hamiltonian, we know that the NN coupling term between
Fe dxy and Te pz is 4q43

xycos(kx/2)cos(ky/2). Thus, at the �

point this coupling vanishes in the “k + Q” bands. However,
it is maximized at � in the “k” bands. The energy difference
between the two coupled states is proportional to the coupling
parameter. Therefore, the top state at � sinks with the decrease
of q43

xy . When the gap between the A2u and Eg states is less
than 80 meV, SOC can induce band inversion. When the A2u

state sinks below the Eg state, away from the � point the
dxy orbital can couple with the dxz and dyz orbitals, which
produces an anticrossing. After the parity exchange, shown
in Fig. 4(c), the system becomes topologically nontrivial
with SOC.

An effective Hamiltonian can be derived to capture the
parity exchange bands near the � point by including SOC. The
detailed construction is provided in Appendix D. Focusing on

TABLE I. Parameters in the four-band effective model for
monolayer FeTe with different lattice constants.

Lattice (Å) C (eV) M (eV) D(eV Å2) B (eV Å2) A (eV Å)

3.805 0.082 −0.221 3.381 −4.122 2.318
3.9 0.284 −0.009 −0.880 −1.157 1.287
3.925 0.336 0.045 −0.586 −0.100 1.426

the � point, the dxz and dyz orbitials couple with the px and
py orbitals and the dxy orbital couples with the pz orbital. We
combine them to form new bases and in the basis �eff(k) =
[c1+,↑(k),c−1+,↑(k),c0+,↑(k),c−1+,↓(k),c1+,↓(k),c0+,↓(k)]T ,
we can get the effective model around the � point as

Heff =
∑

k

�
†
eff(k)heff(k)�eff(k), (3)

heff(k) =
(

h1(k) 0

0 h�
1(−k)

)
. (4)

The h1(k) is a 3 × 3 matrix given in Appendix D. The
bands of this effective model can capture the DFT bands
around the � point (see Fig. 8 in appendix). As the
band energy attributed to the c−1+,↑(k) is typically much
lower, the six-band structure can be further approximated
by a minimum effective four-band structure in the new ba-
sis �̃eff(k) = [c1+,↑(k),c0+,↑(k),c−1+,↓(k),c0+,↓(k)]T ; the final
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FIG. 5. Energy and momentum dependence of the LDOS for the
monolayer FeTe with a = 3.805 Å on the [100] edge. The higher
LDOS is represented by brighter color. The ingap edge states can be
clearly seen around the � point, which clearly indicates the nontrivial
topology of monolayer FeTe.
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effective Hamiltonian reads

Heff =
∑

k

�̃
†
eff(k)h̃eff(k)�̃eff(k), (5)

h̃eff(k) = ε0(k) +

⎛
⎜⎜⎜⎝

−M(k) Ak+ 0 0

Ak− M(k) 0 0

0 0 −M(k) −Ak−
0 0 −Ak+ M(k)

⎞
⎟⎟⎟⎠, (6)

where ε0(k) = C − D(k2
x + k2

y), M(k) = M − B(k2
x + k2

y),
and k± = kx ± iky . M > 0 corresponds to the normal regime,
whereas M < 0 corresponds to the inverted regime, namely,
the topologically nontrivial regime. The fitting parameters for
different lattice constants are given in Table I. The bands of
this model are given in Fig. 8 in Appendix D.

As discussed above, the monolayer FeTe is in the topo-
logically nontrivial region. To show the effect of nontrivial
topology, we calculate the surface Green’s function of the
semi-infinite system using an iterative method [22,23]. The
edge local density of states (LDOS) of (100) edge for FeTe
monolayer is shown in Fig. 5. The nontrivial edge states
confirm the conclusion that monolayer FeTe is topologically
nontrivial by parity analysis.

V. MULTI-FeTe LAYERS

The band structures of a bilayer and trilayer FeTe are given
in Figs. 8 and 9 in the Appendix. We find that the bilayer
and quad-layer systems are topologically nontrivial while
the trilayer system is topologically trivial. This oscillation
behavior is similar to that of Bi2Se3 thin films [24] and
can be argued as follows (detailed in Appendix E). We can
assume that there are only couplings in A2u states between
two nearest-neighbor layers. In a bilayer system, a bonding and
an antibonding band are formed due to the coupling between
two layers. If the coupling is strong enough, the antibonding
band gains energy and becomes unoccupied. Therefore, the
overall topological Z2 character is the same as in the single
layer. In a trilayer system, it is only one band among the three
reconstructed bands that due to the layer coupling becomes
unoccupied. In this case, the overall Z2 character changes
and becomes trivial. In a quad-layer system, there are two
bands among the four reconstructed bands which gain energy.
However, one of them gains a much smaller energy. If this
energy gain is not large enough to lift the band unoccupied,
the system has the nontrivial Z2 topological invariance. The
argument can be quantified as detailed in Appendix E. Let �

be the energy required to make the A2u band unoccupied at the
� point and J is the layer coupling strength. To be consistent
with our finding, we must have 0.62 < �

J
< 1. According to

our calculation, �
J

is about 0.9, confirming the validity of our
arguments.

