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Topological materials are characterized by an electronic band structure with nontrivial topological properties.
In this paper we introduce a basis of operators for the linear space of operators spanned by charge-neutral
fermion bilinears. These band-projected density operators are constructed using directly the eigenfunctions of
the electronic energy band structure and there is no need to assume a flat Berry curvature. As a result, our
set of operators has a wider range of validity and is sensitive to physical phenomena which are not detectable
in the flat-curvature limit. In particular, we show that the Berry monopole configuration of a Weyl semimetal
give rises to a nonvanishing Jacobiator for these band-projected density operators, implying the emergence of
nonassociativity at the location of the Weyl nodes. The resulting nonassociativity observes the fundamental
identity, the defining property of the Nambu bracket, and so one may call this a nonassociative Nambu geometry.
We also derive the corresponding uncertainty principle.
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I. INTRODUCTION

Topological material is one of the recent hot topics
of research in condensed matter physics. These are novel
electronic states of matter with properties supported by
topology. Topological material has not only overturned the
traditional Landau paradigm on the classification of condensed
matter states; it has also many remarkable properties that
are not only interesting theoretically, but has also important
potential practical applications, such as topological quantum
computing [1].

A topological insulator (TI) is the simplest form of
topological material. Different from an ordinary insulator,
a TI is conducting at the boundary due to the existence
of gapless chiral states at the surface, which in turn is a
result of the nontrivial momentum space topology of the bulk
band structure. As long as the band gap is not closed, the
topological ground state is robust against small perturbations
and the surface states are protected. The Chern insulator (CI)
is the most primitive example of a topological insulator. As
a two-dimensional system, it has a band structure which
is characterized by the first Chern number of the Berry
connection associated with the Bloch waves, and exhibits a
quantized Hall conductance even without an external magnetic
field [2], generalizing the original integer quantum Hall effect
(IQHE) [3] for the filled Landau levels [4]. In the presence
of time-reversal symmetry (TRS), the first Chern numbers
and the Hall conductivity must vanish. However the spin-orbit
interaction allows a different topological class of insulating
band structures, giving rise to the Z2 topological insulator
in two and three dimensions [5–8], leading to successful
prediction and experimental observation of these phases of
materials [9–14].

A slightly more complicated and also much more interest-
ing topological material is the fractional Chern insulator (FCI),
where the topological bands are partially filled. The best known
example is the the fractional quantum Hall effect (FQHE) [15],
a strongly correlated phenomena which arises from the huge
degeneracy within the Landau levels for particles in a magnetic
field. Here a very useful observable is the density operator

projected to the lowest Landau level. These operators were
introduced originally by Girvin, Macdonald, and Platzman
(GMP) [16], and were found to obey a W∞ Lie algebra [17],
which reflects the area-preserving incompressible nature of
the Laughlin wave functions of the FQHE [18]. Inspired
by the success of the algebraic approach of GMP to the
problems of IQHE and FQHE, Haldane proposed recently
a geometrical description of the FQHE based on the algebra
of these projected density operators [19]. More recently, a
specific noncommutative geometry for the band-projected
density operators was identified by Parameswaran, Roy, and
Sondhi [20] for general two-dimensional CIs and FCIs. See
also [21–24] for related algebraic approaches. A reformulation
of the Hamiltonian theory of the FQHE was introduced
in [25,26]. Our work is motivated by these studies.

The noncommutative geometry identified by [20] gener-
alizes the well known noncommutative geometry obeyed by
the guiding center of the Landau level electron [X,Y ] = il2

B ,
where lB = √

�/eB is the magnetic length. In the limit of
long wavelength and flat Berry curvature, it coincides with
the noncommutative geometry of GMP. The noncommutative
geometry is expected to be useful since in the limit the band
structure admits a large band gap compared to the interaction
strength, which is relevant for the studies of the FQHE; it
makes sense to project the problem to the lowest filled band
where the major effects of the interaction take place. Due to
the universality of the identified noncommutative geometry,
Parameswaran, Roy, and Sondhi also proposed that the band
noncommutative geometry could be useful to the study of the
FQHE in FCIs in a similar way. The noncommutative geometry
of topological insulators was then further studied in the three-
and the higher-dimensional case [27–33]. In particular, an
interesting 3-bracket utilizing the complete antisymmetrizer
has been constructed for the differentiated projected density
operators in 3 dimensions in [27].

