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Orbital effects of strong magnetic field on a two-dimensional Holstein polaron
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We investigate the orbital effects of a strong external magnetic field on the ground-state properties of a
two-dimensional (2D) Holstein polaron, employing variational approaches based on exact diagonalization. From
the ground-state energy and the wave function, we calculate the electron-phonon correlation function, the average
phonon number, and the Drude weight and investigate the evolution of a 2D Holstein polaron as a function of
the magnetic flux. Although the external magnetic field affects the polaron throughout the parameter regime, we
show that the magnetic field has a stronger effect on a loosely bound (spatially extended) polaron. We also find
that the magnetic field can be used as a tuning parameter, particularly for a weakly coupled polaron, to reduce
the spatial extent of a large polaron.
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I. INTRODUCTION

The interplay between electronic and lattice degrees of
freedom is central to many areas of condensed-matter physics.
The Holstein model [1,2], which is almost seven decades old,
still holds a place of eminence when it comes to electron-
phonon (el-ph) interaction because of the intricate many-body
physics it encompasses within a simple paradigm. On the
other hand, modification of the electronic band structure on
a lattice in the presence of strong magnetic field gives rise
to the well-known Hofstadter’s butterfly [3], a quintessential
example of fractals in quantum mechanical systems. Although
the physics of solids is replete with electron-phonon coupled
systems, precious little is known about the effects of a strong
orbital magnetic field on such a coupled system, where indeed
only one of the partners, the electron, feels the effect of the
field directly.

In this paper, we study the Holstein polaron in a strong
magnetic field, which marries the two issues above. In the
presence of strong el-ph coupling, the electron is expected
to form polaronic bound states of varying size, depending
on the strength of the el-ph interaction. On the other hand,
an orbital magnetic field induces a precession of an electron
away in an orbit reducing the net mobility, in effect subjecting
it further to localization by phonons. It is in this context that the
combined effect is an interesting puzzle calling for a resolution.
However, the subject of lattice polarons in a strong magnetic
field is largely an unexplored area, barring very few works,
notably by Berciu [4] using the momentum-average (MA)
approximation [5]. In the presence of a weak magnetic field,
perturbative calculations with the Fröhlich-based continuum
model predict that the cyclotron frequency is defined in terms
of polaron effective mass [6]. Nonperturbative calculation on
a two-dimensional (2D) lattice by Berciu [4] confirms these
results for a very weak field and lower-lying Landau levels. Our
exact-diagonalization-based numerical results at these regimes
substantiate the earlier findings.

*spradhan@phy.iitkgp.ernet.in
†bandemataram@gmail.com
‡arghya@phy.iitkgp.ernet.in

Several numerical approaches have been employed to study
the Holstein model, such as density-matrix renormalization
group (DMRG) techniques [7], exact-diagonalization tech-
niques [8], the quantum Monte Carlo method [9], the global-
local method [10], and advanced variational techniques [11].
The variational approaches based on the exact diagonalization
(VAED) used by Bonča et al. [12] and Chakraborty et al.
[13] are some of the most successful numerical methods to
study the Holstein and extended-Holstein type of el-ph systems
in a dilute regime in all dimensions. In this work, we have
generalized this method to deal with cases where the lattice
unit cell has more than one equivalent site, i.e., a supercell
VAED. This scheme has been quite successfully implemented
in the present case and can be used in many important situations
where a many-atom unit cell is coupled to another degree of
freedom (such as polarons in graphene or a case of partial
disorder). We first compare our supercell-VAED zero-field
results with the benchmark results available in the literature,
where we find at least an eight-digit match. Then we proceed to
study the ground-state Hofstadter band at different parameters
of the Holstein model. We first create a variational space by
repeated action of the Hamiltonian on the initial state and then
we adopt a twofold approach: (i) integrate the spectral function
obtained from the k-space Green’s function over the Brillouin
zone to get the density of states, and (ii) find the ground-state
energy and wave function by employing the conjugate gradient
technique [14].

This paper is organized as follows: in Sec. II, we discuss the
Hamiltonian and delineate the basis generation procedures. We
then proceed to show our results and compare some of those
with the existing results in Sec. III. In this section, we also study
the evolution of the polaron with magnetic flux in different
parameter regimes and try to analyze the interplay between
the el-ph interaction and the magnetic field. The conclusion
follows in Sec. IV.