VI. DISCUSSION

According to the aforementioned discussion, we know that
the height of Te(Se) or lattice constants play an essential role
in the topological phase transition. Besides tuning the height
in FeTe1−xSex by changing x to drive a topological phase

transition, it is known that in the monolayer FeSe, the substrate
can also affect the in-plane lattice constants and tune the Se
height. For example, the measured lattice constant of FeSe
on SrTiO3 is about 3.82 Å [25] while the lattice constant
is 3.99 Å in FeSe/Nb:SrTiO3/KTaO3 heterostructures [26].
Therefore, the nontrivial topology discussed here may also
exist in the monolayer FeSe on a substrate. Even if the strength
of SOC in iron pnictides is relatively weaker than those of iron
chalcogenides, the coupling between Fe and anions can still
create parity exchange. For bulk system, the parity exchange
can happen at the Z point, which will drive the system into a
strong topological phase.

The existence of nontrivial topology in FeTe1−xSex is
supported by the recent experimental observation [27] in a
bulk material. Zhang et al. observed an electron band above
the Fermi level in FeTe0.55Se0.45 [27], which is rather similar
to the band of FeTe with a = 3.925 Å. Furthermore, recently 1
UC FeSe/SrTiO3 is found to lie in proximity to the topological
phase transition [28]. It is also worth mentioning that a
zero-bias peak (ZBP) was observed recently at an iron impurity
site in the superconducting state of FeTe1−xSex [29]. The
robustness of zero-energy bound state against magnetic field
could support its closeness to nontrivial topology. However, no
ZBP was observed at the impurity site in the FeSe material [30].
According to our calculations, the FeSe is topologically
trivial but FeTe1−xSex (x < 0.7) is topologically nontrivial.
Therefore, the ZBP is most likely to be related to the nontrivial
topology discussed above. In experiments, the topological
phase transition can be clearly seen by tracking the gap
evolution at the � point with the increase of Te concentration
in FeTe1−xSex . The topologically protected one-dimensional
nontrivial edge states, as shown in Fig. 5, can be detected in
scanning tunneling microscopy experiments [31,32].

In conclusion, we predict that the monolayer and the thin
film FeTe1−xSex is in a topological phase, which is induced
by the parity exchange at the � point. The FeTe1−xSex can be
an ideal system for realizing topological superconductors and
Majorana fermions in a single phase.

Note added. Recently, we have learned that an independent
study on the bulk band structure of FeTe1−xSex and its
three-dimensional nontrivial topology is being carried out
simultaneously with this work [33].
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APPENDIX A: PARITIES AT X AND M POINTS

Each band is fourfold degenerate at X and M points and
includes two Kramers pairs, protected by the crystal symmetry.
At the X [kX = (π,0)] point an eigenstate is |(kX)〉 and
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FIG. 6. The orbital characters of band structures from DFT with different lattice constants. (a) a = 3.805 Å, (b) a = 3.9 Å, and (c)
a = 3.925 Å. The inset in (b) shows the bands near the � point.

ĝ2|(kX)〉 is also an eigenstate with the same energy at X.
The products of ĝ2 and Î are

ĝ2Î = {
C2X

∣∣ 1
2

1
2

}
, (A1)

Î ĝ2 = {
C2X

∣∣ − 1
2

1
2

}
, (A2)

where C2X is a twofold rotation around the X axis. Thus,
ĝ2 does not commute with Î and ĝ2Î differs from ĝ2Î by a
lattice vector translation. From the above equations, we have
{ĝ2,Î } = 0 at X. Therefore, the two states connected by ĝ2

at X have opposite parities. Similar calculations show that
{ĝ1,Î } = 0 at the M point. The two Kramers pairs at the M

point connected by ĝ2 also have opposite parities.

APPENDIX B: ORBITAL CHARACTERS FOR
MONOLAYER FeTe WITH DIFFERENT

LATTICE CONSTANTS

Our DFT calculations employ the projector augmented
wave (PAW) method encoded in the Vienna ab initio simu-
lation package (VASP) [34–36], and the generalized-gradient
approximation (GGA) [37] for the exchange correlation
functional are used. The cutoff energy of 500 eV is taken
for expanding the wave functions into plane-wave basis. In
the calculation, the Brillouin zone is sampled in the k space
within the Monkhorst-Pack scheme [38]. The number of these
k points is 11 × 11 × 1 for monolayer and bilayer FeTe. We
relax the lattice constants and internal atomic positions and
forces are minimized to less than 0.01 eV/Å in the relaxation.
We used the maximally localized Wannier functions (MLWFs)
to construct a tight binding model by fitting the DFT band
structure, where 16 MLWFs are included.

