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Boson condensation in topological quantum field theories (TQFT) has been previously investigated through
the formalism of Frobenius algebras and the use of vertex lifting coefficients. While general, this formalism is
physically opaque and computationally arduous: analyses of TQFT condensation are practically performed on
a case by case basis and for very simple theories only, mostly not using the Frobenius algebra formalism. In
this paper, we provide a way of treating boson condensation that is computationally efficient. With a minimal
set of physical assumptions, such as commutativity of lifting and the definition of confined particles, we can
prove a number of theorems linking Boson condensation in TQFT with chiral algebra extensions, and with the
factorization of completely positive matrices over Z+. We present numerically efficient ways of obtaining a
condensed theory fusion algebra and S matrices; and we then use our formalism to prove several theorems for the
S and T matrices of simple current condensation and of theories which upon condensation result in a low number
of confined particles. We also show that our formalism easily reproduces results existent in the mathematical
literature such as the noncondensability of five and ten layers of the Fibonacci TQFT.
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I. INTRODUCTION

In two spatial dimensions, the Pauli principle generalizes,
allowing for anyonic particles with quantum statistics different
from that of fermions and bosons [1]. While such anyons do not
appear as free particles in nature, they can occur as emergent
excitations in quasi-two-dimensional fractional quantum Hall
systems [2,3], and theoretically in other states of quantum
matter, such as the toric code and its generalizations [4,5]. A
state with anyonic excitations is called topologically ordered
[6–13] and represents a new paradigm in condensed matter
physics with far reaching potential technological applications
in quantum computation [14].

Prior to the discovery of topological order, it was well
known that bosons can macroscopically occupy a single
quantum state, a fact which allows for the possibility of a Bose-
Einstein condensation phase transition. In a topologically
ordered phase, bosons are more complicated particles: they
can have nontrivial braiding behavior with other anyons
[4,15], and even more exotically they can carry nonlocal
internal degrees of freedom [4], in which case they are
called non-Abelian bosons. Notwithstanding, such bosons
can sometimes condense [16–27]. It is then natural to ask
how this condensation affects the topological order, namely,
what is the fate of the other anyons in the phase. The
answer is that anyon condensation induces transitions between
different topologically ordered phases in such a way that
universal properties of the anyons of the condensed phase
can be inferred from those of the initial phase, together
with a list of condensed bosons. This framework of anyon
condensation transitions found many applications in the study
of topological order [28–33], in particular in solving the
question of bulk-boundary correspondence [34–38], or in
deducing the universal properties of domain walls [39–47]
and other external defects [48–55].

The universal aspects of topologically ordered phases are
captured by topological quantum field theories [56]. Among

these, the axiomatic approach of category theory [57–61],
more concretely the formulation of modular tensor categories
(MTCs), is particularly powerful and, to our knowledge,
provides a complete characterization of topological order in
two-dimensional space [4,15]. At a basic level, MTC’s are
characterized by the types of anyons that appear in the phase
as well as their interrelations in the form of fusion and braiding
information, the so-called “F moves” and “R moves.”

In correspondence with the different descriptions of topo-
logical order itself, several formulations of anyon condensation
were developed. In the context of MTCs, the phase after
condensation is found by studying commutative separable
Frobenius algebras [62–66] of the initial theory [67,68]. Bais
and Slingerland translated this procedure into the language
of anyon models [16], but their formulation did not give a
systematic method for determining properties of the phase
after condensation. This was later achieved by Eliëns et al.
in Ref. [17] via a diagrammatic formulation of the con-
densation problem that makes use of the so-called vertex
lifting coefficients. These allowed them to embed the fusion
and braiding processes of the condensed phase in the initial
anyon model. However, all these approaches fall short of
providing an algorithmic formulation of boson condensation in
a way that could, for example, be implemented in a computer
algebra program allowing for systematic studies of possible
condensations.

In this paper, we reformulate the problem of boson conden-
sation in anyon models axiomatically and purely algebraically.
The resulting formalism is based on a small number of
natural assumptions such as the commutativity of fusion and
condensation as well as an assumption about the topological
spins of the anyons after condensation. Our approach puts the
modular matrices S and T of the initial anyon model center
stage, instead of focusing on the F and R moves, which are the
key objects of interest for the diagrammatic approach [17]. The
F and R moves are in general notoriously hard to compute even
for relatively simple theories. Our goal is to find the modular
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matrices S̃ and T̃ of the final theory after condensation.
Using our algebraic formulation, we propose an algorithm that
determines all possible condensation instabilities of an anyon
model and can be efficiently implemented on a computer.
We solve for the condensation via a series of linear algebra
problems, involving the factorization of nonnegative integer
matrices.

Besides its utility for computer-aided calculations, our al-
gebraic formulation of condensation also facilitates analytical
derivations. As an example, we discuss layer constructions of
topologically ordered states and easily reproduce the known
result that five and ten layers of the Fibonacci anyon model
cannot undergo a condensation transition.

This paper is structured as follows. In Sec. II, we formulate
the condensation problem along with the axioms relating to fu-
sion rules. In the following Sec. III, we present the assumptions
that allow us to deduce the braiding properties of the theory
after the condensation transition, and several implications
are derived. In Sec. IV, we derive central equations which
constrain S̃ and T̃ . Subsequently, we show in Secs. V and
VI that a weaker set of axioms suffices, if the condensate
consists of so-called simple currents and if only one particle is
confined through the condensation transition, respectively. We
formulate an algorithm for solving the condensation problem
in Sec. VII. The final Sec. VIII gives examples of condensa-
tion transitions in multilayered anyon models and discusses
obstructions to boson condensation in five and ten layers
with Fibonacci anyons. We have included eight appendices
containing brief summaries of MTCs (Appendix A) and chiral
algebras (Appendix C), mathematical proofs of the results
explained in the main text (Appendices B, E, and F) and further
examples of condensation (Appendices D, G, and H).

