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Fermionic spinon and holon statistics in the pyrochlore quantum spin liquid
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The one-band Hubbard model on the pyrochlore lattice contains an extended quantum spin-liquid phase formed
from the manifold of singlet dimer coverings. We demonstrate that the massive and deconfined spinon excitations
of this system have fermionic statistics. Holonic quasiparticles introduced by doping are also fermions and we
explain this counterintuitive but general result.
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I. INTRODUCTION

Quantum spin liquids (QSLs) have become a focus of
intense activity in theory, numerics, experiment, and materials
growth. Theoretical interest is driven by the possibility of
understanding unconventional gapped and gapless quantum
ground states, including their entanglement, topological prop-
erties, and fractional elementary excitations [1]. Although
many QSL properties have been studied by considering some-
what abstract quantum dimer models (QDMs) [2,3], Kitaev
models [4], SU(N) [5], and other models, only recently have
they been proven exactly in a physically relevant Hamiltonian,
the one-band Hubbard model on the pyrochlore lattice [6].
In common with more abstract QSLs, the pyrochlore QSL is
based on a highly degenerate ground manifold (of nearest-
neighbor dimer coverings), occurring at an exactly solvable
Klein point in a frustrated spin model [7,8]. An exact treatment
of perturbations about this point reveals an extended region of
parameter space where the ground state is a three-dimensional
(3D) QSL with massive and deconfined spinon excitations.

A fundamental question about any QSL concerns the statis-
tics of its quasiparticles. The connection of the intrinsic spin to
the statistical nature of a particle dates back to Pauli [9]. In the
absence of Lorentz invariance, as in a solid, and in the presence
of strong interactions, new options exist for the statistics
of “emergent” low-energy quasiparticles. The best-known
examples are the quasiparticles of the fractional quantum Hall
effect [10–12], which have fractional (or anyonic) statistics;
similar effects have been sought in high-temperature super-
conductors [13,14] and other models [15], including (chiral)
QSLs [16–18] and quantum critical systems [19,20]. Although
not necessarily fractional, quasiparticles in these models may
nevertheless contradict the spin-statistics theorem, such as the
bosonic S = 1/2 spinons discussed in Refs. [21,22].

Here we investigate the quasiparticle statistics of the
pyrochlore QSL. Because all states of the ground manifold
are known exactly, as are all transition-matrix elements, this
system may be understood completely and used to extend
existing QSL knowledge. We compute the statistics of spinons,
demonstrating that they are fermionic. We then find that
holons, the charged quasiparticles obtained by doping the QSL,
are also fermions. We demonstrate that this result has a simple
electronic explanation and establish the connection of these
emerging fermions with gauge fields, represented by strings,
as anticipated in Ref. [23].

Although we focus for exactness on the pyrochlore QSL,
our considerations regarding the fermionic statistics of both
spinons and holons are ubiquitous. We will show that they
are related directly to the fundamental underlying statistics
of the constituent electrons. Thus our results are universal
for degenerate dimer-based electronic systems, including
resonating valence-bond (RVB) states, and are by no means
specific only to one model.

The structure of this paper is as follows. In Sec. II, we
review the nature and known properties of the pyrochlore QSL.
In Sec. III, we discuss how best to calculate the statistics of
spinon excitations in the pyrochlore geometry and use this
method to demonstrate that spinons are fermions. In Sec. IV,
we introduce the doped pyrochlore QSL and show that the
resulting holon quasiparticles are also fermions; we explain
this inobvious result and demonstrate its generality. In Sec. V,
we implement a lattice gauge-theory representation of the local
conservation law of dimer number to extend our analysis of
emerging fermions by including their U(1) gauge content and
its representation as strings. In Sec. VI, we discuss the physical
relevance of strings by comparison with the line representation
and clarify the issue of the local nature of quasiparticles.
Section VII contains a brief summary and conclusion.