The orbtial characters of DFT bands for FeTe with different
lattice constants are shown in Fig. 6. The monolayer FeTe of
a = 3.805 and a = 3.9 Å have inverted band structures, while
the monolayer FeTe of a = 3.925 Å has a norm band. The band
inversion in FeTe a = 3.9 Å is driven by spin-orbit coupling, as
shown in the inset of Fig. 6(b). We have performed calculations
with monolayer FeSe with a = 3.805 Å and d = 1.59 Å (no
relaxation) and find that the band structure at � [see Fig. 7(a)] is
rather similar to that of FeTe. The band inversion has happened.

Therefore, in the main text, the main effect of Se concentration
in FeTe1−xSex is modeled as the change of anion height. In
iron pnictides LiFeAs, the parities at � and Z are shown in
Fig. 7(b) and we find that band inversion happens at the Z

point, which is induced by the interlayer coupling of As pz

and Fe d orbitals.

APPENDIX C: 16d p TIGHT BINDING MODEL

A general model including Fe d and X (X = Te,Se) p

oribtals for iron-based superconductors can be written as

Ht =
∑
αβ

∑
mn

∑
ij

(
tmn
αβ,ij + εnδmnδαβδij

)
c†αmσ (i)cβnσ (j )

(C1)

Basically the primitive cell contains two Fe atoms in iron-
based superconductors. To obtain the tight binding model in
one-Fe unit cell, we need a particular gauge to unfold the band
structure. To get this gauge, we need to find out which hopping
terms break the translational symmetry in a one-Fe unit cell.

Consider the symmetry operation: the reflection across
the xy plane σz and the in-plane translation by one Fe-Fe
distance T . R = σzT = {σz| 1

2
1
2 } is the symmetry operation of

the lattice for the iron-based superconductor. The Hamiltonian
can be written as H = HAA + HBB + HAB , where A and B

denote the sublattices. We can classify the d and p orbitals
according to eigenvalues of the operation σz into two groups:
{dxz,dyz,pz} ∈ g1 and {dz2 ,dx2−y2 ,dxy,px,py} ∈ g2, where the
orbital basis is aligned parallel to the nearest-neighbor Fe-Fe
direction. Consider the hopping term,

Hagα,bgβ
=

∑
ij,α∈gα,β∈gβ

(tai,bj c
†
iaαcjbβ + H.c.), (C2)

where a and b are sublattice indices. Under the operation R,
we have

RHagα,bgβ
R† = (−1)δgαgβ

∑
ij,α∈gα,β∈gβ

(tai,bj c
†
iāαcj b̄β + H.c.),

(C3)
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FIG. 7. (a) The orbital characters of band structures in FeSe with a = 3.805 and d = 1.59 Å. (b) The band structure of LiFeAs. The parities
of the eigenstates at � and Z near the Fermi level are shown: blue circles for even parities and green circles for odd parities.

where ā represents the opposite sublattice. If gα = gβ ,
RHagα,bgβ

R† = Hāgα,b̄gβ
and this term preserves the transla-

tional symmetry of one Fe unit cell. If gα �= gβ , however,
there should be a minus sign after the operation, that is,
RHagα,bgβ

R† = −Hāgα,b̄gβ
. It is the above hopping terms that

break the translational symmetry of one iron unit cell. The
origin of the minus sign is attributed to the σz operation

on g1 orbitals, (dxz,dyz,pz)
σz−→ −(dxz,dyz,pz). To obtain the

Hamiltonian in one iron unit cell, we can choose an artificial

gauge (dxz,dyz,pz)
T−→ −(dxz,dyz,pz), that is, the signs of

orbitals in the g1 group are opposite for A and B sublattices.
With this gauge, RHagα,bgβ

R† = Hāgα,b̄gβ
is satisfied and all

the hopping terms preserve the translational symmetry of one
Fe unit cell. Because only the intergroup hopping terms break
the translation symmetry, we can also choose another gauge:

(dz2 ,dxy,dx2−y2 ,px,py)
T−→ −(dz2 ,dxy,dx2−y2 ,px,py) and it

can also ensure that the Hamiltonian is invariant under one
Fe unit cell translation. In the artificial gauge, the intergroup
hopping parameters and intragroup with gauge (g1 or g2)
hopping parameters between sites separated by an odd number
of lattice constants (one Fe lattice) are opposite to those in the
natural gauge. In the following, we adopt the latter gauge.