II. DEFINITIONS AND ASSUMPTIONS

In this section, we present the formalism underpinning
anyon condensation, following Refs. [16,17] closely. Our
discussion is self-contained with respect to the previous
literature on anyon condensation, but assumes that the reader is
familiar with the basic concepts of MTCs [5] (see Appendix A
for a short review).

The input for our approach to anyon condensation is an
MTC A (the uncondensed theory), and a set of restriction and
lifting coefficients, which relate the particle excitations in A
to those in T (the condensed theory). In general, T is only
a fusion category, because it may contain some excitations
which are confined by the surrounding condensate. Projecting
out these confined excitations, we are left with a deconfined
condensed MTC that we denote as U . Our goal is to find
possible MTCs U given A and some basic information about
the condensate, such as which bosons condense.

In what follows, we will consider the Bose condensation
of a collection of bosons in the original theory A. This
collection of anyons is called the condensate and becomes
part of the vacuum in the new intermediate fusion category
T . In condensing these bosons, a generic anyon a ∈ A will
become (or “restrict to”) a superposition of particles t ∈ T

a
r�→

∑
t∈T

nt
at, ∀a ∈ A (1)

with the coefficients nt
a ∈ Z�0, where we assume that nt

a = nt̄
ā

and bars denote antiparticles (see Appendix A). Equation (1)
defines the “restriction map.” We will also use the phrase “a
restricts to

∑
t n

t
at” to describe Eq. (1). It is possible that

more than one particle t appears on the right-hand side of
Eq. (1), in which case we say that “a splits into

∑
t n

t
at .”

Condensed particles (bosons b in the condensate) have the
additional special property that nϕ

b �= 0, where ϕ is the vacuum
particle in T , that is, their restriction contains the identity of
the new T theory. If n

ϕ

b �= 0, then n
ϕ

b = n
ϕ

b̄
, i.e., both the boson

and its antiparticle must condense at the same time.
The reverse (or, more precisely, adjoint) operation to

restriction is called “lifting.” For a particle t ∈ T , all the
particles in A which restrict to t are defined to be the lifts
of t . The lifting coefficients are the same nt

a that we used in
defining the restriction. Formally, lifting is defined by

t
l�→

∑
a∈A

nt
aa, ∀t ∈ A. (2)

Finally, we define particles in T whose lifts do not share a
common topological spin θa as confined, that is,

t : confined ⇔ ∃ a,b such that nt
an

t
b �= 0 with θa �= θb. (3)

Conversely, the deconfined particles in T are the particles
whose liftings do share a common topological spin, which
becomes identified with the spin of the deconfined particle,
that is,

t : deconfined ⇔ ∀ a,b such that nt
an

t
b �= 0 then θa = θb.

(4)

Obviously, any particle t ∈ T is either deconfined (t ∈ U) or
confined (t ∈ T /U ). With these definitions in place, we now
make a fundamental assumption from which we will derive the
structure of the theory after condensation. We assume that the
restriction A → T commutes with fusion. This is represented
by the diagram

in which f represents fusion and r represents restriction.
More explicitly, the commuting diagram can be written in

terms of anyon basis∑
r,s∈T

nr
an

s
bÑ

t
rs =

∑
c∈A

Nc
abn

t
c, (5)

where Nc
ab and Ñ t

rs are the fusion coefficients in A and
T , respectively. This elementary constraint is surprisingly
restrictive. For instance, it immediately leads us to two
constraints on the quantum dimensions of particles in the A
and T theories (see Appendix B)

da =
∑
r∈T

nr
adr , ∀a ∈ A, (6a)

dt = 1

q

∑
a∈A

nt
ada, ∀t ∈ T , (6b)
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where q := ∑
a n

ϕ
ada . Diagrammatically, Eq. (6b) is

(7)

It will also be useful to define the quantity

βt :=
∑
a∈A

θadan
t
a, (8)

where θa is the topological spin of a ∈ A. Given a particle
t ∈ U , it follows from the aforementioned definition of a
deconfined particle Eq. (4):

βt = qdtθt , ∀t ∈ U , (9)

as a useful corollary to Eq. (6b).

III. THE CONDENSATION MATRIX Mab

So far, our formalism does not differ appreciably from
that of Refs. [16,17]. However, in what follows, we opt to
not introduce the so-called “vertex lifting coefficients” on
which the approach of Ref. [17] is based. Instead, we find
that we can extract a surprising amount of information from
supplementing the algebraic relations in Sec. II with two
additional assumptions. First, by assumption, we are only
interested in cases where U is a TQFT, so that its anyons
form a braided fusion category. Second, we assume that

βt = 0, ∀t ∈ T /U , (10)

where t ∈ T /U runs over all confined anyons. To motivate
this equation, let us pictorially represent the left-hand side of
Eq. (10) as

(11)

where a particle t is braided around itself. This process is
equivalent to braiding the lifts a of the particle t (namely
nt

a �= 0). Each of these braidings is given by the phase θa , while
the loop with particle a is equal to the quantum dimension da .
The result we obtain is the quantity βt , which we assume
vanishes when t ∈ T /U as confined particles cannot form a
braided category. This is in contrast with Kirillov-Ostrik [67],
Kong [68], and Eliëns et al. [17]. In these works, the authors
present the process of boson condensation as the identification
of a commutative separable subalgebra ϕ of A. The condensed
theory T is identified as a module over φ living in A. Using
this formalism, which allows one to relate braiding processes
in the T theory to braiding processes in the original theoryA, it
is possible to show that βt vanishes when t ∈ T /U . Using our
stripped down algebraic formalism, we are currently unable to
interpret braiding processes in T in terms of those in A, and so
we are unable to mimic the procedures in the papers above. As
a result, we are inclined to simply assume βt vanishes when
t ∈ T /U . In certain special cases we can show that Eq. (10)
follows from the assumptions; in Sec. II, e.g., we do so for the
so-called simple current condensates (see Sec. V).

