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Universal spin Hall conductance fluctuations in chaotic Dirac quantum dots
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We present complete analytical and numerical results that demonstrate the anomalous universal fluctuations
of the spin Hall conductance in chiral materials such as graphene and topological insulators. We investigate both
the corresponding fluctuations, the universal fractionated and the universal quantized, and also the open channel
orbital number crossover between the two regimes. In particular, we show that the Wigner-Dyson symmetries do
not properly describe such conductances and the preponderant role of the chiral classes on the Dirac quantum
dots. The results are analytical and solve outstanding issues.
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I. INTRODUCTION

The electronic transport through diffusive and ballistic
mesoscopic devices has long been the subject of many theoret-
ical [1,2] and experimental investigations [3]. The mesoscopic
transport engenders some peculiar physical features [1,2], with
special focus on universal conductance fluctuations (UCFs)
[4–7]. The UCFs occur owing to quantum interferences and
chaotic scattering processes, which give rise to the sample-
to-sample fluctuations of charge conductances. It was found
that in metals and semiconductors the electronic transport de-
scription is accommodated in Wigner-Dyson universal classes
in the framework of random matrix theory (RMT) [1,8]. The
universal classes are characterized by the presence or absence
of two fundamental symmetries of nature: time-reversal (TRS)
and spin-rotation symmetries (SRS) [8].

However, the control [9] of novel Dirac materials (such as
graphene and topological insulators) introduces new funda-
mental symmetries, such as chiral/subÂ-lattice/mirror (CHS)
and particle-hole symmetries, which became protagonists of
a myriad of interesting quantum effects [10]. Accordingly,
novel RMT ensembles emerge, which are known as chiral
[11] and Atland-Zimbauer [12] universal classes. The chiral
universal classes can be applied to bipartite systems, such
as hexagonal and square lattices, whose main examples are
graphene structures and topological insulators, respectively.
There are three chiral classes: a chiral circular orthogonal
ensemble (chCOE), characterized by the presence of CHS,
TRS, and SRS (β = 1), a chiral circular unitary ensemble
(CUE), which preserves CHS and has the TRS broken by
an external magnetic field (β = 2), and a chiral circular
symplectic ensemble (chCSE), which is characterized by
the presence of CHS, TRS, and has the SRS broken by a
strong spin-orbit interaction (SOI) (β = 4). Moreover, Atland-
Zimbauer universal classes can be applied to electronic devices
in contact with a superconductor.

With the generation and control of pure spin current through
mesoscopic devices, investigations on its universal fluctuations
became very compelling [13]. Motivated by Ref. [14], which
found the survival of the spin Hall effect (SHE) in disordered
two-dimensional (2D) mesoscopic devices, Ren et al. [15]
show numerically, using tight-binding Hamiltonian models,
that diffusive mesoscopic samples with strong SOI exhibit
universal fractionated spin Hall conductance fluctuations
(UFSCFs). The authors find a universal amplitude given by

rms[Gf

sH] ≈ 0.18e/4π . In order to give an explanation in the
framework of RMT, Bardarson et al. [16] used a Landauer-
Büttiker approach and a Wigner-Dyson universal class with
strong SOI to obtain a analytical expression for UFSCFs of a
chaotic quantum dot, confirming the result of Ref. [15].

Furthermore, the 2D Dirac material exhibits the famous
quantized spin Hall effect, which mean that spin Hall con-
duction G

q

sH takes only integer multiples of e/4π [17,18].
Motivated by this novel feature, Qiao et al. [19] show
numerically, using three tight-binding Hamiltonian models,
that diffusive 2D Dirac samples with and without strong SOI
exhibit universal quantized spin Hall conductance fluctuations
(UQSCFs) with an amplitude given by rms[Gq

sH] = 0.285 ±
0.005e/4π , which does not follow the conventional value
obtained in Refs. [15,16]. In recent work, Choe and Chang
[20] study electronic transport numerically in a 2D Dirac
device with strong SOI and CHS. Nevertheless, their studies
were not enough to reach a definitive understanding of the
behavior in terms of a UQSCF obtained in Ref. [19]. Thus, an
understanding of UFSC remains open to date.