We remark that the above mentioned noncommutative
geometries were obtained as a property of the electronic band.
They are purely kinematical and independent of interaction.
Furthermore it does not matter whether the material is topolog-
ical or not; the noncommutative geometry takes on the same
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universal form with the dependence on the materials entering
only through the band’s Berry connection. This motivates us
to ask whether there exists a more refined characterization of
topological materials that is intrinsic to the nontrivial topology.
We find in this paper that the Weyl semimetal is characterized
by a nonassociative geometry (28) of the projected density
operators.

The Weyl semimetal (WSM) is an interesting class of
topological materials that lives in 3 dimensions. Unlike a
topological insulator, the valence band and the conduction
band of a WSM touch at isolated points in the momentum
space. The nodal point is called a Weyl node since the nearby
band structure is described by the Hamiltonian of a massless
Weyl fermion, and, depending on the chirality of the node,
the associated Berry connection describes a monopole or
antimonopole in the 3-dimensional momentum space. Weyl
nodes are topological objects.

The only way for the Weyl nodes to disappear is to
annihilate them in pairs. In fact, the theorem of Nielsen and
Ninomiya states that Weyl nodes always come in pairs of
opposite chirality [34]. Therefore to obtain a stable WSM, its
Weyl nodes need to stay separated in momentum space in order
to prevent them from annihilation. This can be achieved when
either TR or inversion symmetry is broken. In the presence of
both TR and inversion symmetry, the touched band must be
doubly degenerate and one obtain a Dirac fermion spectrum
near the nodal points, resulting in the so called Dirac semimetal
(DSM).

As a result of the topologically nontrivial band structure,
like any other topological materials, the WSM is also endowed
with topologically protected surface states, the Fermi arcs [35].
One particularly illuminating way [36] to understand the origin
of the Fermi arcs is to consider a slicing of the Brillouin zone
(BZ). Each momentum space slice of the WSM which does
not contain the Weyl nodes is a Chern insulator whose Chern
number changes by ±1 as one sweeps past a Weyl node. Thus
if the slices in between the nodes have a unit Chern number,
i.e., these slices are nontrivial CIs, then the Fermi arcs are
simply the edge states of these CIs. The simple connection
between Weyl semimetal and Chern insulator illustrated in
this picture also suggests that some of what we know about
two-dimensional CIs could be and should be generalized to
the 3-dimensional case. This is another motivation of this
paper.

The planning of this paper is as follows. In Sec. II A, we
first review the noncommutative geometry for band-projected
density operators. We also generalize the result to more
general band-projected operators. In Sec. II B, we compute
the Jacobiator for the band-projected operators and find that
it is nonzero in the presence of a monopole. This is the case
as in the Weyl semimetal. We also explain the origin of the
nonassociativity. In Sec. II C, we show that the obtained
Jacobiator satisfies the fundamental identity, the defining
property of the Nambu bracket [37]. As a result, we call this the
nonassociative Nambu geometry. In Sec. III, we consider the
uncertainty principle of the nonvanishing Jacobiator. Just as a
nonvanishing commutator leads to the Heisenberg uncertainty
principle that involves a product of the uncertainties of the
operators appearing in the commutator, we show that a
nonvanishing Jacobiator leads to similar uncertainty principles

that involve a product of the uncertainties of the operators
appearing in the Jacobiator.

II. QUANTUM GEOMETRY OF TOPOLOGICAL BAND

In the band theory of crystal structure, the motion of a single
electron can be approximated by treating the whole lattice of
ions and other electrons as a static background. We consider
an insulator with N bands. The single-particle Hamiltonian
takes the form