II. THE MODEL

In order to study the effect of the magnetic field, we employ
the simplest and well-studied model for electron-phonon
interaction, i.e., the Holstein model, where a spinless electron
is coupled to a dispersionless optical phonon, represented by a
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FIG. 1. The magnetic supercell (marked by the purple box) for
a magnetic field of 2π

3 . The figure shows the variation in hopping
phases along the y bonds due to the choice of Landau gauge.

local Einstein oscillator. For a spinful model, the magnetic field
leads to the Zeeman splitting of up- and down-spin polaron
bands. In a very high magnetic field and low electron density,
one can consider only orbital effects and ignore the Zeeman
splitting as the Hilbert space is spin split into two sectors well
separated in energy. One can, therefore, concentrate on the
lower of the two for low filling, effectively reducing the model
to a spinless one. The Hamiltonian is given by

H = −
∑
i,j

tij (c†i cj + H.c.) + ω
∑

i

b
†
i bi

−ωg
∑

i

c
†
i ci(b

†
i + bi), (1)

where 〈i,j 〉 are nearest-neighbor site indices on a square
lattice, and ci (bi) are electron (phonon) annihilation operators,
respectively. The nearest-neighbor hopping integral in the
presence of a magnetic field is now associated with a Peierls
phase factor. The choice of Landau gauge �A(r) = B(0,ma,0)
for a uniform magnetic field B perpendicular to the plane of
the lattice leads to the hopping integral tij = −t along the

x direction, and tij = −te
ie/�

∫ i

j
A(�r)d�r = −t exp(±2πim

φ

φ0
) =

−t exp(±2πim
p

q
) along the y direction. m denotes the x

component of the lattice position vector. Here, φ = Ba2 is
the number of flux quanta per plaquette, which is the gain
of phase by an electron hopping around a closed path along
the plaquette. Here, a indicates the lattice parameter, taken
to be one throughout. φ

φ0
= � = p

q
, with p, q the co-prime

integers and φ0 the Dirac flux quantum. We have set the
hopping integral t to be 1 throughout the numerical calculation
and all other parameters are defined in units of t . Here,
ω is the oscillator frequency and g is the dimensionless
electron-phonon coupling strength. The effect of electron-
phonon coupling is expressed in terms of the dimensionless
parameter g.

Once the magnetic field is switched on, we lose lattice
periodicity in the x direction. However, since it is only a phase
repeating at every 2π , periodicity is still retained, albeit with a
changed value. Figure 1 describes the situation for a magnetic
field B = 2π

3 . In this case, the changed periodicity of the lattice
is 3; so instead of the one-site unit cell, our magnetic unit
cell is basically a three-site strip. Therefore, to account for a
magnetic field B = 2π

N
, the magnetic supercell will be a strip

of length N , so that the variation in hopping phases along the
y bonds is accounted for. The variational basis is similar to

that of Bonča et al. [12]. The difference is that now instead
of one initial zero-phonon state, we start with N zero-phonon
states (for N different positions of the magnetic strip) and,
while checking for the translational symmetry, we shift the
supercell. Mathematically, this amounts to putting another
index m to account for the position-dependent parameter. For
example, if φ = 0.005, which corresponds to N = 200, the
size of the supercell will be 200. Therefore, initially we will
have 200 starting states, i.e., an electron present at one of
the inequivalent sites of the supercell. When the Hamiltonian
is acted on these initial states, retaining the translational
symmetry, 200 more states are generated with a phonon present
at the site of the electron. It is important to note that since
translational symmetry is taken care of, if a basis state can
be generated in more than one way, only one copy is retained
[12]. Hence this method is exactly the same as the VAED
method of Bonča et al. [12], except that we have an extended
unit cell (supercell) with more than one site to accommodate
the inequivalent hopping phases due to the magnetic field.
Therefore, if the Hamiltonian is operated, say, Nh times (Nh