With these additional assumptions in place, we define some
useful quantities. The vacuum component t = ϕ of Eq. (5) will
be a central object in our analysis, the left-hand side of which
reads

M ′
ac :=

∑
t∈T

nt
an

t
c

(
=

∑
b∈A

Nc
abn

ϕ

b

)
, (12a)

as will be

Mac :=
∑
t∈U

nt
an

t
c . (12b)

Notice how the two above definitions of the matrices M ′ and
M with nonnegative integer entries differ subtly but crucially:
the expression for M ′ involves a summation over T while that
for M involves a summation over the deconfined condensed
theory U .

The matrices, which can be factorized as in Eqs. (12a)
and (12b), are called completely positive matrices over the
ring of positive integers. We will discuss completely positive
matrix factorization later in the paper. In the following sections,
we will demonstrate two important properties of M , namely
[M,S] = [M,T ] = 0, where S and T are modular matrices of
the A theory. For a discussion of the role of the matrix M in
CFTs, we refer the reader to Appendix C.

A. Proof that M commutes with T matrix of the A theory

In the following, we will prove that the M matrix we defined
in Eq. (12b) commutes with the modular T matrix of the A
theory. The T matrix of the A theory is Tab = θaδab. Note that

[M,T ]ac =
∑
b∈A

(MabTbc − TabMbc)

= Macθc − Macθa

=
∑
t∈U

nt
an

t
c(θc − θa). (13)

Since t ∈ U , the spins of all the lifts of t in A are the
same, hence θa = θc and each term in the final line vanishes
identically. It follows that

[M,T ] = 0 . (14)

Note that this is not valid if the sum in the last line of Eq. (13)
was not restricted to the U theory, i.e., [M ′,T ] �= 0, with M ′
defined in Eq. (12a).

B. Proof that M commutes with S matrix of the A theory

In this section, we will prove that the M matrix commutes
with the modular S matrix of A theory

[M,S] = 0 . (15)

We start from the expression of the S matrix for a braided
fusion category A (e.g., see Ref. [69])

Scb = 1

DA

∑
x∈A

Nx
cb̄

θx

θcθb

dx, (16)

where DA is the total quantum dimension of the A theory and
b̄ denotes the antiparticle of b. From the definition of M , we
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express the commutator [M,S] as

[M,S]ab = 1

DAθaθb

∑
c,x∈A

∑
t∈U

θxdx

(
nt

an
t
cN

x
cb̄

− nt
bn

t
cN

x
ac̄

)

= 1

DAθaθb

∑
x∈A

∑
t∈U

θxdx

×
[
nt

a

(∑
c∈A

nt
cN

x
cb̄

)
− nt

b

(∑
c∈A

nt
cN

x
ac̄

)]

= 1

DAθaθb

∑
x∈A

∑
t∈U

θxdx

×
[
nt

a

(∑
c∈A

nt
cN

c
bx

)
− nt

b

(∑
c∈A

nt
cN

c
ax̄

)]
. (17)

In the first line, we have used that if nt
an

t
c �= 0 with t ∈ U ,

then θc = θa and if nt
cn

t
b �= 0 with t ∈ U , then θc = θb, which

yields the term θaθb in the denominator. To obtain the last line,
we have used the equalities Nc

ab = Nb̄
ac̄ = Nc̄

āb̄
and Nc

ab = Nc
ba .

We now use Eq. (5) to replace the terms in the round brackets
and find

[M,S]ab = 1

DAθaθb

∑
s∈T

∑
x∈A

θxdxn
s
x

×
∑

t∈U ;r∈T

(
nt

an
r
bÑ

t
rs − nt

bn
r
aÑ

t
rs̄

)
, (18)

where we have used the equality ns
x = ns̄

x̄ (the assumption that
the restriction of x’s antiparticle x̄ is the antiparticle of the
restriction of x) to transfer the antiparticle on the Ñ t

r,s̄ . We can
now split up the r sum in Eq. (18) into a sum over U and a sum
over T /U . For the first contribution, we have∑

r,t∈U

(
nt

an
r
bÑ

t
rs − nt

bn
r
aÑ

t
rs̄

) =
∑
r,t∈U

nt
an

r
b

(
Ñ t

rs − Ñ r
t s̄

)
(19)

by exchanging the labels r and t in the second term. Since
Ñ r

t s̄ = Ñ t̄
r̄ s̄ = Ñ t

rs , Eq. (19) vanishes identically. Thus r in
Eq. (18) can only take values in T /U . By assumption, U is
a closed fusion category. This implies that no trivalent vertex
with a single leg in T /U exists in T . As a result, the s-sum
in Eq. (18) may only run over T /U . However, for s ∈ T /U ,
we can use the assumption Eq. (10) to find

∑
x∈A θxdxn

s
x = 0

for the remaining terms in Eq. (18). We conclude that Eq. (18)
vanishes identically and thus [S,M] = 0.

These equations are essential to the theory of condensation,
as they establish that the condensation matrix Mab is a partic-
ular symmetry of the S and T modular matrices. While there
exist other such symmetries, for example, automorphisms that
are represented by permutation matrices, these matrices are
not “completely positive” integer matrices, i.e., they cannot be
factorized as nnT in terms of a nonnegative integer matrix n.