H0 =
∑
a,b,k

c
†
k,ahab(k)ck,b, (1)

where a,b = 1, . . . ,N label the states in the unit cell, k =
(k1, . . . ,kD) is the single-particle momentum restricted to the
first Brillouin zone, and D is the (spatial) dimension of the ma-
terial. The Hamiltonian can be diagonalized straightforwardly
by considering the eigenvalue problem∑

b

hab(k)uα
b (k) = Eα(k)uα

a (k), (2)

where α = 1, . . . ,N labels the band energy Eα(k). Adopting
the orthonormality condition for the eigenfunctions∑

a

uα
a (k)∗uβ

a (k) = δaβ, (3)

the orbital creation operator

γ α
k
† :=

∑
a

uα
a (k)c†k,a (4)

obeys [
γ α

k
†,γ β

q

]
+ = δk,qδ

αβ, (5)

and the Hamiltonian can be written in the diagonalized form

H0 =
∑
k,α

Eα(k)γ α
k
†γ α

k (6)

with the eigenstates

|k,α〉 = γ
†
k,α|0〉. (7)

Despite the simple appearance of (6), the information encoded
in the eigenfunctions uα

b (k) is not lost. One of the remarkable
features of the energy band structure is that it is naturally
equipped with a Berry connection. For a given band α, the
Berry connection is defined by

Aα
j (k) = i

N∑
b=1

uα
b (k)∗

∂

∂kj

uα
b (k), j = 1, . . . ,D. (8)

The definition can be straightforwardly generalized to a non-
Abelian Berry connection involving an arbitrary number of
bands. In the standard application, the Berry connection is
kinematical. Taking into account the fluctuation of the crystal
ions, one may wonder whether a kinetic term would be induced
as in induced gravity [38].

A. Noncommutative geometry for band-projected operators

Making use of the projection operator Pα =∑
k |k,α〉〈k,α|, one can project the density operator
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ρq = eiq·r onto the band α. In momentum space, the projected
density operator takes the form [20]

ρ̂q,α : = PαρqPα =
∑
k,b

uα∗
b

(
k + q

2

)
uα

b

(
k − q

2

)

× γ
α †
k+ q

2
γ α

k− q
2
. (9)

It is

ρ̂†
q,α = ρ̂−q,α. (10)

In the following we will focus on a single band and so we
will skip the subscript α and simply write ρ̂q,α as ρ̂q. In the
paper [20], it was found that the density operator at different
momentum obeys, in the leading order of small momentum,
the commutator relation:

[ρ̂q1 ,ρ̂q2 ] = iqi
1q

j

2

∑
k,b

Fij (k)uα∗
b

(
k + qqq

2

)
uα

b

(
k − qqq

2

)

× γ
α †
k+ qqq

2
γ α

k− qqq

2
, (11)

where

Fij (k) := ∂iAj (k) − ∂jAi(k) (12)

is the curvature of the Berry connection, and qqq := ∑
n qn =

q1 + q2 is the sum of the momentum of the operators on the
right-hand side of (11). The noncommutative relation (11) is
interesting. It is an universal property of band insulators. It
takes the same form even when the material is nontopological
with vanishing Chern numbers. In the literature sometimes it
is considered the situation of having a Berry curvature slowly
varying over the BZ. In this case, (11) takes the approximate
form

[ρ̂q1 ,ρ̂q2 ] ≈ iqi
1q

j

2 F̄ij ρ̂q1+q2 , (13)

where F̄ij is the mean value of the Berry curvature over the
BZ. The result (13) is now topological: it is nontrivial only
when the Chern number is nonvanishing. In this paper, we will
be interested in the general behavior of the Berry connection
without making any assumption that it is slowly varying. In
particular, our main results (22), (25) about the Jacobiator are
nontrivial only in the presence of monopoles and nontrivial
topology. This is in contrast with the noncommutative ge-
ometry (11) which can be nontrivial even in the absence of
nontrivial topology.

It is instructive to generalize the result (11) for the
commutator of two projected density operators. In general for
any arbitrary function f (k) defined on the BZ and momentum
q, one can introduce the band-projected operator

O(f,q) =
∑
k,b

f (k)uα∗
b

(
k + q

2

)
uα

b

(
k − q

2

)
× γ

α †
k+ q

2
γ α

k− q
2

(14)

in association with the band α. As explained above, we will
ignore the band index. Note that since O depends linearly on
its first argument, it is obvious that

O(f,q) + O(g,q) = O(f + g,q). (15)

It is obvious that the set of operators (14) forms an over-
complete basis for the linear space of operators spanned by

charge-neutral fermion bilinears. The operators (14) provide
a generalization of the projected density operator and can
be used to describe more complicated interaction than the
density-density type. It is natural to ask whether the set A of
operators O for all functions f defined on the BZ forms a Lie
algebra, and if so, of what kind.