shells), we will have states with Nh phonon quanta at the
electron site and no phonon excitations elsewhere. There will
also be states with Nh − 1 phonon quanta at the adjacent site
of the electron with no phonon elsewhere. Further, Nh times
operation of the Hamiltonian will ensure that we have states
with at least one phonon excitation at a site that is Nh − 1 sites
away from the electron. This method of basis construction
ensures an accurate basis for a spatially large polaron and for
polarons at the intermediate-coupling regime. However, the
basis required for a small polaron at strong el-ph coupling is
very different. For a strongly coupled small polaron, we know
from Lang-Firsov theory that all types of phonon excitation are
required at the electron site. In order to get a converged basis
for a small polaron (ω = 5 and g = 2), we have appropriated
the idea of Lang-Firsov transformation while constructing the
basis [13,15]. This method enhances the numerical accuracy
for the small polarons as has been established by earlier works,
since it incorporates into the basis the important states which
a small polaron requires [13,15].

The numerical accuracy of a particular calculation for
a given set of parameters is determined by comparing the
results (the ground-state energy and the correlation functions
calculated from the ground-state wave function) obtained from
a basis of Nh shells with that of the results from a basis of
Nh − 1 shells. Similarly for the density of states (DOS), we
compare the DOS calculated from a particular shell with its
previous shell. The supercell VAED implemented in this work
ensures an accuracy of 6–8 decimal places for the calculated
ground-state energies and at least an accuracy of 3–4 decimal
places in the correlation functions for all of the calculated
regimes. An excellent match of the DOS for the low-lying
states is also obtained. In order to check the accuracy of our
method, we have considered the sum rules for the spectral
weight A(k,ω)=− 1

π
ImG(k,ω), defined as [5,16]

Mn(k) =
∫ ∞

−∞
dωωnA(k,ω). (2)

For a singly dressed particle such as a polaron, the sum rules
can be evaluated up to an arbitrary order and can be rewritten
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in a simplified way [5],

Mn(k) = 〈0|ckH
nc

†
k|0〉. (3)

We have obtained the first five vacuum expectation values and
they are [5,16]

M0(k) = 1, M1(k) = εk, M2(k) = ε2
k + (gω)2, M3(k) =

ε3
k + 2(gω)2εk + g2ω3, and M4(k) = ε4

k + (gω)2[3ε2
k +

2dt2] + 2g2ω3εk + [g2ω4 + 3(gω)4], where d denotes the
dimension of the lattice and t the hopping integral. We have
verified the first five sum rules for a 1D and 2D Holstein
model at different el-ph regimes and k values, and our
calculated values are at least 99.5% of the exact values. For
a 1D Holstein model, they also match excellently with those
obtained from MA calculations. We have also tested the sum
rules for the supercell calculation at B = 0 and we find a
similar matching. It is worth mentioning that M4(k) is the first
moment which involves the dimensionality of the lattice other
than the bare energy εk [16].

We calculate the following quantities of interest: To
calculate the correlation between the electron position and the
lattice distortion in the ground state, we define a correlation
function χ (�r) [χ (x,y)] as follows:

χ (�r) = 〈�G|c†i ci(b
†
i+�r + bi+�r )|�G〉, (4)

where ψG is the ground-state wave function. The total lattice
deformation is conserved to 2g in the Hamiltonian, from
a straightforward sum rule. The average phonon number is
calculated as

Nph =
∑

i

〈ψG|bi
†bi |ψG〉. (5)

The distribution of the number of phonons in the vicinity
of the electron is given by

γ (�r) = 〈�G|c†i ci(b
†
i+�rbi+�r )|�G〉. (6)

The Drude weight (D0) of the ground state of the polaron
is obtained by introducing a phase factor isotropically to the
hopping matrix elements (t → teiη) and then finding out the
response to the electric current as

D0 = ∂2E0(η)

∂η2

∣∣∣∣
η=0

, (7)

where E0(η) is the eigenenergy of the ground state in the
presence of nonzero η [13]. The calculated D0 has been
normalized with respect to a free electron on a square lattice
for all cases.