In this paper, we investigate analytically the UQSCF in
a chaotic quantum dot with CHS, also known as a chaotic
Dirac quantum dot [21,22], at low temperature. We assume a
preserved TRS, SRS broken by a strong SOI (chCSE), and a
mean dwell time of electrons in the quantum dot that is larger
than the SOI time, τdwell � τso. We identified two regimes: The
first one, when the CHS is broken, gives rise to the UFSCF
and exhibits an amplitude rms[Gf

sH] ≈ √
2 × 0.18e/4π ; The

second one, when CHS is preserved, gives rise to the UQSCF,
which assumes an amplitude rms[Gq

sH] ≈ 0.283e/4π . The last
is in agreement with Ref. [19].

II. THEORETICAL FRAMEWORK

We consider a multiterminal 2D device with CHS symmetry
where the electrons flow under the influence of a strong SOI
at low temperature. The 2D device is connected by ideal point
contacts to four independent electronic reservoirs, as depicted
in Fig. 1. We use the Landauer-Büttiker approach to write the
α-direction spin-resolved current through the terminals as [23]

Iα
i = e2

h

∑
j,α′

ταα′
i,j (Vi − Vj ). (1)
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FIG. 1. A chaotic Dirac quantum dot connected through four
leads to electron reservoirs with spin resolution. The 1 and 2 leads
have specific potentials, V/2 and −V/2, while the 3 and 4 leads
have potentials adjusted in a way that prevents the charge current
from flowing. Therefore, a charge current between the 1 and 2 leads
induces a spin current between the 3 and 4 leads.

The spin-dependent transmission coefficients can be ob-
tained through ταα′

i,j = ∑
m∈i,n∈j |Sm,α;n,α′ |2, where α and α′ are

the spin projections in the α = x, y, or z direction and S is the
scattering matrix of order 2N̄T × 2N̄T . The S matrix describes
the transport of electrons through the chaotic Dirac quantum
dot. The total number of open orbital scattering channels is
N̄T = 2NT = ∑4

i=1 2Ni , where 2Ni is the number of open
channels in the ith lead point contact and the factor 2 came
from two sublattices of the Dirac materials [24].

An applied bias voltage V between longitudinal electrodes
1 and 2 gives rise to a longitudinal electronic current I and,
due to the quantized spin Hall effect, to spin currents Iα

i =
I 1
i − I 1

i �= 0 at the transversal contacts 3 and 4 with α = x,y,z

[25], as depicted in Fig. 1. Moreover, we consider the absence
of net electric charge current at the transverse 3 and 4 leads, i.e.,
I 0
i = I 1

i + I 1
i = 0. Therefore, the charge conservation implies

I = I 0
1 = −I 0

2 . Using those constraints in Eq. (1), it was shown
in Ref. [16] that the transversal spin currents can be written as

J α
i = 1

2

(
τα
i2 − τα

i1

) −
∑
j=3,4

τα
ij V̄j , (2)

for which we introduce the dimensionless currents J =
h/e2(I/V ) and the effective transverse voltages V̄i = Vi/V ,
given by

V̄i = 1

2

τ 0
ij

(
τ 0
j2 − τ 0

j1

) + (
τ 0
i2 − τ 0

i1

)(
4Nj − τ 0

jj

)
τ 0

43τ
0
34 − (

4N3 − τ 0
33

)(
4N4 − τ 0

44

) , (3)

where here i,j = 3,4 with i �= j .

III. RANDOM MATRIX THEORY

Our calculation consists in the obtention of the average
and the fluctuation amplitude of transversal spin currents, Eq.
(2), for a chaotic Dirac quantum dot, within the framework of
RMT. Therefore, the spin-dependent transmission coefficient
can be written in an appropriate way through the following

relation,

τα
ij = Tr

[
Pα

i SP0
jS†], α = 0,x,y,z (4)

where the scattering matrix S is a member of the chCSE
ensemble, which means the system preserves the TRS (absence
of magnetic field) and the SRS is broken by strong SOI [11].
The matrixPα

i = Pi ⊗ σα represents a projector operator over
the ith terminal. Its dimension is 2N̄T × 2N̄T and its entries
are (Pα

i )
mμ,nγ

= δmnσ
α
μγ , while

∑i−1
j=1 2Nj < m <

∑i
j=1 2Nj

and 0 otherwise [16]. The σ 0 and σα are the identity matrix
and Pauli matrices, respectively.