II. PYROCHLORE QUANTUM SPIN LIQUID

The pyrochlore lattice is a 3D array of corner-sharing
tetrahedra [Fig. 1(a)]. The low coordination number, preva-
lence of triangles, and relevance of the “ice rules” [24] all
contribute a wealth of phenomena in frustrated magnetism,
including those of semiclassical “spin-ice” materials [25].
The existence and properties of the pyrochlore QSL arise
largely from the four-site symmetry of the tetrahedra and
the zero-divergence condition [two in- and two out-pointing
arrows in the six-vertex representation of Fig. 1(a)] encoded
in the ice rules.

Here we outline the sequence of logic proving the exis-
tence of the pyrochlore QSL [6]. (1) A physically realistic
Hamiltonian, the Hubbard model at half filling with pyrochlore
geometry, gives a spin model with very strong fourth-order
contributions. (2) These place it close to a very high-symmetry
point, a Klein point, where the Hamiltonian is intratetrahedal
only and can be expressed as a sum of projectors. (3) All
states with one dimer per tetrahedron are exact ground states
of this model. (4) There is a one-to-one mapping from this
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FIG. 1. (a) Pyrochlore lattice. The dimer covering (shown in
Fig. 1 of Ref. [6]) is replaced both by its six-vertex representation
(black arrows) and by the line representation (light blue). Lines are
drawn on all up-pointing arrows and do not cross in the (xz) plane.
(b) Spinon motion represented on the checkerboard lattice, where
lines are drawn on all right-pointing arrows and do not cross in ŷ [8].
Local (spinon-dimer) processes allow the spinons to move off the line
changing direction at the DT (shaded plaquette).

manifold of states to the six-vertex model (which encodes the
ice rules). (5) This ground manifold has extensive degeneracy,
among whose consequences is that all states of the manifold
are connected to other states by zero-dimensional (small-loop)
processes. (6) The zero-divergence condition of the ice rules
is a local conservation law, which results in the U(1) gauge
nature of the system (Coulomb phase). (7) By constructing the
submanifold maximizing the number of local dimer fluctuation
processes around hexagons (i.e., involving six tetrahedra),
which control the behavior under physical perturbations away
from the Klein point, one may demonstrate the persistence
of a highly degenerate ground manifold of O(2L/3) basis
states, where L is the linear dimension of the system. Loop
calculations for the physical processes linking states of the
new ground manifold show that all such states gain energy
from mutual resonance and that their linear combinations
span all dimensions and break no lattice symmetries. (8) To
complete the proof of a QSL ground state, one demonstrates
that the states of the new ground manifold satisfy rigorous
topological criteria, based on the presence of both local (0D)
and emergent planar (2D) gauge-type symmetries, respec-
tively, of U(1) and Z2 type. Thus, one may conclude the
existence of a true, zero-temperature, 3D QSL occurring over
an extended region of the model parameter space around the
Klein point.

Next we summarize the energetic properties of the spin
excitations of the pyrochlore QSL, which arise as a necessary
consequence of its nature. (a) The destruction of one singlet
creates a defect tetrahedron (DT) with no dimer. (b) This
process creates two individual spins in a net triplet state and
comes at an energetic cost [6], meaning that the spin excitations
are massive. (c) Once created, the two individual spins may
propagate separately at no further energetic cost by the rear-
rangement of dimers; hence, it is appropriate to regard these
S = 1/2 objects as spinons, which further are deconfined,
their quantum dynamics allowing free propagation at T = 0.
For a graphical representation of spinon motion, Fig. 1(a)
illustrates both the six-vertex and line representations [8] of a
dimer configuration in the ground manifold of the pyrochlore
QSL [6]. For ease of visualization, we switch in Fig. 1(b) to the
checkerboard (2D pyrochlore) lattice to illustrate the dimers,
spinons, DTs, and their associated line representation [26]. (d)
Off the Klein point, free spinon propagation is constrained
by “dimensional reduction:” the fact that the dimension of
the ground manifold scales exponentially with L (and not L3)
makes the system effectively 2D and the spinons move normal
to its fluctuating planar degrees of freedom. This situation is
encapsulated by the line representation of Fig. 1(a), where
the planes are horizontal and the non-Klein-point ground
states have, on average, one line per tetrahedron (which is the
maximally degenerate submanifold of the Klein-point states).
(e) In addition to planar fluctuations, local processes allow free
movement of spinons from one line to another, as represented
on the checkerboard lattice in Fig. 1(b). As a result, their
motion is fully 3D and the situation is quite different from the
strict linear spinon motion of Ref. [7]. (f) The connection of the
U(1) gauge field to the quasiparticles of the pyrochlore QSL
has not yet been fully explored and is one subject of the current
study; in fact we will demonstrate that it is the quasiparticles
which make the U(1) field manifest.