The tight binding Hamiltonian in momentum space can be
written as

H =
∑
kσ

φ†
σ (k)A(k)φσ (k). (C4)

Here, k is defined in the Brillioun zone of one Fe unit cell
(BZ1). φσ (k) = [cxzσ (k),cyzσ (k),cx2−y2σ (k + Q),cxyσ (k +
Q),cz2σ (k + Q),cxσ (k + Q),cyσ (k + Q),czσ (k)]T with
Q = (π,π ) defined in the BZ of one Fe unit cell. The matrix
elements of A(k) are given in the next part of Appendix C and
the hopping parameters are given in Table II. The connection
between the bases in the one-Fe unit cell and the two-Fe unit
cell is

cα(k) =
√

2

2
[cAα(q) + cBα(q)] (C5)

cα(k + Q) =
√

2

2
[cAα(q) − cBα(q)], (C6)

where q is defined in the BZ of the two-Fe unit cell (BZ2).
The on-site SOC Hamiltonian in momentum space reads

Hso = Hsf + Hsnf , (C7)

Hsnf =
∑

k∈BZ1

−iσλ1

2
c†xzσ (k)cyzσ (k) +

∑
k

iσλ1c
†
xyσ (k)cx2−y2σ (k) +

∑
k

−iσλ2

2
cxσ (k)cyσ (k) + H.c., (C8)

Hsf =
∑

k

iλ1

2
c
†
xy↑(k)[−cxz↓(k) − icyz↓(k)] + iλ1

2
c
†
xy↓(k)[−cxz↑(k) + icyz↑(k)]

+ iλ1

2
c
†
x2−y2↑(k)[−icxz↓(k) + cyz↓] + iλ1

2
c
†
x2−y2↓(k)[icxz↑(k) + cyz↑(k)]

+ i
√

3λ1

2
c
†
z2↑(k)[icxz↓(k) + cyz↓(k)] + i

√
3λ1

2
c
†
z2↓(k)[−icxz↑(k) + cyz↑(k)]

+ iλ2

2
c
†
z↑(k)[icx↓(k) + cy↓(k)] + iλ2

2
c
†
z↓(k)[−icx↑(k) + cy↑(k)], (C9)

115129-6



TOPOLOGICAL CHARACTERS IN Fe(Te1−xSex) . . . PHYSICAL REVIEW B 93, 115129 (2016)

TABLE II. Hopping parameters to fit the DFT bands in the tight binding model for monolayer FeTe with a = 3.805 Å. The x direction is
along the Fe-Fe bond. The on-site energies of the d and p oribtals are (all in eV): ε1 = −0.723, ε3 = −1.082, ε4 = −0.766, ε5 = −0.980,
ε6 = −2.417, and ε8 = −2.712.

v vmn
i i = x i = y i = xy i = xx i = yy i = xxy i = xyy i = xxyy

mn = 11 0.272 −0.043 0.043 −0.009 −0.007 −0.012 0.013
mn = 33 0.392 0.074 0.013
mn = 44 −0.297 −0.062 −0.007
mn = 55 0.159 −0.074 0.008 −0.008
mn = 12 0.020

t mn = 13 0.078
mn = 14 0.175 0.075
mn = 15 0.045 −0.062
mn = 34
mn = 35 −0.220
mn = 45 0.046

mn = 11 0.105 0.046 0.010 0.041
mn = 12 0.722 0.019 −0.104 0.021
mn = 13 0.134 0.066 −0.027 0.014
mn = 31 −0.491 0.048 −0.028

q mn = 33 −0.016
mn = 41 0.067 −0.066 0.051
mn = 43 0.569 −0.014 −0.035
mn = 51 0.303 −0.056
mn = 53 −0.472 0.010

mn = 11 −0.261 −0.175 0.340 0.014 −0.014 0.048
mn = 33 0.319 −0.042 −0.009 −0.023

s
mn = 12 0.511
mn = 13 −0.367

where σ labels spin and λ1 and λ2 are the parameters of SOC for Fe and Te. Hsp and Hsnp are the spin-flip and nonflip terms in
SOC, respectively. The Hamiltonian of the FeTe system is

H = Ht + Hso =
∑

k∈BZ1

�†(k)B(k)�(k), (C10)

where �(k) = [φT
↑ (k),φT

↑ (k + Q),φT
↓ (k),φT

↓ (k + Q)]T . The Hamiltonian matrix B(k) is

B(k) =

⎛
⎜⎜⎜⎝

A(k) + hsnf (k) 0 0 hsp(k)

0 A(k + Q) + hsnf (k + Q) hsp(k + Q) 0

0 h
†
sp(k + Q) A(k) − hsnf (k) 0

h
†
sp(k) 0 0 A(k + Q) − hsnf (k + Q)

⎞
⎟⎟⎟⎠. (C11)

Here, hsnp(k) and hsp(k) have the form

hsnp(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − iλ1
2 0 0 0 0 0 0

iλ1
2 0 0 0 0 0 0 0

0 0 0 −iλ1 0 0 0 0

0 0 iλ1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 − iλ2
2 0

0 0 0 0 0 iλ2
2 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C12)
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hsp(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − λ1
2

iλ1
2

√
3λ1
2 0 0 0

0 0 − iλ1
2 − λ1

2 − i
√

3λ1
2 0 0 0

λ1
2

iλ1
2 0 0 0 0 0 0

− iλ1
2

λ1
2 0 0 0 0 0 0

−
√

3λ1
2

i
√

3λ1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 λ2
2

0 0 0 0 0 0 0 −iλ2
2

0 0 0 0 0 − λ2
2

iλ2
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C13)