III. RESULTS

We first test the numerical accuracy of our result by
comparing the ground-state energy of a Holstein polaron
at ω = 2 and g = 1 with the best available results in the
literature [12,13]. The ground-state energy for this parameter is
−4.814 735 77, obtained from a variational basis constructed
by operating the Hamiltonian 11 times on the initial states
(Nh = 11) [12], which matches up to eight decimal places with
the result of Bonča et al. [12]. Then we compare our calculated
density of states (DOS) both for a free electron on a lattice and
polaron with those obtained by Berciu [4]. Figure 2 displays
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FIG. 2. (a) The lower-lying Landau levels for an electron in a
lattice; (b) the same for a Holstein polaron calculated at ω = 0.5 and
g = √

0.4. The dashed vertical lines mark the ground-state energy
at E0 and E0 + ω. (c) Energies ωn of the Landau levels vs n for
φ = 0.0025. The solid lines are the perturbational prediction with
our calculated effective mass and the dashed lines are with m∗(B) =
m∗(1 + γB). The inset shows the Landau levels at φ = 0.0025, where
the dashed vertical line denotes the same as in (b). (d) The energy of

the four lowest Landau levels as a function of φ for λ = 0.2 (λ = g2ω

4t
).

The circles, squares, upper triangles, and lower triangles denote the
first, second, third, and fourth Landau levels, respectively. The solid
and dashed lines have the same significance as (c).

the Landau levels for a magnetic flux (φ) of strength 0.005,
for an electron [Fig. 2(a)] and that of a polaron [Fig. 2(b)] at
ω = 0.5 and g = √

0.4 (corresponding to λ = 0.2 of Berciu
[4] where λ = g2ω

4t
). In order to accommodate a flux of value

0.005, the size of our magnetic supercell (or magnetic strip)
had to be 200 with Nh = 9.

The vertical dotted lines of Fig. 2(b) indicate the ground-
state energy E0 and E0 + ω, respectively. The distinct polaron
Landau levels lose their identity beyond E0 + ω. We digress
a bit and compare the scenario of an electron in a lattice
with that of a Holstein polaron without bringing the magnetic
field into consideration. The electron has only a single band,
whereas a Holstein polaron has an infinite number of bands as
the electron is coupled to all possible phononic excitations.
However, for a Holstein polaron, we have a gap of ω at
k = 0 in between the ground state and the first excited state;
beyond that we have a huge number of closely spaced states
(depending on the parameter regime) and as we go up in
energy they acquire a quasicontinuum nature. These are the
states that disturb the sharpness of the Landau levels beyond
E0 + ω in Fig. 2(b). The point that merits mention is that the
first excited state of the Holstein polaron at k = 0 consists of
the ground-state polaron and an excited phonon. The excited
phonon wants to be infinitely away from the ground-state
polaron; therefore the larger the variational space (Nh), the
more accurate will be the first excited state. Ideally, the first
excited state can be exact only in the thermodynamic limit.
Hence the accuracy of the variational space based calculation
in the vicinity and above E0 + ω will be a function of
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Nh. We now compare our calculated results with those of
the perturbative calculation based on the continuum model.
Figure 2(c) shows the energies ωn as a function of the levels n

for φ = 0.0025. The perturbative calculation gives the energy
levels as

�ωn = EGS + �ω∗
c

(
n + 1

2

)
, (8)

where ω∗
c = eB

m∗ is the cyclotron frequency and we have taken
the B = 0 value of the polaron effective mass m∗ and EGS from
our numerical results (EGS = −4.129607 and m∗

m
= 1.079).

In Fig. 2(c), the solid line is calculated using Eq. (8) and its
disagreement with our calculated energies with increasing n is
clearly visible. The perturbation theory [4,6] gives a correction
to the polaron effective mass as a function of the field B
[m∗(B) = m∗(1 + γB), where γ is a function of n]. When
we substitute m∗(B) in place of the polaron mass at B = 0
in Eq. (8) (the dashed lines), we get a better agreement with
our calculated results; however, disagreement reappears with
further increase in n (as we reach the vicinity of E0 + ω).
Figure 2(d) shows the first four calculated Landau levels as a
function of φ and compares them with the perturbative results
using the polaron mass and field-corrected polaron mass (solid
line and dashed line, respectively). The perturbative results
with field-corrected polaron effective mass are in excellent
agreement with the lowest calculated Landau levels for all
shown field values. However, with increasing n and B, the
supercell (SC)-VAED calculated results start to differ from
the perturbative calculations. Here our calculated results and
conclusions are in agreement with the nonperturbative MA
results of Berciu [4].