IV. THE MODULAR TENSOR CATEGORY
AFTER CONDENSATION

In the previous section, we identified a matrix M which
commutes with the modular matrices S and T of the A theory.

In this section we prove a stronger pair of results, namely
that

nS̃ = Sn, (20a)

nT̃ = T n, (20b)

where S̃ and T̃ are the modular matrices of the U theory and n

is the matrix of coefficients that enter the restriction and lifting
maps, (n)at = nt

a,∀a ∈ A,t ∈ U . Our assumption Eq. (10) will
be crucial for these proofs. The second equality Eq. (20b) is the
statement that, component by component, whenever nt

a �= 0,
θt = θa; this is true by recalling our definition of deconfined
particles of the U (⊂ T ) theory, Eq. (4).

Before starting the proof of the first equality Eq. (20a), we
note the following equalities derived in Appendix E:∑

t∈U
βtβ

∗
t = q2D2

U (21a)

and ∑
t∈T

βtβ
∗
t = D2

A. (21b)

It then follows from assumption (10) that
∑

t∈U βtβ
∗
t =∑

t∈T βtβ
∗
t and thus q2D2

U = D2
A or [67]

q = DA/DU . (22)

To prove Eq. (20a), we multiply Eq. (5) by θada and sum
both sides over a ∈ A to obtain∑

r,s∈T
Ñ t

rsn
s
bβr =

∑
a,c∈A

Nc
abdaθan

t
c

= θbDA
∑
c∈A

Sbcθcn
t
c, (23)

where we have used the definition of S from Eq. (16) and that
θa = θā . For particles t ∈ U , we furthermore have∑

r,s∈T
Ñ t

rsn
s
bβr =

∑
r,s∈U

Ñ t
rsn

s
bqθrdr , ∀t ∈ U , (24)

because (i) only r ∈ U contributes to the sum (as βr = 0 if
r ∈ T /U) and (ii) only s ∈ U contributes since U is closed
under fusion by assumption. We furthermore used Eq. (9) to
rewrite the right-hand side of Eq. (24). Since we assumed that
U forms a braided fusion category with its S̃ matrix, we use
the usual definition of the S̃ matrix to write∑

r,s∈U

(
Ñ t

rsθrdr

)
ns

b =
∑
s∈U

S̃stDUθtθsn
s
b. (25)

Since s,t ∈ U , we furthermore have θs = θb if ns
b �= 0, which

allows us to combine Eqs. (23) and (25) into

1

q

DA
DU

∑
c∈A

Sbcθcn
t
c =

∑
s∈U

S̃stn
s
bθt . (26)

Since for all nt
c �= 0, we have θc = θt (t ∈ U) and using

Eq. (22), this expression reduces to∑
c∈A

Sbcn
t
c =

∑
s∈U

S̃stn
s
b. (27)

We have thus proven Eqs. (20a) and (20b) within our
algebraic formulation of the condensation transition. These
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two equations have a well known parallel in the study of chiral
algebra extensions, which we detail in Appendix C. As a side
remark, let us derive a consequence of Eq. (22), namely,

DA > DU , (28)

which follows from the fact that the embedding dimension q =∑
a∈A dan

ϕ
a > 1 and q = 1 if no condensation is happening.

This is always true even if the assumption (10) is not used. If
Eq. (10) is used, then Eqs. (21a) and (21b) imply DA = qDU .
By analogy with the Zamolodchikov c theorem of Ref. [70] one
can call this result the D theorem, which can be interpreted as
the disappearance of some anyons upon condensation. There
is a stronger connection between this result and the g-theorem,
according to which the Affleck-Ludwig boundary entropy of
an open conformal system decreases under the renormalization
group flow of the boundary as long as the bulk theory
remains critical throughout the flow [71–73]. (This situation is,
however, distinct from the case of a condensation transition in
which the bulk is only critical at the transition.) The boundary
entropy is in turn related to the quantum dimension of the
primary field that characterizes the boundary condition, which
suggests a relation between the g theorem and Eq. (28).

V. SIMPLE CURRENTS

Simple currents are Abelian anyons that, when raised to a
certain power by fusion, equal the identity, see Refs. [74–80].
The precise definition follows below. In this section, we
consider a condensate that is composed of simple currents
only. In this situation, we can prove that Eq. (10), i.e.,
βt = 0,∀t ∈ T /U , follows from the assumptions in Sec. II.

A. Introduction to simple currents

There are several equivalent definitions of simple currents
in the context of rational conformal field theory (RCFT). First,
a simple current is a primary field J that has a unique fusion
channel with any other primary field of the RCFT,

J × φ = φ′, ∀φ. (29a)

A second definition is that a simple current is a primary field J

that when fused with its antiparticle or conjugate field J̄ only
fuses to the identity (see Ref. [76])

J × J̄ = 1. (29b)

A third definition is that the quantum dimension of J is 1,

dJ = 1. (29c)

One can show that all these definitions are equivalent [75].
Given two simple currents J1 and J2, their fusion product

J1J2 is also a simple current. The number of primary fields
of an RCFT is finite, therefore each simple current J has an
associated integer N such that JN = 1 by using Eq. (29a). The
smallest integer N > 0 with this property is called the order
of J . A simple current J generates a set of simple currents
{Jm|m = 0,1, . . . ,N − 1}, which is isomorphic to the Abelian
group ZN . An RCFT may contain simple currents generated
by more that one primary field. The collection of all of them
form an Abelian group which is isomorphic to the product
ZN1 × · · · × ZNr

. One can choose a basis of simple currents

such that Ni are of the form p
ni

i , ni ∈ Z, with pi a prime
number. This is the fundamental theorem of finite Abelian
groups.