A further property of the pyrochlore QSL not discussed
in Ref. [6] is the following. Gapped spinons, meaning with a
singlet-triplet gap, mediate short-range spin-spin correlation
functions. However, the ground manifold, both at and off the
Klein point, is a highly degenerate set of singlet states. In this
singlet manifold, dimer-dimer correlations are algebraic, i.e.
long-range, as shown explicitly in Ref. [8]. This type of state
was classified in Ref. [27] as a “type-II gapped” QSL and it
arises in the pyrochlore Hubbard model as a consequence of the
rigorous dimerization of all spin degrees of freedom (perfect
singlet formation). Any system in which this process is only
approximate could not display the two contrasting paradigms
for QSL nature simultaneously. However, the definition of the
pyrochlore QSL as “gapped” should be regarded as semantic
only, or at best probe-dependent, because it may equally be
classified as an algebraic dimer liquid.

III. SPINON-STATISTICS CALCULATIONS

The statistical nature of quasiparticle excitations is not
only an important characteristic of any strongly correlated
quantum system, but a fundamental question intrinsic to our
understanding of the fabric of physics, namely the defining
properties of bosons, fermions, and anything in between.
From the standpoint of strongly interacting systems, studies
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of cuprate-inspired models [28–30] and doped QDMs [31,32]
reveal that statistics are optional in 2D because flux attachment
can interconvert bosons and fermions. In QDMs and also our
checkerboard QSL, these are the only options, i.e., anyons are
excluded.

Quasiparticle statistics are expected to be robust in 3D,
but more challenging to compute because there is no unique
exchange path. A definition of statistics based on the quasi-
particle hopping algebra [23] was recently specialized [33]
to compute the statistics of monomers in a 3D QDM from
the expression θex = θs + φ. Here, θex is the flux (effective
statistical angle) for exchanging two quasiparticles and φ,
the flux due to changes required of the dimer background
to restore the initial state, is computed by taking a single
quasiparticle around exactly the same path. θs is the “true”
statistical angle intrinsic to the quasiparticles.

We apply this procedure [33] to compute the statistics of
S = 1/2 spinons moving in the SU(2) dimer background of
the pyrochlore QSL. The available local moves are obtained
by applying the spin Hamiltonian

Ht = ∑
l

[
1

2
J1S2

l,tot + 1

4
J2S4

l,tot

]
, (1)

which acts on each individual tetrahedron, l, whose total
(four-site) spin is Sl,tot [6]. We will show below that, if a
spinon is present on tetrahedron l, the effect of Ht is to
exchange the spinon position with one end of the dimer
on the tetrahedron. The primary difficulty in the pyrochlore
geometry is finding valid paths, composed only of these moves,
which both exchange particles and restore the initial state. This
requires additional moves only of the dimer background [33],
which can be composed of the the minimal 8- (12-)bond
loops in 2D (3D) systems, known as Rokhsar-Kivelson (RK)
processes [2,6].

One- and two-spinon processes valid for the considerations
of exchange statistics are possible only when the quasiparticles
are located next to, but not on, a dimer loop, as represented in
2D in the first and seventh panels of Fig. 2. Here, two-spinon
exchange (left panels of Fig. 2) alters the dimer background
by one regularly shaped RK loop, and a single RK process
is required to restore the initial state. When a single spinon
moves on exactly the same loop (right panels of Fig. 2),
the initial dimer configuration blocks the site from which the
second spinon began and the process requires a symmetrical
RK loop (Fig. 2, second right panel) acting in the neighboring
square of the system. Restoring the initial state requires both
an asymmetric RK process (sixth panel) and the symmetric
RK loop of the spinon path (first and seventh panels).