Therefore, let us consider the commutator. It is clear from
the definition (14) of the operator that the commutator of these
operators gives something that is bilinear in the orbital creation
operator

[O(f1,q1),O(f2,q2)] =
∑
k,b,c

Kbc(k,q1,q2) × γ
α †
k+ γ α

k− , (16)

where k± := k ± qqq

2 , qqq := q1 + q2, and K is some kernel
depending on b,c and the momentum q1,q2, and k. It is given
by

Kbc(k,q1,q2) = f1

(
k − q2

2

)
f2

(
k + q1

2

)

× u∗
b(k+ − q2)ub(k−)u∗

c (k+)uc(k− + q1)

− f1

(
k + q2

2

)
f2

(
k − q1

2

)
u∗

b(k+)ub

× (k− + q2)u∗
c (k+ − q1)uc(k−). (17)

In general Kbc is not diagonal and thus the commutator of O’s
does not close back to O. However, in the approximation of
small momentum q1,q2, one can expand K . It turns out that
the leading term in the approximation of small momentum is
diagonal in b,c and takes the simple form

Kbc(k,q1,q2)

= δbc

(
iqi

1q
j

2 (Fijf1f2)(k) + qi
1(f1∂if2)(k)

− qi
2(f2∂if1)(k)

)
uα∗

b

(
k + qqq

2

)
uα

b

(
k − qqq

2

)
+ · · · , (18)

where · · · denotes terms that are higher order in the momentum
q1 or q2. As a result, in the leading order of small momentum,
the operators O obey the operator relation (19),

[O(f1,q1),O(f2,q2)] = O({(f1,q1),(f2,q2)},q1 + q2), (19)

where the 2-bracket {,} is defined by

{(f1,q1),(f2,q2)} : = (iqi
1q

j

2 (Fijf1f2) + qi
1(f1∂if2)

− qi
2(f2∂if1),q1 + q2). (20)

The bracket {,} is defined for any pair of objects
(f1,q1),(f2,q2), where the fn’s are functions defined on the
BZ and the qn’s are momenta restricted to the BZ. Note that the
momenta q1,q2 enter linearly in the 2-bracket {,}. Effectively,
we have shown that, in the leading order of small momentum,
the set A can be endorsed with a commutator, with respect
to which it becomes a closed algebra. Furthermore, the
commutation relation of O induces a 2-bracket {,} on the pair
of objects (f,q).

We remark that a different set of fermion bilinear operators
has been introduced before [23,24,26]. These operators form
a Lie algebra, and, for even dimensions, constitute a complete
basis [24]. In contrast to these operators, which were suitably
defined in the limit of a flat Berry curvature, our operators (14)
are constructed directly using the eigenfunctions of the
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electronic energy band and there is no need to assume a
flat Berry curvature. Because of this, our set of operators
has a wider range of validity and is sensitive to physical
phenomena which are not detectable in the flat-curvature limit.
In particular, our set of operators could provide support to a
kind of nonassociative geometry which occurs in the presence
of monopoles. This is another main result of this paper.

B. Nonassociative geometry and monopoles

To decide whether it is a Lie algebra, we need to check the
Jacobi identity. After a long but straightforward computation,
we find

{{(f1,q1),(f2,q2)},(f3,q3)} + cyclic

=
⎛
⎝−if1f2f3

D∑
i,j,k=1

qi
1q

j

2 qk
3 (∂iFjk + cyclic),qqq

⎞
⎠. (21)

Here qqq := ∑
n qn = q1 + q2 + q3 is the sum of momenta of

the operators on the left-hand side of Eq. (21). We note that in
principle the left-hand side of (21) contains terms of the form
fgq∂ih with one derivative acting on f,g, or h, and terms
of the form f1f2∂i∂jf3 and f1∂if2∂jf3 with two derivatives
acting on the fn’s. However all these terms get canceled with
each other and in the end only the nonderivative term f1f2f3

is left over. Hence the result (21) is exact and there is no need
to make any assumption of small momentum.