As an example, consider the RCFT constructed from the
Kac-Moody algebra SU(2)k . The primary fields are denoted
by φ� where � = 0,1, . . . ,k is twice the topological spin. The
field φk is a simple current because its fusion rule is φk ×
φ� = φk−�. Indeed, φk is the only nontrivial simple current,
and satisfies φk × φk = φ0 = 1. The simple currents form a
Z2 = {φ0,φk} subcategory.

When acting on a primary field φ, J generates an orbit
formed by the fields J nφ

[φ] = {φ,Jφ,J 2φ, . . . ,J d−1φ}, J dφ = φ. (30)

Here, d is the smallest positive integer such that J dφ = φ. The
orbit Eq. (30) is denoted by a representative field φ but one
can choose another field belonging to the orbit. In general d

need not equal N , the order of the current J , but d must divide
N . In the example of SU(2)k , if k is odd, all the orbits have
two elements, (d = N = 2), while for k even, φk × φk

2
= φk

2

for the action of φk and so the orbit has only one element,
φk

2
. Generally, we will simply call the anyon a “fixed point”

when it is invariant under fusion with a simple current, or
equivalently, if its orbit contains only the anyon itself. In the
SU(2)k (k even) example, φk

2
is a fixed point under the fusion

with φk . As we shall see below, the existence of fixed points is
crucial for the construction of the condensed theory.

B. Simple current condensation

We consider a condensation transition, where the conden-
sate consists only of the set of bosonic simple currents, gener-
ated by n simple currents J1, . . . ,Jn with orders N1, . . . ,Nn.
Any anyon in the condensate can thus be represented as
J

i1
1 . . . J in

n , where il = 0, . . . ,Nl − 1 and l = 1, . . . ,n (note
that the fusion product of simple currents is unique). We use
the shorthand notation i = (i1, . . . ,in) and

Ji := J
i1
1 · · · J in

n . (31)

The initial theory might have simple currents which are not
bosons. We do not consider these, as they cannot condense.
We consider the group generated by the powers of all the
bosonic simple currents, which is sometimes called the bosonic
center C of the RCFT. Powers of a condensed bosonic simple
current, or the products of different condensed bosonic simple
currents are also bosonic and condensed. To see this, examine
the Ji ,J j component of Eq. (5), where Ji ,J j are assumed to
be condensed. Recalling that Ji+ j := Ji × J j is automatically
a simple current (see above), and making use of the fact that
condensed simple currents like Ji have quantum dimension 1
so that nt

Ji
= δt

ϕ , we find

1 = n
ϕ

Ji
n

ϕ

J j
= N

Ji+ j

Ji ,J j
n

ϕ

Ji+ j
= n

ϕ

Ji+ j
. (32)

As a result nϕ

Ji+ j
= 1, indicating that Ji+ j restricts solely to the

vacuum, so it must be a boson. Therefore the product of any
two condensed simple current is a condensed (hence bosonic)
simple current.

As an aside, we note that for general bosonic currents, which
are not necessarily condensed: (i) as before, any power of such
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a simple current is a bosonic simple current; (ii) however, the
product of two such bosonic simple currents does not have
to be bosonic. For example, in the toric code that we will
discuss in detail in Sec. VII, e and m are bosonic simple
currents while their product f is actually a fermion (which
cannot condense). To prove (i), one can use the symmetry
Sab = S∗

ab̄
of the S matrix and the fact that for any anyon

θa = θā . Choosing a = b = J with J a simple current gives

θJ 2

θJ θJ

= θ1

θ∗
J θ ∗̄

J

. (33)

If J is bosonic, then so is J̄ and the above implies J 2 is also
a bosonic simple current, i.e., θJ 2 = 1. This argument can be
iterated by assuming that up to some n0 all J n, n = 1, . . . ,n0,
are bosonic (then so are all JN−n, n = 1, . . . ,n0, with N the
order of J ). Solving the equality SJ,J n0 = S∗

J,JN−n0
for θJn0+1

yields that J n0+1 is also bosonic.

1. Vafa’s theorem

We first aim to find information about the topological
spins of some of the particles in the theory by analyzing the
implications of Vafa’s theorem [81],

∏
p

(
θp

θxθy

)N
p
xyN

u
pz ∏

q

(
θq

θxθz

)Nu
yqN

q
xz

=
∏

r

(
θu

θxθr

)Nr
yzN

u
xr

(34)

∀x,y,z,u. For the case of the simple current condensate, we
pick a particle x = a, a particle y = Ji and a particle z = J j .
Note that a can be any particle in the A theory, not necessarily
a simple current. This choice of the anyons uniquely fixes
all other anyons in the equation (p = a × Ji , u = a × Ji+ j ,
q = a × J j , r = Ji+ j ). Using the fact that the simple currents
and their powers are all bosons, Vafa’s theorem gives

θa×Ji

θa

θa×J j

θa

= θa×Ji+ j

θa

. (35)

This equation implies that the fractions θa×Ji /θa are irreducible
characters of the group ZN1 ⊗ ZN2 ⊗ . . . ⊗ ZNn

, the bosonic
center of RCFT, which condenses. The one-dimensional
characters of this group can be written as

θa×Ji

θa

= ω
i1
1 ω

i2
2 . . . ωin

n , (36)

where ωi’s satisfy ω
Ni

i = 1. Also note that the ωi’s secretly
depend on the subindex a. There are two cases:

Case 1: θa×Ji /θa = 1, (37a)

Case 2: θa×Ji /θa �= 1. (37b)

In the latter case, if particles a and a × Ji restrict to the same
particle t ∈ T then this particle is confined (as θa×Ji �= θa).
Moreover, from the orthogonality of characters, Eq. (36), we
know that in this case

N1,N2,...,Nn∑
i1,i2,...,in

θa×Ji

θa

=
N1−1∑
i1=0

ω
i1
1

N2−1∑
i2=0

ω
i2
2 . . .