We compute the associated signs from a sign convention
[Fig. 3(a)] with arrows oriented upwards (+ẑ) on a bond
as the primary criterion and along +x̂ as secondary. Loops
are traversed clockwise. The sign contributed by each local
process may be deduced only from the triangle of sites formed
by the moving spinon and dimer. The relevant process in Ht ,
�Si.�Sk , cast as the permutation operator Pik = 2(�Si.�Sk + 1/4),
acts on the three-spin state |dij 〉|↑k〉 ≡ 1√

2
(|↑↓〉 − |↓↑〉)|↑〉 to

produce the permuted state 1√
2
(|↑↓↑〉 − |↑↑↓〉) ≡ |↑i〉|dkj 〉.

This process changes the effective singlet sign on the loop,
which traverses the sites in the order ijk; the same applies for

FIG. 2. Representation of spinon exchange processes on the
checkerboard lattice. Left: the six steps required to exchange two
spinons. Right: the steps required for a single spinon to trace the
same path. Red (gray) ellipses denote dimers and turquoise (light
gray) ellipses denote the flipped dimer configuration resulting from
an RK loop process.

a spinon of opposite spin, |↓k〉. The overall statistical angles
are the products of these sign exchanges along the even-length
loops of Fig. 2 with the factors due to the RK loops.

Because the symmetric RK loop contributes +1, the
overall factor for two-particle exchange is eiθex = (−1)6 ×
(1), whence θex = 0. For the single-spinon loop, the six
local spinon-dimer exchange moves and the accompanying
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(a) (b)

(c) (d)

FIG. 3. Representation of (a) the sign structure adopted for the
3D pyrochlore, (b) two spinons beside a flippable loop allowing an
exchange path around a single pyrochlore hexagon, (c) two holons
on a flippable loop allowing an exchange path around a single
checkerboard square, and (d) a single holon on the same path.

symmetric RK process contribute the same factor. However,
the two additional RK processes of necessity have different
shapes, which is critical in that the asymmetrical RK loop
contributes a factor of −1. Thus we conclude that φ = π and
hence θs = π , meaning spinons are fermions.

This result is due only to the rearrangement of dimers, i.e.,
emerging fermionic statistics [33,34] are purely a consequence
of the dimer background. Results for the 3D pyrochlore
[Fig. 3(b)] are identical to those in 2D [Fig. 2]. The processes
involve even numbers of local spinon moves and hexagonal
RK loops symmetrical other than a single asymmetrical loop
in the one-spinon process.

To understand the origin of this result, we consider an
operator representation. Dimer singlets are bosonic objects
created by an operator d

†
ij = 1√

2
(c†i↑c

†
j↓ − c

†
i↓c

†
j↑), which is

manifestly a composite of two fermionic electrons. At half-
filling, there is no net charge motion and, for processes within
the ground manifold, there is a meaningful sense in which
d
†
ij = 1√

2
(f †

i↑f
†
j↓ − f

†
i↓f

†
j↑), where f

†
iσ creates a spinon, an en-

tity with only spin degrees of freedom. These spinon operators
describe completely the changing spin correlations between
sites during all processes changing the dimer coverings. As a
consequence of perfect dimer singlet formation, spinons are
fully spin-polarized, i.e., they have zero entanglement with any
dimer spins.

However, these same dimer rearrangement processes, spec-
ified above by the permutation operator Pij , are brought about
by the real exchange of electrons, meaning that not only the
spin but also the orbital degrees of freedom are exchanged.
Because this process exchanges electrons described by c

†
iσ , it is

not surprising that the spinons are fermionic. To state this result
more explicitly, the many-body electronic wave function, |ψ〉,
of the system changes sign under simultaneous exchange of all
the orbital and spin degrees of freedom of any two electrons
(i ↔ j , σi ↔ σj ). Because the spinons correspond to two
unentangled electrons of the same spin polarizations, then
by the fermionic character of the electrons, the exchange of
spinons at sites i and j leads to a minus sign. Beyond the

effective spinon description, and certainly at the scale of the
Hubbard repulsion, U , appearing in the denominators of J1

and J2 (1), the preeminence of electronic statistics is clear;
fermionic spinons are “emergent” quasiparticles in the sense
of the low-energy limit.