The matrix elements of A(k)

a. d-d hopping terms

For d orbitals the matrix elements are
(a) intraorbital terms:

ξ11/22 = ε1 + 2t11
x/ycos kx + 2t11

y/xcos ky + 4t11
xy cos kxcos ky + 2t11

xx/yycos 2kx + 2t11
yy/xxcos 2ky + 4t11

xxy/xyycos 2kxcos ky

+ 4t11
xyy/xxycos kxcos 2ky + 4t11

xxyycos 2kxcos 2ky, (C14)

ξ33 = ε3 + 2t33
x (cos kx + cos ky) + 4t33

xy cos kxcos ky + 2t33
xx(cos 2kx + cos 2ky) + 4t33

xxyycos 2kxcos 2ky (C15)

ξ44 = ε4 + 2t44
x (cos kx + cos ky) + 4t44

xy cos kxcos ky + 2t44
xx(cos 2kx + cos 2ky) + 4t44

xxy(cos 2kxcos ky + cos kxcos 2ky),

+ 4t44
xxyycos 2kxcos 2ky, (C16)

ξ55 = ε5 + 2t55
x (cos kx + cos ky) + 4t55

xy cos kxcos ky + 2t55
xx(cos 2kx + cos 2ky) + 4t55

xxy(cos 2kxcos ky + cos kxcos 2ky)

+ 4t55
xxyycos 2kxcos 2ky ; (C17)

(b) interorbital terms:

ξ12 = −4t12
xy sinkxsinky − 4t12

xxy(sin2kxsinky + sinkxsin2ky) − 4t12
xxyysin2kxsin2ky, (C18)

ξ13/23 = ±2it13
y sinky/x ± 4it13

xy sinky/xcoskx/y ± 2it13
yy sin2ky/x ± 4it13

xxysinky/xcos2kx/y ± 4it13
xyysin2ky/xcoskx/y

± 4it13
xxyysin2ky/xcos2kx/y, (C19)

ξ14/24 = 2it14
x sinkx/y + 4it14

xy cosky/xsinkx/y + 2it14
xxsin2kx/y + 4it14

xxysin2kx/ycosky/x

+ 4it14
xxyysin2kx/ycos2ky/x, (C20)

ξ15/25 = 2it15
y sinky/x + 4it15

xy coskx/ysinky/x + 2it15
yy sin2ky/x + 4it15

xxycos2kx/ysinky/x + 4it15
xyycoskx/ysin2ky/x

+ 4it15
xxyycos2kx/ysin2ky/x, (C21)

ξ34 = −4t34
xxy(sin2kxsinky − sinkxsin2ky), (C22)

ξ35 = 2t35
x (coskx − cosky) + 4t35

xxy(cos2kxcosky − coskxcos2ky) + 2t35
xx(cos2kx − cos2ky), (C23)

ξ45 = −4t45
xy sinkxsinky − 4t45

xxy(sin2kxsinky + sinkxsin2ky) − 4t45
xxyysin2kxsin2ky. (C24)

b. p-p hopping terms

For p orbitals the matrix elements are
(a) intraorbital terms:

ξ66/77 = ε6 + 2s11
x coskx/y + 2s11

y cosky/x + 4s11
xycoskx/ycosky/x + 4s11

xxycos2kx/ycosky/x

+ 4s11
xyycoskx/ycos2ky/x + 4s11

xxyycos2kx/ycos2ky/x, (C25)

ξ88 = ε8 + 2s33
x (coskx + cosky) + 4s33

xycoskxcosky + 2s33
xx(cos2kx + cos2ky) + 4s33

xyy(coskxcos2ky + cos2kxcosky); (C26)

(b) interorbital terms:

ξ67 = −4s12
xysinkxsinky, (C27)

ξ68/78 = 2is13
x sinkx/y. (C28)
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c. d-p hopping terms

The matrix elements between d and p orbitals are

ξ16/27 = 4q11
xycos

(
1
2kx/y

)
cos

(
1
2ky/x

) + 4q11
xyycos

(
1
2kx/y

)
cos

(
3
2ky/x

) + 4q11
xxycos

(
3
2kx/y

)
cos

(
1
2ky/x

)
+ 4q11

xxyycos
(

3
2kx/y

)
cos

(
3
2ky/x

)
, (C29)

ξ17/26 = −4q12
xysin

(
1
2kx/y

)
sin

(
1
2ky/x

) + 4q12
xyysin

(
1
2kx/y

)
sin

(
3
2ky/x

) + 4q12
xxysin

(
3
2kx/y

)
sin

(
1
2ky/x

)
− 4q12

xxyysin
(

3
2kx/y

)
sin

(
3
2ky/x

)
, (C30)

ξ18/28 = 4iq13
xysin

(
1
2kx/y

)
cos

(
1
2ky/x

) − 4iq13
xyysin

(
1
2kx/y

)
cos

(
3
2ky/x

) + 4iq13
xxysin

(
3
2kx/y

)
cos

(
1
2ky/x

)
+ 4iq13

xxyysin
(

3
2kx/y

)
cos

(
3
2ky/x

)
, (C31)