Nn−1∑
in=0

ωin
n = 0.

(38)

This happens when at least one ωil is not equal to 1.

2. Condensation

Without loss of generality, we will assume J1,J2, . . . ,Jn

condense. If only a subset of the simple currents condense,
then the same analysis applies to just the bosons that condense
(the others factor out). Since dJ1 = · · · = dJn

= 1, the bosons
restrict only to the new vacuum ϕ with coefficients unity

n
ϕ

J1
= · · · = n

ϕ

Jn
= 1 (39)

and do not split. Using the reasoning in Sec. V B it follows that
all products of these simple currents also condense—indeed,
all bosonic simple currents Ji condense.

We will now proceed to prove a few crucial lemmas for any
a,b ∈ A: (i) nt

a = nt
a×Ji

,∀i, for all t ∈ T and (ii)
∑

t n
t
an

t
b �= 0

if and only if b = a × J j for some j .
(i) is easily proved by examining the b = Ji component

of Eq. (5). To show (ii), we examine the t = ϕ component
of Eq. (5) and note that all bosonic simple currents condense
giving

∑
t∈T

nt
an

t
b =

N1,N2,...,Nn∑
i1,i2,...in

Nb
a,Ji

n
ϕ

Ji
=

N1,N2,...,Nn∑
i1,i2,...,in

δb,a×Ji . (40)

for any a,b ∈ A. To prove (ii), note that (1) if b �= a × J j for
all j , then

∑
t∈T nt

an
t
b = 0 and particles a,b do not have any

common restrictions. Let us write this result as

If b /∈ [a] ⇒ nt
an

t
b = 0, ∀t, (41)

where [a] = {J ja,J j ∈ C} is the orbit obtained acting on a

with all the bosonic simple currents.
(2) If b = a × J j for some j , then

∑
t∈T

nt
an

t
a×J j

=
N1,N2,...,Nn∑

i1,i2,...in

δa×J j ,a×Ji = Ra ∈ Z+. (42)

However, from (i), nt
a×J j

= nt
a , so the LHS of this equation is

positive. Hence Ra > 0. For example, for n = 1, Ra = N1/d,
with d defined in Eq. (30).

Hence we have proved (ii). From (ii) we know that if
a and b are in the lift of t then b = a × J j for some j . On
the other hand from (i), if a is in the lift of t , so is a × J j .
Hence t is deconfined if θa = θa×J j for all j , where a is
any particle in the lift of t . In other words, given an a ∈ A,
the character θa×J j /θa �= 1 for some j if a restricts only to
confined particles.

Let us now prove the assumption (10). We first multiply
Eq. (40) by dbθb and sum over all particles b in the A theory
to obtain∑

t∈T
βtn

t
a =

N1,N2,...,Nn∑
i1,i2,...,in

da×Ji θa×Ji = daθa

N1,N2,...,Nn∑
i1,i2,...,in

θa×Ji

θa

,

(43)

where we have used the fact that the quantum dimension of any
product of a particle with simple currents remains the same.
Now if θa×Ji /θa is not the identity character of the trivial
representation, then the particle a restricts only to confined
particles and we have from Eq. (38),∑

t∈T
βtn

t
a =

∑
t∈T /U

βtn
t
a = 0. (44)
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In fact, the second equality holds even if θa×Ji /θa = 1 for all j ,
because in that case nt

a = 0∀t ∈ T /U—as a result, the second
equality holds for all a. Multiplying the second equality by
θ∗
a da and summing over all particles a we obtain

0 =
∑

t∈T /U
βt

∑
a∈A

θ∗
a dan

t
a =

∑
t∈T /U

βtβ
∗
t . (45)

The unique solution is βt = 0 for t confined, coinciding with
our assumption (10).

VI. ONE CONFINED PARTICLE THEORIES

In this section, we study a simple boson condensation with
just one confined particle t0 in the T theory. Furthermore,
assume that the confined particle t0 has only two lifts a1 and
a2 with lifting coefficients both 1, i.e.,

nt0
a1

= nt0
a2

= 1, (46)

otherwise nt0
a = 0, ∀a �= a1,a2. (47)

With these assumptions, we can prove that the condensate
has only one boson besides vacuum, and this condensed boson
has quantum dimension 1. This implies that the boson is a
simple current, so the results of the previous section imply
βt0 = 0. However, we choose to prove this equation through
another method which gives more information about bosonic
condensation theories with only one confined particle. Further
we find that dt0 = da1 = da2 , which means that a1 and a2 only
restrict to one particle t0 in the T theory, with no other particles
in T . Finally, in this special one-confined particle case, we
prove that βt0 := ∑

a∈A nt0
a daθa = 0, which clearly supports

the assumption we used in previous sections. We give the
detailed proof in Appendix F.