IV. HOLE DOPING AND HOLON STATISTICS

Next we consider the statistics of hole-like quasiparticles.
Charge degrees of freedom arise on doping into the half-filled
band and incur an energy penalty from the concomitant
introduction of DTs. Spinon deconfinement causes immediate
spin-charge separation [6], but “holons” also propagate in the
dimer background through the kinetic term, −t

∑
〈ij〉,σ c

†
iσ cjσ ,

of the Hubbard model. An important point not made in Ref. [6]
is that the holon bandwidth remains of order t because, unlike
the familiar square-lattice case, no local magnetic ordering
acts to suppress hole motion.

Proceeding as for spinons, the action of
∑

σ c
†
kσ ciσ

on state |dij 〉|0k〉 = 1√
2
(|↑↓0〉 − |↓↑0〉) yields 1√

2
(|0↓↑〉 −

|0↑↓〉) ≡ |0i〉|dkj 〉, i.e., there is an exact permutation of the
hole state |0k〉 with one end of the dimer, leading again to
a sign-change along the loop. The full situation, depicted in
Figs. 3(c) and 3(d) for two representative steps of the exchange
and one-holon processes, is identical to that for spinons. The
local quasiparticle moves give even numbers of −1 factors and
the RK loops determine the statistics. We conclude that holons
are fermions.

The most transparent way to understand holon statistics
is to introduce them as a pair; we defer a discussion of the
complexities in this process to Sec. VI B. This pair replaces
a single dimer, the operator expression of the process being
h
†
i h

†
j dij , with h

†
i = ∑

σ ciσ . Like spinons, both holons are
entirely decoupled from the remaining dimers and hence their
motion under all local dimer processes gives them fermionic
statistics. A holon is simply the absence of an electron, is
therefore fermionic, and may more accurately be termed a
“hole.”

In more detail, the hole at site i may be regarded as an
electron that was initially in a localized orbital state at i

but subsequently ejected from the system, retaining in the
process its original spin degrees of freedom and creating
a state charged relative to its background. When two such
excited electrons, associated with initially localized states at
sites i and j , are ejected from the many-body wave function
|ψ〉, exchanging their orbital (and charge) degrees of freedom
leads to h

†
i h

†
jPij |ψ〉 = −h

†
i h

†
j |ψ〉, i.e., hole permutation is

fermionic. We observe in addition that the action of h
†
i on

the dimer state |dij 〉 leaves 1√
2
(c†j↓ − c

†
j↑), which specifies a

spinon state, of no relative charge and perfect spin polarization
along −x̂. We stress that there is no sense in which spinons
and holons are fractionalized electrons; instead they are
fractionalized dimers, these being the fundamental objects of
the undoped ground state.

The key to this result is that both spinon and holon
quasiparticles are fully specified by electron operators. Thus
the underlying reason for their fermionic statistics is explicit.
This is not a consequence of any special model such as the
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pyrochlore QSL, which we use here to make our statements
rigorous. Quite generally, in any electronic dimer state,
however complex, both holon and spinon dynamics arise
ultimately from fermionic electron motion. This result is
completely universal, and it is clear from the definition of the
quasiparticles in terms of electronic operators that it overrides
all details such as longer-range dimers and local processes,
overcomplete basis sets, or excitations (“visons”) connecting
different topological sectors.