ξ36/37 = ±4iq31
xycos

(
1
2kx/y

)
sin

(
1
2ky/x

) ± 4iq31
xyycos

(
1
2kx/y

)
sin

(
3
2ky/x

) ∓ 4iq31
xxycos

(
3
2kx/y

)
sin

(
1
2ky/x

)
, (C32)

ξ38 = 4q33
xyy

[
sin

(
1
2kx

)
sin

(
3
2ky

) − sin
(

3
2kx

)
sin

(
1
2ky

)]
, (C33)

ξ46/47 = 4iq41
xysin

(
1
2kx/y

)
cos

(
1
2ky/x

) − 4iq41
xyysin

(
1
2kx/y

)
cos

(
3
2ky/x

) + 4iq41
xxysin

(
3
2kx/y

)
cos

(
1
2ky/x

)
, (C34)

ξ48 = 4q43
xycos

(
1
2kx

)
cos

(
1
2ky

) + 4q43
xyy

[
cos

(
1
2kx

)
cos

(
3
2ky

) + cos
(

3
2kx

)
cos

(
1
2ky

)] + 4q43
xxyycos

(
3
2kx

)
cos

(
3
2ky

)
, (C35)

ξ56/57 = 4iq51
xycos

(
1
2kx/y

)
sin

(
1
2ky/x

) + 4iq51
xyycos

(
1
2kx/y

)
sin

(
3
2ky/x

) − 4iq51
xxycos

(
3
2kx/y

)
sin

(
1
2ky/x

)
, (C36)

ξ58 = −4q53
xysin

(
1
2kx

)
sin

(
1
2ky

) + 4q53
xyy

[
sin

(
1
2kx

)
sin

(
3
2ky

) + sin
(

3
2kx

)
sin

(
1
2ky

)]
(C37)

APPENDIX D: EFFECTIVE MODELS AROUND � POINT

From the DFT band structure of FeTe, we find that the states at the � point near the Fermi level are mainly attributed to Fe
dxz, dyz, dxy and Te px , py , pz orbitals; hence we focus on these states and neglect the others. When considering SOC, it is
convenient to transform the atomic orbitals to harmonic oribtals with definite oribtal angular momentum,

c2±1,σ (k) = ∓ 1√
2

[cxzσ (k) ± icyzσ (k)], (D1)

c1±1,σ (k) = ∓ 1√
2

[cxσ (k) ± icyσ (k)]. (D2)

At the � point, dxz orbitals can only couple with px and dyz with py and dxy with pz. At the � point, the effective Hamiltonian
in the basis of [c21,σ (k),c11,σ (k + Q),c2−1,σ (k),c1−1,σ (k + Q),cxy,σ (k + Q),cz,σ (k)] is

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxz + σλ1/2 t� 0 0 0 0

t� εx + σλ2/2 0 0 0 0

0 0 εxz − σλ1/2 t� 0 0

0 0 t� εx − σλ2/2 0 0

0 0 0 0 εxy t ′�
0 0 0 0 t ′� εz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D3)

The matrix is block diagonal and the eigenvalues are

E±
1σ =

a1 + b1 ±
√

(a1 − b1)2 + 4t2
�

2
, (D4)

E±
2σ =

a2 + b2 ±
√

(a2 − b2)2 + 4t2
�

2
, (D5)

E±
0σ =

εxy + εz ±
√

(εxy − εz)2 + 4t ′2�
2

, (D6)
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TABLE III. Parameters in the six-band effective model for monolayer FeTe with different lattice constants. The units of Cn, An and Dn, Bn

are eV, eV Å, eV Å2.

Lattice (Å) C1 C3 C4 D1 D2 B2 D3 D4 A1 A2

3.805 0.303 0.167 −0.140 −4.212 0.222 0.300 −2.294 0.884 1.475 1.744
3.9 0.293 0.176 0.275 −4.175 0.715 0.212 −2.879 −0.152 1.467 1.701
3.925 0.291 0.179 0.381 −4.077 −0.843 0.078 −3.167 −0.321 1.494 1.642

where a1/2 = εxz ± σλ1/2 and b1/2 = εx ± σλ2/2. The corre-
sponding eigenvectors are

(
α±

1σ

β±
1σ

)
= 1

N1±

(
E±

1σ − εx − σλ2/2

t�

)
, (D7)

(
α±

2σ

β±
2σ

)
= 1

N2±

(
E±

2σ − εx + σλ2/2
t�

)
, (D8)

(
α±

3σ

β±
3σ

)
= 1

N3±

(
E±

3σ − εz

t�

)
. (D9)