We now investigate the response of the polaron to magnetic
fields. The average phonon number (Nph) gives an idea about
the phononic activity of the polaron. An increase in the value
of Nph suggests an increase in the phononic attributes of
the polaron. Figure 3(a) shows the variation (relative to the
zero-field value) of Nph at three different regimes. At ω = 1
and g = 0.05, we have a quasifree electron at B = 0, and the
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FIG. 3. Upper panel: The average phonon number Nph as a
function of magnetic field for three different sets of el-ph coupling;
Nph are normalized by their respective zero-field values. Lower panel:
The ground-state energy E0 (normalized by their respective zero-field
values) as a function of magnetic field for three sets of el-ph coupling.

phonon activity clearly increases with the increase in field
values, achieving a maximum in the vicinity of φ = 0.375.
Though the trend is similar at ω = 2 and g = 1, the relative
variation is much less pronounced. At ω = 5 and g = 2, we are
deep in the antiadiabatic limit (ω 	 t), and polarons of small
spatial extent hardly respond to the variation in magnetic field.
Figure 3(b) shows the relative variation (with respect to the
zero-field value) of ground-state energy with field for the same
set of el-ph parameters. The pattern in ground-state energy
variation is the same for all three parameter regimes and one
can recognize them as the ground-state Hofstadter band. The
relative change is again maximum for a weakly bound polaron
and minimum for the polaron in the antiadiabatic limit; the
signature of the magnetic field shows up in the ground-state
energy pattern for all regimes. The variation in average phonon
number as well as ground-state energy with applied magnetic
flux follows the lowest branch of the Hofstadter butterfly. Both
Figs. 3(a) and 3(b) are symmetric about φ = 0.5, which are
typical Hofstadter characteristics. The maximum size of the
magnetic strip used for this calculation is 64 and all strip
sizes lower than 64 are included in the figure. The basis size
Nh = 10 has been used for ω = 1 and g = 0.05 as well as for
the ω = 2 and g = 1 case. Therefore, the maximum number
of phonons that a state can have is 10. The ω = 5 and g = 2
calculation has been performed, taking into consideration the
Lang-Firsov ideas with Nh = 7. Consequently, the maximum
number of phonons that a state can have is 27, as initially
the starting basis contains phonon excitations up to 20 at the
electron site.

A thorough study of the electron-lattice correlation func-
tions throws some light on the mechanism of increased
phononic activity for a weakly bound polaron and a much
smaller effect in the antiadiabatic regime. A strip size of
16 has been used to calculate this correlation function.
Figure 4 shows the χ (x,y) for four different values of φ

(φ = 0.0,0.1875,0.375, and 0.5) for a polaron at ω = 1 and
g = 0.05. The displayed χ (x,y) has been divided by the
total deformation 2g for convenience. Though the total lattice
distortion of the polaron always adds up to 2g, it can be
seen that χ increases locally. The local distortion assumes
a higher value for χ (x,y) = χ (0,0) and also in its vicinity

FIG. 4. The electron-lattice correlation function χ (x,y) measures
the lattice distortion, shown at four different magnetic flux values. The
el-ph parameter for the polaron is ω = 1 and g = 0.05.
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FIG. 5. The electron-lattice correlation function χ (x,y) at four
different magnetic flux values. The respective parameters are ω = 5
and g = 2.

than farther outside, i.e., we have a relatively tightly bound
polaron (as compared to the φ = 0 polaron). The χ (0,0) for
φ = 0 is 0.025 and reaches a maximum at φ = 0.375 to 0.043.
A similar trend is observed for γ (x,y) as well. Figure 5
shows the electron-lattice correlation at the same four values
of φ (φ = 0.0,0.1875,0.375, and 0.5) for a polaron in the
antiadiabatic regime (ω = 5 and g = 2). An extremely small
polaron results in this regime and, as it is quite evident, almost
the entire distortion is rooted at (x,y) = (0,0); there is no
noticeable change with magnetic field. The χ (0,0) for φ = 0
is 3.90 and reaches a maximum at φ = 0.375 to 3.943, a very
small change. A study of Figs. 4 and 5 clearly shows that the
magnetic field brings about a prominent change in a weakly
bound polaron compared to a polaron that is tightly bound to
the lattice. The magnetic field tends to shrink the distortion
towards its center for a weakly bound polaron, whereas it
can hardly affect a strongly bound one. Clearly, a loosely
bound polaron has a much larger orbit and therefore has a
stronger effect due to the orbital magnetic field. Hence, we see
in Fig. 4 the relative increase in χ (0,0), though the sum total
of distortion is limited to 2g (as expected from the sum rule).