More subtle is the question of whether quasiparticle
statistics can be dictated by the signs of the loops, meaning the
overlap matrix elements between different dimer configura-
tions in the ground manifold. In Ref. [31], it was shown that the
statistics of holons doped in 2D QDMs can be exchanged from
fermionic to bosonic by exchanging the sign of the quantum
dimer kinetic term, which is a matrix element. This result,
equivalent to the discussion of flux attachment [29,30], was
later generalized to include the signs of all loop processes in
the system [32]. Although the sign of the interaction term is
fixed in our electronic model, it is possible to change the phase
relation between the different dimer configurations appearing
in the linear superposition of coverings, |ψ〉 = ∑

a ca|ψa〉,
making up the ground state [6]. However, unlike the situation
in 2D, where even in frustrated models it may be possible to
exchange the relative signs of all pairs of dimer coverings,
|ψa〉, in the ground state differing by short loops [8], it is
manifestly impossible to achieve this for all of the highly
overlapping short loops arising in the 3D system [6]. Thus we
must conclude that quasiparticle statistics are not arbitrary in
3D; if the electronic state has a valid dimer description, then the
quasiparticles have explicit representations in terms of electron
operators and they have fermionic statistics. The only possible
exceptions arise in 2D systems allowing the attachment of
statistical flux, which has an alternative interpretation in terms
of a loop sign ambiguity.

V. FERMIONS, STRINGS, AND GAUGE FIELDS

Emergent fermionic quasiparticles, their gauge symmetry,
and the extended entities (“strings”) they form are the three
fundamental concepts introduced in Ref. [23]. The general
case of arbitrary quasiparticle number reflects the gauge
symmetries, or local conservation laws, of the system. The
only strict local conservation law, i.e., the zero-divergence
condition, is one dimer per tetrahedron. In the presence of
quasiparticles and DTs, one has ndi + nDT i = 1 for the dimer
and DT numbers on every tetrahedron i. Each DT introduces
two free quasiparticles, restricted only by a global conser-
vation law, �i[(nsi + nhi) − 2nDT i] = ns + nh − 2nDT = 0.
This expression corresponds directly to the “effective charges”
of spinons (−1), holons (−1), and DTs (+2) [6,8]. The holon
number is the dopant concentration, �i2nhi/N = 2nh/N = x,
which specifies the “charge sector” of the system, another
global constraint. Encoded as a gauge principle, the sole local
constraint corresponds to a U(1) gauge theory [35], and hence
in the pyrochlore QSL, even with doping, only one U(1)
symmetry emerges from the local physics of the dimers and
quasiparticles.

To make this gauge symmetry completely rigorous, and
its connection to “strings” [23] more transparent, we express

FIG. 4. Representation of (a) a single-defect tetrahedron with two
quasiparticles on the DT, (b) the first step for each quasiparticle
away from the DT, and (c) the second, leaving a string. (d) Line
representation and gauge string shown for the same quasiparticle
propagation process.

the system as a lattice gauge theory, following Ref. [36]. The
presence or absence of a dimer connecting any two sites i and
j in the same tetrahedron is denoted by the states σ z

ij = ±1,
with corresponding singlet creation and destruction operators
σ±

ij = 1
2 (σx

ij ± iσ
y

ij ). Any basis state may be specified only
by σ+ operators for all pairs of sites in the dimer covering
a, |ψa〉 = �aσ

+
〈ij〉∈a|0〉. Any loop process between two such

states is specified by a sequence σ+
abσ

−
bcσ

+
cdσ

−
deσ

+
ef σ−

fgσ
+
ghσ

−
ha

connecting the dimers along alternate bonds, with two op-
erators in each tetrahedron. A quasiparticle is specified by
. . . σ−

abσ
+
bcσ

−
cdqdσ

−
deσ

+
ef σ−

fg . . . , where the two σ− operators
appearing in sequence encode its presence on site d (qd is
required to specify a spinon or holon).

Creating a DT in the basis wave function |ψa〉 replaces
σ+

lp by qlσ
−
lp qp in Fig. 4(a). The local processes causing

the two quasiparticles to move away from the DT are
qhσ

−
ghσ

+
gl σ

−
lp σ+

pnσ
−
nt qt [Fig. 4(b)] and then qiσ

−
diσ

+
dhσ

−
ghσ

+
gl σ

−
lp

σ+
pnσ

−
nt σ

+
twσ−

wxqx [Fig. 4(c)]. Schematically, the propagation
of the quasiparticles develops an extended object, a string.
Mathematically, this exact spin representation is transformed
to a lattice gauge theory by σ± = e±iAij /

√
2 with a real,

compact phase Aij , which is canonically conjugate to σ z
ij , as the

lattice gauge field [36]. Destroying the dimer on a tetrahedron
is described by Aij −→ −Aij + θi + θj , where θi is a U(1)
phase degree of freedom carried by the quasiparticle qi created
on site i. As the quasiparticles propagate, lengthening their
string (Fig. 4), this U(1) phase information is retained by the
moving particles and its memory, effectively the fingerprint of
the missing dimer, is preserved in the phase −Aij on the DT
pinning the string.