The scattering matrix of Eq. (4) has an additional CHS
symmetry, implying it satisfies the following commutation
relation [10],

S = 	zS†	z, 	z ≡
[

1N̄T
0

0 −1N̄T

]
, (5)

at the Dirac point (null Fermi energy). To obtain the average
of Eq. (4), it is convenient to decompose S as a function of the
U matrix, which is a symplectic matrix of order 2N̄T × 2N̄T ,
as S = 	zU†	zU , as can be seen in Ref. [26]. Hence, Eq. (4)
can be rewritten as

τα
ij = Tr

[
Pα

i U†	zUP0
jU†	zU

]
, α = 0,x,y,z. (6)

Using the method of Ref. [22], developed for diagrammatic
integration over chaotic Dirac quantum dots, we calculate the
average and covariance of the spin-dependent transmission
coefficient of Eq. (6). First, for the average of Eq. (6), we obtain

〈
τα
ij

〉 = 4δα0
NT (4NiNj − δijNi) + δijNi

(2NT − 1)(NT + 1)
. (7)

Equation (7) is quite distinct from the result of Ref. [16], which
studied the UFSCF of a Schrödinger (Wigner-Dyson) chaotic
quantum dot. Second, following the same method of Ref. [22],
the covariance of Eq. (6) reads

covar[τα
ij ,τ

β

kl] = 〈(
τα
ij − 〈

τα
ij

〉)(
τ

β

kl − 〈
τ

β

kl

〉)〉

and prompted us to find 11 025 diagrams, of which 6300
are non-null. Therefore, the overall result for the covariance
of the spin-dependent transmission coefficient involves 6300
terms and the algebraic final expression is cumbersome.
Nevertheless, for the relevant configuration wherein α = β �=
0 and i = k, the general expression simplifies to

covar
[
τα
ij ,τ

α
il

]
D

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(NT − Ni)(4NiNT − 2NT − 3), i = j = l,

−4NjNlNT , i �= j �= l,

Nj

(
4N2

T − 4NjNT − 2NT − 3
)
, i �= j = l,

−Nl(4NiNT − 2NT − 3), i = j �= l,

−Nj (4NiNT − 2NT − 3), i = l �= j,

(8)

where D = 128NiNT

(4NT +3)(16N2
T −1)(2NT −3)(2NT −1)

.
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IV. UNIVERSAL SPIN HALL CONDUCTANCE
FLUCTUATIONS

We begin by using Eq. (7) to obtain the ensemble average
of the transverse spin currents of Eq. (2). The result is

〈J α
i 〉 = 1

2
(〈τα

i2〉 − 〈τα
i1〉) −

∑
j=3,4

〈τα
ij 〉〈V̄j 〉 = 0, (9)

as expected even for i = 3,4 and α = x,y,z. The ensemble
average of the effective transverse voltages, Eq. (3), is obtained
with the previous spin-dependent transmission coefficient
general result for the covariance. We obtain

〈V̄3,4〉 = 1

2

N1 − N2

N1 + N2
. (10)

The same expression was obtained in Ref. [16], indicating that
the effective transverse voltage is CHS independent.

Although the transversal spin current ensemble average
vanishes, Eq. (10) establishes an effective non-null transverse
voltage. Accordingly, the transversal spin current J α

i assumes
finite values. The amplitude of the fluctuations of J α

i is given
by [16]

var[J α
i ] = 1

4

∑
j=1,2

var
[
τα
ij

] − 1

2

∑
j=1,2

covar
[
τα
i1,τ

α
i2

]

+
∑
j=3,4

(
var

[
τα
ij

]〈
V̄ 2

j

〉 + covar
[(

τα
i1 − τα

i2

)
,τ α

ij

]〈V̄j 〉
)

+2 covar[τα
i3,τ

α
i4]〈V̄3〉〈V̄4〉. (11)