VII. FORMALISM AND IMPLEMENTATION

We now present an algorithmic prescription, which can be
implemented on a computer, and which strongly constrains the
possible condensation transitions starting from a TQFT with
given modular matrices S and T . We then apply this procedure
to several example TQFTs. The algorithm is performed in
three steps. (1) Search for the symmetric matrices M with
nonnegative integer entries and M1,1 = 1 satisfying

[M,S] = [M,T ] = 0. (48)

(2) For each M , find all nonnegative integer rectangular
matrices n such that M = nnT. (3) For each M and n, find
the putative modular matrices S̃ and T̃ of the TQFT after
condensation by solving

Sn = nS̃ and T n = nT̃ . (49)

One subtlety is that we need to make sure that the S̃, T̃

matrices we obtain are valid. In this paper, we use the necessary
conditions for a valid S matrix: it should be symmetric, unitary,
and it should generate nonnegative fusion coefficients by the
Verlinde formula. These are always satisfied if U is an MTC.

This algorithm sidesteps the discussion of the theory T
that contains confined anyons and directly yields the resulting
MTC U formed by the remaining deconfined anyons. The
algorithm provides all condensation solutions of theory A.

Another algorithm which does not sidestep T is to (1) build
the matrix M ′ as in the bracket of Eq. (12a); (2) factorize it in
nt

a; (3) keep only the deconfined particle t’s, and then apply
step (3) and Eq. (49). Whether the two theories are identical
hinges on Eq. (10), which we assume to be true. We now
address the above steps one by one.

A. Solutions for M

Since T is diagonal, the equation [M,T ] = 0 is satisfied
if and only if M is a block-diagonal matrix with nonzero
off-diagonal entries only between particles with the same
topological spin. Imposing this block structure, we can solve
[M,S] = 0, imposing that

1. Mab = Mba � 0, M ∈ Z,

2. M11 = 1.
(50)

The second condition ensures that the A vacuum restricts to
the vacuum ϕ of U . In this case, the first row (or column) of
M is equal to the first column of n and describes the particles
that condense into the vacuum n

ϕ
a . (From this, it is also clear

that only solutions with M1a � da can lead to a valid theory.)
With conditions 1 and 2 in Eq. (50) in place, we obtain two

types of solutions for M , which we call automorphisms and
condensations, aside from the trivial solution M = 1.

Automorphisms are defined by a fully-ranked matrix M

satisfying ∑
a

Mab = 1 ∀b. (51)

They satisfy M2 = 1 because of the following reasons: since∑
a Mab = 1 and all entries of M can only be nonnegative inte-

gers, for any b ∈ A, there is only one corresponding particle b′,
such as Mb′b = 1. Further, Mab = 0,∀a �= b′ and M is fully
ranked. As a result, if a �= b then a′ �= b′. Hence (M2)ab =∑

c MacMcb = ∑
c MacMbc = δab. An automorphism M is

thus a permutation matrix of order two—it is a symmetry of
the S,T data under relabeling of particles. All automorphisms
of A form a group under matrix multiplication, which is
used to construct the “topological symmetry group” in the
presence of a global symmetry [82]. Automorphism, however,
still exists even when any other symmetries [e.g., U (1) charge
conservation] are broken.

On the other hand, solutions M that correspond to a
condensation have M1a �= δa,1 for some a, implying that at
least one other boson besides the vacuum restricts to the new
vacuum. All the condensations can be superimposed with
any of the automorphisms, yielding a potentially different
condensation. In other words, two condensations can be related
via a permutation of A by multiplying the M matrix of
one condensation from both sides with the M matrix of the
automorphism—we will see an example of this below for the
toric code TQFT.

We can prove that any M that satisfies Eq. (48) and
conditions 1 and 2 in Eq. (50) is either an automorphism or
a condensation as follows. We first assume that M is not a
condensation solution, that is, the first row and column of M

are all zeros (M1a = Ma1 = 0,∀a �= 1) except M11 = 1. We
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show that M must be an automorphism in this case. From∑
b

MabSbc =
∑

b

SabMbc, (52)

we have for c = 1∑
b

MabSb1 = Sa1 ⇒
∑

b

Mabdb = da. (53)

Thus da is a strictly positive eigenvector of M with eigenvalue
1. Since every Mab is integer and larger or equal to zero,
Eq. (53) can only hold if

fa ≡
∑

b

Mab � 1. (54)

On the other hand, summing Eq. (53) over a, and using
M = MT, gives ∑

b

fbdb =
∑

a

da. (55)

Again, since fa � 1 and the da are strictly positive, this
equation can only be satisfied if

fa ≡
∑

b

Mab = 1, (56)

which, together with the fact that M is symmetric, implies that
M has to be an automorphism (a permutation matrix).

Let us illustrate how automorphism and condensation
solutions for M arise from condition (48) for the example
of the toric code (TC) TQFT. It contains the anyons 1, e, m, f

and has the modular matrices

STC = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ (57a)

and

TTC = diag(1,1,1, − 1). (57b)

It admits three nontrivial solutions to Eq. (48), one
automorphism

M (1) =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ (58)

that exchanges the e and the m particles and two condensations

M (2) =

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, M (3) =

⎛
⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎠, (59)

of either the e or the m boson. They are related by the
automorphism M (2) = M (1)M (3)M (1) [note that (M (1))−1 =
M (1)].

B. Solutions for n

Next, we solve for the integer matrix nt
a � 0, where t labels

the deconfined particles in the MTC U . It is possible that
multiple solutions n exist for a given M . However, for some

solutions, it still might not be possible to find a valid condensed
MTC: please refer to our Appendix G for an example of 4-layer
Ising model condensation. In that example, we obtain unitary
S and T matrices, but they do not correspond, via Verlinde’s
formula, to integer fusion coefficients.