The lattice gauge theory of Ref. [36] is an exact representa-
tion of the ground manifold of dimer coverings. In the presence
of quasiparticles, introduced as above, its extension is a matter-
coupled gauge theory of the form L = qiUij qj + c.c. This
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is a “minimal-coupling” gauge theory where the fermionic
quasiparticles appear as source terms of the gauge field and
the Lagrangian is invariant for all lattice sites under the U(1)
gauge symmetry Uij → η∗

i Uij ηj , qi → qiη
∗
i , with ηi ≡ eiθi .

However, it is essential to note here that the strings, or
gauge fields, carry no energy in the pyrochlore QSL. As
a consequence of the massive degeneracies of the ground
and first excited manifolds, all quasiparticle locations are
entirely equivalent in energy and so spinon and holon motion
is deconfined. The role of strings is to mediate the phase
relationship connecting the quasiparticles, via their point of
origin at a DT, but this U(1) phase does not correspond to a
physical observable.

VI. STRINGS AND PHYSICS

A. Strings and lines

The strings (of σ operators) in Fig. 4 are a transparent
way to consider quasiparticle propagation. There are two σ

operators on every tetrahedron of the string except for the DT,
where there is only one. These strings are not the same as the
lines used in the line representation [8], as shown in Fig. 4(d).
Strings encode the U(1) phase information of the spinon/holon
pair and the DT, i.e., they are specific to defect formation
and phase conservation laws. Lines include all dimers and
encode their local conservation law. The maximally flippable
submanifold is the set of all states with an average of 1 line per
tetrahedron [Fig. 1(a)], which is the most degenerate sector.

However, spinons and holons are both the endpoints of both
lines and strings (Fig. 4). There is only one type (“flavor”) of
line and one type of string, which may end with either type
of quasiparticle, and local processes allow quasiparticles to
exchange the lines/strings of which they are endpoints. Both
lines and strings are pinned to DTs. Lines do not cross, whereas
strings from different pairs of quasiparticles may do so. Both
lines and strings are useful graphical representations of the
fact that both species of quasiparticle, although energetically
deconfined (free to move anywhere at zero energy cost), do
retain a memory of their origin. As one consequence of this,
the two quasiparticles from the same DT cannot repair each
other’s tracks, whereas quasiparticles of different origins may
do so in part.

B. Strings and local quasiparticles

In Secs. III and IV, we treated the quasiparticles as
local objects in order to deduce their statistics, and in fact
related them directly to local electron operators. However,
in Sec. V, we discussed their connection to strings, which
suggests the relevance of extended objects. Indeed, it was
pointed out in Ref. [23] that emergent fermions are nonlocal
objects and should always be considered in pairs, whence our
consideration of doped holon pairs in Sec. IV.

There are two issues to discuss here. First, on the question of
whether or not quasiparticles are extended objects, the answer
is already clear from Sec. V. Quasiparticles are deconfined
objects and their gauge strings have no energy, acting only as a
bookkeeping device for their phase. This defect-related phase
variable is not a physical observable and does not appear in the
quasiparticle statistics. DTs also have no dynamics and make

no contributions to the statistics. Thus the quasiparticles can
be treated as local objects. The only conceptual point here is
the rather trivial one that it does not make sense to attempt to
define the statistics using only one quasiparticle, and that this
must be done by considering pairs.