Here, N1,2,3± are the normalization factors. Now, we define a
new basis,

c1±,σ (k) = α±
1σ c21,σ (k) + β±

1σ c11,σ (k + Q), (D10)

c−1±,σ (k) = α±
2σ c2−1,σ (k) + β±

2σ c1−1,σ (k + Q), (D11)

c0±,σ (k) = α±
3σ cxy,σ (k + Q) + β±

3σ cz,σ (k), (D12)

with α±
1± = α±

2∓, β±
1± = β±

2∓, α−
1,2± = β+

1,2±, and β−
1,2± =

−α+
1,2±. Let α1 = α+

1+, α2 = α+
1−, β1 = β+

1+, β2 = β+
1−,

γ = α+
3+, and δ = β+

3+, the new basis is φ̃σ (k) = [c1+,σ

(k),c−1+,σ (k),cx2−y2,σ (k + Q),c0+,σ (k),cz2,σ ,c1−,σ (k),c−1−,σ

(k),c0−,σ (k)]T and φ̃σ (k) = Uφσ (k), where the unitary matrix
U is given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− α1√
2

− α1√
2
i 0 0 0 − β1√

2
− β1√

2
i 0

α2√
2

− α2√
2
i 0 0 0 β2√

2
− β2√

2
i 0

0 0 1 0 0 0 0 0

0 0 0 γ 0 0 0 δ

0 0 0 0 1 0 0 0

− β1√
2

− β1√
2
i 0 0 0 α1√

2
α1√

2
i 0

β2√
2

− β2√
2
i 0 0 0 − α2√

2
α2√

2
i 0

0 0 0 δ 0 0 0 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D13)

In the new basis �̃(k) = [φ̃T
↑ (k),φ̃T

↑ (k + Q),φ̃T
↓ (k),φ̃T

↓ (k +
Q)]T the Hamiltonian can be rewritten as

H =
∑

k

�̃†(k)B̃(k)�̃(k), (D14)

B̃(k) =

⎛
⎜⎜⎜⎜⎝

Ã(k) + h̃snf (k) 0 0 h̃sp(k)

0 Ã(k + Q) + h̃snf (k + Q) h̃sp(k + Q) 0

0 h̃
†
sp(k + Q) Ã(k) − hsnf (k) 0

h̃
†
sp(k) 0 0 Ã(k + Q) − h̃snf (k + Q)

⎞
⎟⎟⎟⎟⎠. (D15)

From the DFT band, we find that the band inversion happens in the “k” bands and we focus on the “k” bands near the Fermi
level in the following. In the basis �eff(k) = [c1+,↑(k),c−1+,↑(k),c0+,↑(k),c−1+,↓(k),c1+,↓(k),c0+,↓(k)], we can get the effective
model around the � point as

Heff =
∑

k

�
†
eff(k)heff(k)�eff(k), (D16)

heff(k) =
(

h1(k) 0

0 h�
1(−k)

)
. (D17)

The h1(k) has the following form:

h1(k) =

⎛
⎜⎝

D1
(
k2
x + k2

y

) + C1 D2
(
k2
x − k2

y

) + iB2kxky A1k+
D2

(
k2
x − k2

y

) − iB2kxky D3
(
k2
x + k2

y

) + C3 A2k−
A1k+ A2k− D4

(
k2
x + k2

y

) + C4

⎞
⎟⎠. (D18)

The fitting parameters for different lattice constants are
given in Table III and the corresponding bands are shown in
Fig. 8. The bands of this effective model fit well with those of

DFT around the � point. As E+
1↑ > E−

−1↑, we can neglect
the states with energies E−

−1↑. In the new basis �̃eff(k) =
[c1+,↑(k),c0+,↑(k),c−1+,↓(k),c0+,↓(k)], the four-band effective
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FIG. 8. Band structures from DFT and effective models for monolayer FeTe with different lattice constants. (a) a = 3.805 Å, (b) a = 3.9 Å,
and (c) a = 3.925 Å. The red lines represent DFT band. The green and blue lines represent bands from six-band and four-band effective models,
respectively.

Hamiltonian reads

Heff =
∑

k

�̃
†
eff(k)h̃eff(k)�̃eff(k), (D19)

h̃eff(k) = ε0(k) +

⎛
⎜⎜⎜⎝

−M(k) Ak+ 0 0

Ak− M(k) 0 0

0 0 −M(k) −Ak−
0 0 −Ak+ M(k)

⎞
⎟⎟⎟⎠,

(D20)

where εk = C − D(k2
x + k2

y), M(k) = M − B(k2
x + k2

y), and
k± = kx ± iky . M < 0 corresponds to the inverted regime,
whereas M > 0 corresponds to the normal regime. The fitting
parameters for different lattice constants are given in Table I in
the main text and the corresponding bands are given in Fig. 8.
M < 0 for lattice constant a = 3.9 and a = 3.805 Å, which
indicates that the systems are topologically nontrivial.