Substituting Eqs. (8) and (10) in Eq. (11), we obtain the
following expression,

var
[
J α

i

]

= 128NiN1N2NT

(
4N2

T − 2NT − 3
)

(4NT + 3)
(
16N2

T − 1
)
(2NT − 3)(2NT − 1)(N1 + N2)

,

(12)

which is the main result of our work. Equation (12) is quite
distinct from the main result of Ref. [16], and reveals the
full difference between the spintronics of a chaotic Dirac
(CHS) quantum dot and a chaotic Schrödinger (Wigner-
Dyson) quantum dot. In Fig. 2, we plot the average (9)
and variance (12) of transverse spin current J α

i for i = 3,4
and α = x,y,z as a function of both symmetric open leads,
N1 = N2 = N3 = N4 = N , and asymmetric open leads, N1 =
N3 = 2N2 = 2N4 = N .

Using Eq. (12), we can analyze two relevant regimes of the
chaotic Dirac quantum dots: the first one for the broken CHS,
Eq. (5), and the second one when it is preserved. In accordance
with Refs. [27,28], the CHS is relevant for the systems at zero
Fermi energy and/or if there are few open channels in the
leads. However, if the Fermi energies are away from zero
and/or if there are many open channels in the terminals, the
Wigner-Dyson universality classes and the chiral universality
classes lead presumably to the same results.

We first investigate the setup with broken CHS employed
whenever the system has a large number of open channels
or high Fermi energy. For this system, we fix symmetric
terminals, N1 = N3 = N2 = N4 = N , from the general result

1 2 3 4 5 6
N

0

0.02

0.04

0.06

0.08

0.1

va
r[

J iα ],
<

J iα >

FIG. 2. Average (9) and variance (12) of transverse spin current
J α

i for i = 3,4 and α = x,y,z as a function of open channels N .
The analytical results are represented by solid lines, while the
numeric simulations, obtained by RMT, are represented by the
symbols. Symmetric terminals (N1 = N2 = N3 = N4 = N ): var[J α

3 ]
(triangle left), and var[J α

4 ] (triangle right). Asymmetric terminals
(N1 = N3 = 2N2 = 2N4 = N ): 〈J α

3 〉 (triangle up), 〈J α
4 〉 (triangle

down), var[J α
3 ] (square), and var[J α

4 ] (circle).

with a large number of open channels N � 1 in Eq. (12), and
we obtain var[J α

i ] = 2 × 1/32. Therefore, the spin current
fluctuates universally with amplitude rms[I z

3 ] = 0.25e2V/h,
which can be used to write the universal fluctuations of
transversal spin conductance as

rms
[
G

f

sH

] ≈
√

2 × 0.18
e

4π
. (13)

In this regime, the universal conductance fluctuations has
an amplitude

√
2 times higher than the result obtained in

Refs. [15,16] for the Wigner-Dyson universality classes.
Furthermore, the result is in agreement with Ref. [19] when
the Fermi energies are |E| > 1 and with the studies concerning
the universal conductance fluctuations in the two-dimensional
topological insulators with strong SOI of Ref. [20].

However, without the CHS symmetry (Wigner-Dyson
ensembles), the universal fluctuations of the transversal spin
conductance of a chaotic Dirac quantum dot does not describe
the result obtained in Ref. [19], i.e., rms[Gq

sH] = (0.285 ±
0.005)e/4π , complying only if the number of channels is
very small (quantized). For this reason, we fix from our
general analytical result a small number of channels in order
to preserve the CHS. Using a symmetric configuration with
N1 = N3 = N2 = N4 = 1, known as a high quantum regime,
in Eq. (12), we obtain rms[I z

3 ] ≈ 0.283e2V/h. The result can
be rewritten in terms of the universal fluctuations of transversal
spin conductance as

rms
[
G

q

sH

] ≈ 0.283
e

4π
, (14)

which is agreement with Ref. [19] if the Fermi energies are
|E| < 1. In the top panel of Fig. 3, we plot the universal
fluctuations of transversal spin conductance as a function of
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1 2 3 4 5 6
0.24

0.25

0.26

0.27

0.28

0.29
rm

s[
G

sH
](

e/
4π

)

1 2 3 4 5 6
N

1.36

1.38

1.4

1.42

1.44

rm
s[

G
sH

] ch
/r

m
s[

G
sH

] w
d

FIG. 3. Top: The universal fluctuations of transversal spin con-
ductance plotted as an open channel crossover from Eq. (14) to Eq.
(13). Bottom: The ratio between universal fluctuations of transversal
spin conductances of the chiral universal classes and the one of the
Wigner-Dyson universal classes (rms[GsH]ch/rms[GsH]wd); the

√
2

limit as a function of N .