The second issue is how to dope holes into a dimer-based
system. Clearly, quasiparticles always replace dimers and thus
by definition are introduced in pairs. Spinons are created
automatically in pairs by the excitation of a single dimer;
this process also creates one DT, with which the spinons
maintain a fixed phase relation, but none of their physical
properties are affected by it. By contrast, in the case of holons,
it is necessary to define a valid creation process, because, in
principle, a single holon can be inserted by the elimination
of a single electron from the ground manifold. However, this
cannot be the complete process in a dimer-based system, such
as the pyrochlore QSL, because the other electron from the
destroyed dimer remains present; from Sec. IV, it will be a
fully spin-polarized electron, i.e., a spinon. To avoid spinon
interference, holon statistics are best considered by introducing
them in pairs that replace a single dimer, also creating one DT,
as in Sec. IV.

When a single hole is introduced in the system, its lonely
ex-partner spinon may form a new singlet, the new unpaired
spin forms another new singlet, and so on, in a sequence of
reconstructed spin correlations equivalent to the propagation of
the spinon away from the doped holon. Despite the appearance
of an extended object, as above, this string has no physical
meaning. For the purposes of deducing exchange statistics,
the quasiparticles in the exchange process originate, in general,
from different DTs; whether the holons of an exchanged pair
were introduced singly or pairwise is not relevant, as long as
single-hole doping is taken to replace each bosonic dimer by
one holon and one spinon [6]. This satisfies the constraints that
two quasiparticles are always accompanied by one DT and that
the total number of quasiparticles is never odd. The possibility
that the total number of spinons, or of holons, is individually
odd has no effect on exchange considerations in the assumed
limit of dilute quasiparticles. We reiterate that the process of
creating quasiparticles is a fractionalization of dimers and our
contribution here is to prove that both fractions are fermionic.

VII. SUMMARY

We have considered the nature of quasiparticles in the
pyrochlore quantum spin liquid. Both spinons and holons have
fermionic statistics. These properties are conferred entirely by
the dimers of the highly degenerate basis manifold and are
completely universal for all electronic dimer states. Spinons
and holons are linked by strings, which correspond to a
gauge field whose origin lies in the conservation of dimer
number.

The lattice gauge theory of the pyrochlore QSL is not only
an effective description but an exact recasting of the fact that
all dimer states and loop processes are known exactly. The
local (d = 0) U(1) gauge field expresses the local constraint
and is connected with the emergent pyrochlore photon [35], a
mode whose gaplessness is a consequence of the degeneracy
of the ground manifold and whose linearly dispersive character
is determined by the nature of the excited manifolds. Off the
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Klein point, additional planar (d = 2) gauge terms specify
the new ground manifold [6]. In the presence of spinons or
holons, one has a matter-coupled gauge theory with minimal
coupling (qiUij qj + c.c.) of fermionic quasiparticle matter to
a dimer-mediated bosonic field and U(1) gauge symmetry.

Concerning possible superconductivity in the doped py-
rochlore QSL, minimal renormalization of the hopping t means
significant kinetic energy may be gained by holon motion.
A small concentration of holes doped into the insulating
half-filled system will create a small Fermi surface. Given the
attractive but weak potential caused by the immobile DTs [6],
it appears likely that holons, being fermionic, will pair and
then superconduct at suitably low temperatures, presenting a
specific example of RVB-type superconductivity [13] at low
doping.

We close with a brief discussion of the three key features
exhibited by the pyrochlore QSL. The fundamental property
of the pyrochlore geometry is its four-site unit, which allows
each to contain one dimer in the ground manifold. This dimer-
based structure establishes the local constraint determining the
quasiparticle statistics. The constraint also links the creation
of propagating quasiparticles to the two sites of their DT.

Schematically, the composite operation eiθi qie
iθj qj e

−iθij dij

has a phase degree of freedom restricted by θi + θj − θij = 0,
where θi is a U(1) quasiparticle phase and θij = 2Aij is given
by the lattice gauge field. This link remains present as a gauge
string and the memory of the missing dimer (violation of the
constraint) is preserved in the wave function through Aij .
Finally, the fermionic nature of both spinons and holons is
no big mystery. Both are the physical quasiparticles of the
starting Hubbard model. There is no sense in which one is
fractionalizing an electron, only pairs of electrons (dimers).
The resulting fractions are fermions, with the spinon having
the essential characteristics of the electron and the holon of a
missing electron.
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