It follows from (21) that the Jacobiator for the operators O
takes the simple form

[O(f1,q1),O(f2,q2),O(f3,q3)]

= −if1f2f3

D∑
i,j,k=1

qi
1q

j

2 qk
3 O(∂iFjk + cyclic,qqq) (22)

in the leading order of small momentum. Here the Jacobiator
for any three operators A,B,C is defined as

[A,B,C] := [[A,B],C] + [[B,C],A] + [[C,A],B]. (23)

For 3 dimensions, we have

{{(f1,q1),(f2,q2)},(f3,q3)} + cyclic

= ( − if1f2f3 (q1 × q2) · q3 ∇ · B, qqq) (24)

and

[O(f1,q1),O(f2,q2),O(f3,q3)]

= −if1f2f3 (q1 × q2) · q3 O(∇ · B, qqq) (25)

in the leading order of small momentum. We note that the
right-hand sides of (21), (22), (24), and (25) are zero for
smooth configurations of the Berry connection since the Berry
curvature Fij is a total derivative. In this case the 2-bracket {,}
defines a Lie bracket on A and the operator product between
the operators O is associative. However in the presence of a
monopole, which is characteristic of a topological insulator,
the Jacobi identity (21) is violated and the 2-bracket {,} does
not define a Lie bracket. Correspondingly the operator algebra
A is nonassociative.

The projected density corresponds to the simplest case of a
constant function f = 1,

ρ̂q = O(1,q), (26)

and the result (11) follows immediately from the 2-bracket (20)
that

{(1,q1),(1,q2)} = iqi
1q

j

2 Fij . (27)

As for the Jacobiator, we have for 3 dimensions the result

[ρ̂q1 ,ρ̂q2 ,ρ̂q3 ] = −i(q1 × q2) · q3

∑
k,b

∇ · B(k)uα∗
b

(
k + qqq

2

)
uα

b

×
(

k − qqq

2

)
× γ

α †
k+ qqq

2
γ α

k− qqq

2
. (28)

We comment that in contrast to the commutation relation (11)
which takes the same form universal to all energy band, the
violation of nonassociativity spotted by the Jacobiator (28) is
an intrinsic characterization of a topological Weyl semimetal.

The emergence of nonassociativity is not a new phe-
nomenon in physics. As far as we know, the Jacobiator first
appeared in the literature of particle physics and quantum field
theory in the computation of the space components of current
in the quark model [39,40]. Later, a proper understanding
of the Jacobiator in terms of the 3-cocycle of an associ-
ated (nonassociative) group transformation was developed in
[41–44]. Moreover, as an example, the quantization of a
charged particle in a magnetic monopole is shown to give
rise to a nonvanishing Jacobiator. Let us recall briefly this
result. Consider a charged particle in the presence of an
external magnetic field B in 3 dimensions. A gauge-invariant
canonical momentum does not exist. Instead the velocity
operator vi = (pi + eAi)/m is gauge invariant. The velocities
do not commute,

[vi,vj ] = i
e�

m2
εijkBk, (29)

and have the Jacobiator

[v3,[v1,v2]] + (123) cyclic = e�
2

m3
∇ · B, (30)

which is nonvanishing in the presence of a magnetic monopole,
∇ · B = 4πg �= 0. The presence of nonassociativity in the
operator algebra means that the velocity operators are not
globally defined. This is becasue the vector potentials are not
globally defined in the presence of a monopole, in which
case we can either use a singular description involving a
Dirac string, or equivalently, use the Wu-Yang description
which employs two patches of potential related by a gauge
transformation. At the level of a gauge bundle, the monopole
charge g must satisfy the Dirac quantization condition eg =
�

2Z. The same condition guarantees that translations commute
and a proper quantum mechanical formalism exists [41–44].

Our consideration and analysis has in fact been motivated
by the knowledge of this simple system. In particular the
striking similarity of (11) with (29) has leaded us to suspect
that the Jacobiator of the projected density operators will be
proportional to ∇ · B and this is indeed the case as we obtained
in (28). In our case, however, the breakdown of the associativity
is more basic. It is due to the merging of the bands at the Weyl
node, which results in a change of the degeneracy of the energy
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levels. Recall how the projected density operator acts on the
states (7)

ρ̂q|k,α〉 = ei
∫ k+q

k dk′ ·A(k′)|k + q,α〉 (31)

in the long-wavelength limit. The occurrence of degeneracy
leads to a Berry monopole configuration [45]. This in principle
is bad for (31) since the corresponding Berry connection
contains a Dirac string singularity. However it is well known
that if the Dirac quantization condition is satisfied, then the
Dirac string singularity becomes a gauge artifact, and hence the
representation (31) is well defined. Nevertheless the presence
of the monopole is physical and we find that its singular nature
is felt through a certain successive action, the Jacobiator, of
the band-projected operators.