N , which shows the break of CHS as an open channel crossover
from Eq. (14) to Eq. (13).

Importantly, the result of Eq. (14) for the the variance
of transversal spin current is incompatible with the one of
Ref. [16], obtained for the Wigner-Dyson universal classes. In
a high quantum regime, the result of Ref. [16] multiplied for√

2 yields
√

2 × rms[GsH]wd ≈ 0.292e/4π , which is therefore
outside the error bar of the tight-binding simulation of Ref. [19]
that is valid for graphene and other chiral systems. In the
bottom panel of Fig. 3, we depict the ratio between universal
fluctuations of transversal spin conductances of the chiral
universal classes and the Wigner-Dyson ones. Notice the ratio
(rms[GsH]ch/rms[GsH]wd) tends to

√
2 as a function of N from

the general analytical result.

V. NUMERIC SIMULATION

In order to confirm the analytical results, Eqs. (9) and
(12), we use numerical simulations from the RMT [11]. The
massless Dirac Hamiltonian satisfies the following anticom-
mutation relation [10,11]

H = −λzHλz, λz =
[

12M 0
0 −12M

]
. (15)

TheH matrix has dimension 4M × 4M . The anticommutation
relation, Eq. (15), implies a Hamiltonian member that can be
written as

H =
(

0 T
T † 0

)
. (16)

The quaternionic T -matrix block of the H matrix has dimen-
sion 2M × 2M . The RMT establishes that the entries of the T
matrix have a Gaussian distribution

P (T ) ∝ exp

{
−2M

λ2
Tr(T †T )

}
, (17)

where λ = 4M�/π is the variance related to the electronic
single-particle level spacing �. The Hamiltonian model for
the scattering matrix can be written as [29]

S = 1 − 2πiW†(ε − H + iπWW†)−1W, (18)

which satisfies Eq. (5). The W = (W1, . . . ,W4) matrix is a
4M × 2N̄T deterministic matrix, describing the coupling of
the resonances states of the chaotic Dirac quantum dot with
the propagating modes in the four terminals. This deterministic
matrix satisfies the nondirect process, i.e., the orthogonality
condition W†

pWq = 1
π
δp,q holds. Accordingly, we consider

the relation λzW	z = W , indicating the scattering matrix is
symmetric (5). We consider the system on the Dirac point
(ε = 0), and, to ensure the chaotic regime and consequently
the universality of the observable, the number of resonances
inside the quantum dot is large (M � NT ).

The numerical simulations produce Fig. 2, which shows
symbols obtained through 25 × 103 realizations compared
with the analytical results, Eqs. (9) and (12). We use the
T matrices, with dimension 800 × 800 (M = 400), and the
corresponding H matrices with dimension 1600 × 1600 (1600
resonances).

VI. CONCLUSIONS

To summarize, we present a complete analytical study of
UQSCFs of a chaotic Dirac quantum dot in the framework
of RMT for the chiral universal symmetries in the absence of
magnetic field. We show that the effective transverse voltage
is CHS independent, Eq. (10). Moreover, in the regime of
broken CHS, the UFSCFs exhibit a value rms[Gf

sH] ≈ √
2 ×

0.18e/4π . However, the system with preserved CHS exhibits
a UQSCF with amplitude rms[Gq

sH] ≈ 0.283e/4π , which is
in agreement with the numerical simulation of Ref. [19]. We
can conclude that the quantized spin Hall effect in the absence
of magnetic field is described by chiral universal classes in
the framework of RMT. Perspectives of our work include the
study of the universal classes of the UQSCFs in the presence
of magnetic field, preserving the particle-hole symmetry.
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