APPENDIX E: ELECTRONIC STRUCTURES AND Z2

TOPOLOGICAL NUMBERS FOR MULTILAYER FeTe

The band structure of bilayer FeTe is shown in Fig. 9(a).
The parities of states near the Fermi level are shown in Fig. 9(a)
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FIG. 9. Band structure and orbital characters from DFT for
bilayer FeTe with a = 3.809 Å. (a) The red and gray lines denote
the bands with SOC and without SOC. (b) The orbital characters of
band structure near the Fermi level.

and the oribtal characters are shown in Fig. 9(b). For the
bilayer system, the inversion center is in the middle of the two
layers. Therefore, Icα,u(k) = cα,b(−k) and Icα,u(k + Q) =
−cα,b(−k + Q) for α = d orbitals and Icα,u(k) = −cα,b(−k)
and Icα,u(k + Q) = cα,b(−k + Q) for α = p orbitals, where u

and b are the layer indices. Because of the interlayer coupling,
the number of states near the Fermi level doubles compared
with the case of monolayer FeTe. The antibonding states with
odd parity have high energies. The A2u state contributed by
dxy and pz have a strong interlayer coupling, leading to a large
separation between A−

2u and A+
2u. Similar to the monolayer

case, the system is topologically trivial if A+
2u and A−

2u states
are above the E−

g± state. However, in bilayer FeTe with
a = 3.809 Å, A+

2u sinks below the E−
g± states, as shown in

Fig. 9. Now, the parity exchange happens and the system is
topologically nontrivial.

Figure 10 shows the band structure of trilayer FeTe.
According to the parities shown in Fig. 10(a), we find that
band inversion happens twice at the � point. Therefore, the
trilayer FeTe is in a topologically trivial phase. Moreover, we
have found that the quad-layer FeTe is topologically nontrivial.
From the above calculation, in the multilayer FeTe case, the
in-plane lattice constant, spin-orbit coupling, and interlayer
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FIG. 10. Band structure and orbital characters from DFT for
trilayer FeTe with a = 3.812 Å. (a) The red and gray lines denote
the bands with SOC and without SOC. (b) The orbital characters of
band structure near the Fermi level.
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coupling are essential to the band inversion. The Z2 topological
number is oscillating with the number of FeTe layers.

This oscillation can be understood by a simple model. As
A2u states are attributed to Fe dxy and Te pz and Eg are
attributed to Fe dxz,dyz and Te px,py , we can roughly omit the
interlayer coupling between Eg states and only consider the
interlayer coupling J between A2u states in multilayer FeTe.
In N multilayer FeTe, the Hamiltonian for the A2u states at the
� point is given by the N × N matrix,

HA2u
=

⎛
⎜⎜⎜⎜⎝

εA2u
J

J εA2u
J

J εA2u
J

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠, (E1)

where εA2u
is the energy of the A2u state at the � point in

monolayer FeTe. The eigenvalues of HA2u
are Ek = εA2u

+
2J cos( kπ

N+1 ) (k = 1,2, . . . ,N ). Let � be the gap between
the A2u and Eg− states in monolayer FeTe; the A2u,k state
is occupied in the multilayer system if Ek − εA2u

< �.
Therefore, the number of band inversions at the � point is just
the number of occupied A2u states. The system is topologically
nontrivial with odd number of band inversions and trivial with
an even number of band inversions. The energies of A2u states
in multilayer FeTe are given in Table IV. � is estimated
to be 0.9J and we find that band inversion happens once,
twice, and three times for bilayer, trilayer, and tetralayer FeTe,
respectively. It is consistent with our DFT calculations. By
this simple model, we can also show that the Z2 topological
number is oscillating with the number of FeTe layers.

TABLE IV. Eigenenergies of A2u states, number of band inver-
sions, and Z2 topological invariant in multilayer FeTe. NA2u

represents
the number of band inversions. The energies are given in J .

Number of layers Eigenenergies NA2u
Z2

2 ±1.0 1 odd
3 ±1.41, 0 2 even
4 ±1.62, ±0.62 3 odd
5 ±1.73, ±1.0, 0 3 odd
6 ±1.80, ±1.24, ±0.45 4 even
7 ±1.85, ±1.41, ±0.77, 0 5 odd
8 ±1.88, ±1.53, ±1.0, ±0.35 5 odd
9 ±1.90, ±1.62, ±1.18, ±0.62, 0 6 even
10 ±1.92, ±1.68, ±1.31, ±0.83 ±0.28 7 odd

APPENDIX F: THE EFFECT OF Se DOPING IN FeTe1−xSex

The substitution of Te atoms within FeTe with Se can
kill the magnetic order and induce superconductivity. This
substitution is mainly tuning the anion height and lattice
constants, which are consistent with experiments (see Fig. 1
E and Fig. S6 in Ref. [19]). This isovalent substitution does
not change the number of electrons and, in many ways, can
be viewed as a chemical pressure in the system. As for the
impurity effect from Se doping, it may affect the Tc of the
system but should have little effect on the discussed topological
properties, because they are protected by the time-reversal
symmetry against weak nonmagnetic impurities or disorders.
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