C. Fundamental identity and Nambu geometry

Next we would like to characterize the kind of nonasso-
ciative geometry (25) we are having here. In general, given
an algebra with a binary product ◦, one can introduce the
associator defined by

δ(A,B,C) := (A ◦ B) ◦ C − A ◦ (B ◦ C) (32)

to characterize the nonassociativity of the algebra. The
associator is related to the Jacobiator as

[A,B,C] : = δ(A,B,C) + δ(B,C,A) + δ(C,A,B)

− δ(B,A,C) − δ(C,B,A) − δ(A,C,B). (33)

As we have just demonstrated, the algebra A of operators O
is nonassociative in general. It is interesting to characterize the
type of the nonassociative geometry. A first guess which comes
to the mind is the Malcev algebra that has also appeared in
some studies in string theory [46]. In general, a Malcev algebra
A is an algebra equipped with an antisymmetric product ◦,

x1 ◦ x2 = −x2 ◦ x1, (34)

in which the Malcev identity

(x1 ◦ x2) ◦ (x1 ◦ x3)

= {[(x1 ◦ x2) ◦ x3] ◦ x1} + {[(x2 ◦ x3) ◦ x1] ◦ x1}
+ {[(x3 ◦ x1) ◦ x1] ◦ x2} (35)

is satisfied for any x1,x2,x3 ∈ A .
In our case we can define an antisymmetric product from

the commutator

x1 ◦ x2 := [x1,x2]. (36)

Then, in terms of the Jacobiator, the Malcev identity reads

[[x1,x2,x3],x1] = [x1,x2,[x3,x1]]. (37)

Taking xn = O(fn,qn), the operator relation is translated to
the following statement on the 2-bracket:

{{(f1,q1),(f2,q2),(f3,q3)},(f1,q1)}
= {(f1,q1),(f2,q2),{(f3,q3),(f1,q1)}}, (38)

where

{(f1,q1),(f2,q2),(f3,q3)} : = {{(f1,q1),(f2,q2)},(f3,q3)}
+ cyclic (39)

is the Jacobiator for the 2-bracket {,}. It is easy to check
that (38) is not satisfied. Hence the nonassociativity occurring
in the topological insulator is not of the Malcev type. We
remark that the closest we can get for a meaningful relation
involving a Jacobiator and a 2-bracket {,} is

{{(f1,q1),(f2,q2),(f3,q3)},(f1,q1)}
= {(f1,q1),{(f2,q2),(f1,q1)},(f3,q3)}

+ {(f1,q1),(f2,q2),{(f3,q3),(f1,q1)}}
+ (

if 2
1 f2f3(q1 × q2) · q3 (q1 · ∇)(∇ · B),

× 2q1 + q2 + q3
)
. (40)

There is however not a simple type of nonassociativity that
one can associate this with.

What about a relation involving two Jacobiators? In the lit-
erature, given an algebra A with a multilinear and completely
antisymmetric 3-bracket {·, · ,·} : A ⊗ A ⊗ A → A , the 3-
bracket is said to satisfy the fundamental identity if the bracket
of the bracket satisfies the relation

{{x1,x2,x3},x4,x5} = {{x1,x4,x5},x2,x3} + {x1,{x2,x4,x5},x3}
+ {x1,x2,{x3,x4,x5}} (41)

for arbitrary x1, . . . ,x5 ∈ A . The fundamental identity is a
natural generalization of the Jacobi identity

{{x1,x2},x3} = {{x1,x3},x2} + {x1,{x2,x3}} (42)

for the antisymmetric 2-bracket {·,·} : A ⊗ A → A . The
fundamental identity is an important consistency condition
which allows for the introduction of a symmetry transfor-
mation of the algebra. Just as an antisymmetric 2-bracket
which satisfies the Jacobi identity (42) can be used to define a
homeomorphism of the algebra

δX := {a,X}, a,X ∈ A , (43)

which acts as a derivation on the 2-bracket

δ{X,Y } = {δX,Y } + {X,δY }, (44)

a 3-bracket which satisfies the the fundamental identity (41)
can be used to generate a homeomorphism of the algebra

δX := {a,b,X}, a,X ∈ A . (45)

This acts as a derivation on the 3-bracket

δ{X,Y,Z} = {δX,Y,Z} + {X,δY,Z} + {X,Y,δZ} (46)

and can thus be considered as a symmetry transformation of
the algebra.