The Drude weight (D0) gives the measure of coherence
and is an important correlation function to study the nature
of electronic conductivity of a system. There have been a
number of earlier works suggesting a magnetic-field-induced
metal-insulator transition [17]. The Drude weight is calculated
[Eq. (7)] by introducing a global phase in hopping along the
x and y direction isotropically. Figure 6 shows the calculated
D0 as a function of field for the three el-ph regimes. The
size of the magnetic strip used for this calculation is 16. At
ω = 1 and g = 0.05, we have a quasifree electron very weakly
tied to the lattice, with a large spatial extent. Consequently, at
φ = 0, D0 ≈ 1. However, for small magnetic flux (φ = 1

16 ),
it almost drops to 0, suggesting a complete loss of coherent
hopping. Figures 6(a)–6(c) show the ground-state band for
five different flux values (φ = 0.0, 1

16 , 1
4 , 3

8 , and 1
2 ) for three

different el-ph regimes. At φ = 1
16 , it shows a completely

flat band (within the numerical accuracy of our calculation)
and dEk

dk
= 0 throughout the Brillouin zone, which arises from

local quantum interferences [18]. The electron, while moving
through the lattice, will see a maximum variation in flux for the
smallest value of field and loses its coherence. However, the
ground-state band is not completely flat, and for φ = 1

4 , 3
8 , 1
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FIG. 6. Drude weight D0 (normalized by the free electron D0) vs
magnetic flux. Insets (a)–(c) shows the ground-state band at φ = 0.0
(solid line), φ = 1

16 (dotted line), φ = 1
4 (open square), φ = 3

8 (open
diamond), and φ = 1

2 (dashed line) for (ω = 1, g = 0.05), (ω = 2,
g = 1), and (ω = 5, g = 2), respectively. Inset (d) shows D0 for
ω = 5 and g = 2 separately.

etc., we find peaks in D0. Though the present calculation has
been shown with a magnetic strip size of 16, this argument
is valid for any strip size and complete loss of coherence
can be observed at φ = 1

N
, for a magnetic strip size of N .

The D0 peaks for ω = 2 and g = 1 have slightly reduced
values as we are in the intermediate el-ph coupling regime
and no longer have the quasifree electron. For the ω = 5 and
g = 2 antiadiabatic strong-coupling regime, the exponential
suppression of the D0 is observed. However, the change in
magnetic flux still has its influence, which can be seen in
Fig. 6(d), and local quantum interferences show up its effect at
the smallest magnetic flux (φ = 1

16 ). This phenomenon leads
to the localization and consequent vanishing of D0. Clearly,
in the antiadiabatic limit, the more localized the carrier gets,
the Lorentz force is less likely to affect the dynamics. The
quantum interference effects become more pronounced in this
phonon-assisted hopping regime, as borne out in Fig. 6. A
similar observation has been made by Böttger et al. [19] in
the context of the influence of the magnetic field on transport
in small polarons. We see a magnetic-field-induced coherent
to incoherent transition at φ = 1

16 across the el-ph coupling
regime for a lattice size of 16.

IV. SUMMARY AND CONCLUSION

We have developed a numerical scheme based on VAED to
study the el-ph interaction in the presence of a strong magnetic
field. Our results are in excellent agreement with earlier results
wherever a comparison is possible. The external magnetic field
changes the orbit of motion of the electron and the effect is
more in the case of loosely bound polaron already spread out
in real space. With the inclusion of the magnetic field, we see
that the spatial extent of the polaron decreases, resulting in a
polaron with a tighter binding. Our method can be useful to
many important cases with a more complex unit cell.
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