The simplest example of a 3-bracket which satisfies
the fundamental identity is the canonical Nambu bracket
{f,g,h} := εijk∂if ∂jg∂kh defined for any functions f,g,h

over a 3-dimensional manifold [37]. In general a Nambu
bracket is a completely antisymmetric 3-bracket which satis-
fies the fundamental identity (41). It is straightforward to check
that the Jacobiator (24) for any three xi = (fi,qi),i = 1,2,3,
indeed satisfies the fundamental identity (41). As a result, the
Jacobiator (25) also satisfies the fundamental identity

[[O1,O2,O3],O4,O5]

= [[O1,O4,O5],O2,O3] + [O1,[O2,O4,O5],O3]

+ [O1,O2,[O3,O4,O5]], (47)
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where On denotes the operator O(fn,qn). Hence our nonas-
sociative geometry, characterized by the Jacobiator (25), is
a Nambu bracket and we call this a nonassociative Nambu
geometry.

We remark that the notion of a Nambu bracket as one
characterized by the fundamental identity was originally
introduced by Nambu in his formulation of a generalized
mechanics [37]. In the same paper Nambu also considered
the quantization problem of the classical Nambu mechanics
and considered the completely antisymmetrizer as a candidate
for a quantization of the canonical Nambu bracket. This
3-bracket was considered in [27]. We also remark that in some
applications, e.g., in the generalization of the Hamiltonian
mechanics known as the Nambu mechanics [47], it is useful
to introduce the notion of a Nambu-Poisson bracket, which
is defined for an algebra with a binary product ◦ to be a
completely antisymmetric 3-bracket which satisfies in addition
to the fundamental identity also the derivation rule:

{x1,x2,y1 ◦ y2} = y1 ◦ {x1,x2,y2} + {x1,x2,y1} ◦ y2. (48)

This is not what we considered here.

III. NONASSOCIATIVE UNCERTAINTY RELATION

For a noncommutative geometry defined by a commutation
relation

[X,Y ] = iθ, (49)

it is easy to derive an associated uncertainty relation con-
straining the quantum fluctuation of the operators. If X,Y are
Hermitian, the noncommutative uncertainty relation takes the
form

δX δY � 1
2 |〈[X,Y ]〉|. (50)

This gives a constraint on the root-mean-square deviation of
the operators

δX :=
√

〈(�X)2〉, �X := X − 〈X〉, (51)

in terms of the expectation value of the commutator of X,Y .
The uncertainty relation (50) can be easily generalized to the
case of non-Hermitian operators. However the generalization
is not unique. For example one can write down the uncertainty
relation

1
2 (δX δ′Y + δ′X δY ) � 1

2 |〈[X,Y ]〉|, (52)

or the more symmetrical form

δ̄X δ̄Y � 1
2 |〈[ReX,ReY ]〉|, (53)

where here

δX : =
√

〈�X†�X〉, δ′X :=
√

〈�X�X†〉, and

δ̄X : = 1
2 (δX + δ′X). (54)

The proofs of these are simple. In fact, (52) is a direct applica-
tion of the Schwarz inequality |〈α|β〉|2 � |〈α|α〉||〈β|β〉|, for
arbitrary states |α〉,|β〉. Similar inequalities can be obtained
for |〈[X†,Y ]〉|, |〈[X,Y †]〉|, |〈[X†,Y †]〉|, and the inequality (53)
is obtained by adding them together.

For our case, the Schwarz inequality is still valid since
associativity of the operator product was not needed in

the proof of it. Therefore we can apply, for example, the
uncertainty relation (53) to the commutation relation (11) and
obtain the “volume” uncertainty relation

δ̄ρ̂q1 δ̄ρ̂q2 δ̄ρ̂q3 �
√

|〈θq1q2〉〈θq1q3〉〈θq2q3〉|
8

, (55)

where θq1q2 = (Eq1q2 + Eq1−q2 + E−q1q2 + E−q1−q2 )/4 and
Eq1q2 is given by the right-hand side of (11) divided by i. Note
however that this is purely a consequence of the commutation
relation. In our case, we have also a nonassociative geometry
with the Jacobiator relation

[X,Y,Z] = iθ. (56)

Our goal is to extract the associated uncertainty relation that
is a consequence of the presence of nonassociativity.

Writing [X,Y,Z] = [�X,�Y,�Z] and denoting AXY :=
�X�Y , AYX := �Y�X, etc., we have

|〈θ〉| � |〈[AXY ,�Z]〉| + |〈[AYX,�Z]〉| + (X,Y,Z cyclic).

(57)

Using (52), we have

δ̃AXY δ′Z + δ̃′AXY δZ + (X,Y,Z cyclic) � |〈θ〉|
2

, (58)

where δZ, δ′Z are given by (54) and

δ̃AXY : = 1
2 (δAXY + δAYX), δ̃′AXY := 1

2 (δ′AXY + δ′AYX),

(59)

etc. The relation (58) gives a lower bound constraint on the
product of the coordinate uncertainties, δX,δ′X, . . . , and of the
“area” uncertainties, δ̃AXY , δ̃′AXY , . . . . Since (56) is invariant
under the rotation group acting on X,Y,Z, it is desirable to have
a form of the uncertainty relation that is manifestly expressed in
terms of SO(3)-invariant quantities. To do this, let us utilize the

inequality
∑

xiyi �
√∑

x2
i

√∑
y2

i for real xi,yi and obtain
from (58)

δ̂R δ̂A � |〈θ〉|
4

, (60)

where

(δ̂R)2 : = (δrX)2 + (δrY )2 + (δrZ)2 with

(δrO)2 : = (δO)2 + (δ′O)2

2
(61)

and

(δ̂A)2 : = (δ̃AXY )2 + (δ̃′AXY )2

2
+ (δ̃AYZ)2 + (δ̃′AZY )2

2

+ (δ̃AZX)2 + (δ̃′AXZ)2

2
. (62)

In the special case where X,Y,Z are Hermitian, δrO = δO,
δ̃AXY = δ̃′AXY ,

(δ̂R)2 = (δX)2 + (δY )2 + (δZ)2, (63)

and

(δ̂A)2 = (δ̃AXY )2 + (δ̃AYZ)2 + (δ̃AZX)2. (64)
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Due to their origin, we will call (58), (60) nonassociative
uncertainty relations.

In our case, taking (X,Y,Z) = (ρq1 ,ρq2 ,ρq3 ), let us evaluate
the lower bound for the constraint (60). Assuming that we have
monopoles of charge Qn at the position kn = ζ n in the BZ, it
is

∑
n Qn = 0 according to the Nielsen-Ninomiya theorem.

Evaluating the delta function, we obtain in the leading order
of small momentum the following expression for the lower
bound for the nonassociative uncertainty relations (58), (60):

|〈θ〉| = |(q1 × q2) · q3|
∣∣∣∣∣
∑

n

Qn〈Nα
n 〉

∣∣∣∣∣, (65)

where Nα
n := Nα

ζ n
and Nα

k = γ α
k
†γ α

k is the number operator
for the orbital creation operator. As the expression (65)
depends only on simple properties of the Weyl node, we
expect to extract interesting information from these uncertainty
relations. This will be the subject for further work.

In this paper, we have pointed out the presence of
nonassociativity in the algebra of density operators in a
Weyl semimetal. This breakdown of associativity can be

thought of as some kind of “anomaly,” with the fundamental
identity playing the role of the consistency condition. The
nonassociativity is supported by the monopoles situated at the
Weyl nodes, which are also exactly where the Fermi arcs end.
Since Fermi arcs played a very important role in the spectral
flow between the Weyl points, it will be interesting to relate
the algebraic structure of the projected density operators to
the properties of Fermi arcs and related spectral flow. It will
also be interesting to apply the algebraic structure to derive
the spectral sum rules for the density correlation functions for
Weyl semimetals [48].
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