An efficient first step in solving for n is to realize that
any column of M that only contains zeros and ones is equal
to a column in n. While the matrix M may contain several
columns with only zeros and ones that are equal, they all
correspond to only a single column in n (there are no duplicate
columns in n). After removing from M all rows and columns
that contain only zeros and ones, an actual factorization routine
can be used on the remaining sub-block of the M matrix. (As
we will discuss for an example below, the factorization does
not always yield a unique solution for n in this case.) In the
situations, we have encountered, this part of the algorithm is
not limited by computational power. In the particularly simple
toric code example, deleting duplicate columns directly yields
the solution

M (2) = nnT, nT = (1,1,0,0). (60)

There is only one particle in the new theory, the vacuum. Thus,
condensation of either the e or the m particle in the toric code
yields the trivial TQFT.

As a less trivial example, consider a bilayer of Ising TQFTs.
Each layer contains the anyon types 1, σ, ψ with modular
matrices

SI = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠, TI = diag(1,eiπ/8,−1).

(61)

The bilayer S and T matrices are direct products SI(2) = SI ⊗
SI, TI(2) = TI ⊗ TI, and the theory supports nine particle types
which we denote 11, 1σ, 1ψ, σ1, σσ, σψ, ψ1, ψσ, ψψ ,
where 11 is the vacuum. There is only one nontrivial solution
for M , which reads in this basis

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (62)

It is straightforward to obtain the unique solution n that yields
M = nnT,

nT =

⎛
⎜⎝

1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0

⎞
⎟⎠, (63)

which shows that this describes the condensation of the ψψ

particle. In this process, the σσ particle (which has quantum
dimension 2) splits into two particles of quantum dimension
1 and both 1ψ , ψ1 restrict to the same particle. All other
particles, except for the vacuum, become confined.
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There exists M that solve Eq. (48), but cannot be decom-
posed as M = nnT with a nonnegative integer matrix n. Some
of them still admit an interpretation in terms of a condensation
in the following sense. If the MTC U that is obtained from
a condensation with matrix M = nnT has an automorphism
symmetry P̃ , which is equal to its transpose P̃ = P̃ T, then
M̃ = nP̃ nT is also a symmetric matrix that solves Eq. (48).
For instance, one necessary condition for a decomposition
M = nnT to be possible is that Maa + Mbb � 2Mab. If the
matrix elements of M do not satisfy the triangle equation
Maa + Mbb � 2Mab, then M = nP̃ nT might be possible
instead.

If the TQFT corresponds to a CFT, the possible forms of
matrices M that solve Eq. (48) are understood with the help
of the “naturality theorem” by Moore and Seiberg [83,84].
This theorem implies that all M that solve Eq. (48) in a CFT
are either automorphisms of A, condensations of the form
M = nnT, or of the form M = nP̃ nT, with P̃ an automorphism
of U . As a corollary, we then conclude that for any solution to
Eq. (48) of the from M (2) = nP̃ nT, there is another solution
M (1) = nnT, with the same n, since the identity mass matrix
of U always exists. For the purpose of studying condensations,
we thus focused on matrices M that admit the decomposition
M = nnT throughout our analysis. If we relaxed this constraint
to also include M = nP̃ nT, assumptions such as nt

a = nt̄
ā

would not be justified anymore. We discuss the interpretation
of condensation transitions for CFTs in Appendix C and relate
it to the “naturality theorem.” Subsequently, in Appendix D,
we give an example of condensation transitions in SU(2)16,
for which two solutions M = nP̃ nT and M̃ = nnT to Eq. (48)
exist.

The decomposition M = nnT is generally not unique. For
example, if Maa = 4 for some particle with quantum dimen-
sion 4 or larger, it can either split in four particles with nt

a = 1
for each or restrict to one particle with nt

a = 2 (this issue was
discussed previously in Sec. V). However, in all examples we
studied, at most one of all possible decompositions of M lead
to a consistent TQFT with valid solutions for S̃ and T̃ . Thus, the
uniqueness of this step in the condensation is an open question.
We mentioned that factorizing M = nnT is a well-known
problem in the field of completely positive matrices. In our
cases, the factorization happens over the ring of positive
integers. This problem is known to be NP-hard. With the
exception of small dimension matrices, it has not yet been
solved. Some outstanding questions are the characterization
of when a matrix M is completely positive (sufficient and
necessary condition), as well as what is the minimal number
of rows in n (called CP rank), which is translated in our case
to the minimal number of particles in U that can be obtained.

C. The modular matrices of the new theory

Having obtained the matrix n, we now solve the equations

Sn = nS̃, T n = nT̃ (64)

for S̃ and T̃ . These equations can have spurious solutions
unless we impose a list of additional constraints. For mod-
ular theories, these constraints are (1) S̃† = S̃−1, (2) S̃2 =
�(S̃T̃ )3 = C̃, where C̃ is a permutation matrix that squares to
the identity and � = e−iπc/4 with c the chiral central charge

of A, which we can prove remains unchanged (mod 8) during
condensation. (3) T̃ is a diagonal matrix with complex phases
on the diagonal, (4) the fusion coefficients obtained from the
Verlinde formula

Ñt = S̃D̃t S̃
−1, (65)

with (D̃t )rs = δr,s S̃tr/S̃1r have to be nonnegative integers.
We do not prove that any solution that obeys the above

list of conditions is indeed a valid MTC U . However, any
allowed condensation will be a solution to these conditions.
Therefore, if we do not find a solution for a given MTC A, we
can conclude that no condensation transition to a modular U
theory out of A exists (we will discuss a nontrivial example
for this situation in Sec. VIII B).

For the example of the double-layer Ising theory, we have
for SI(2)n = nS̃ (skipping columns of zeros, which correspond
to the confined particles)⎛

⎜⎜⎜⎝
1
2

1
2 1 1

2
1
2

1
2 − 1

2 0 − 1
2

1
2

1
2 − 1

2 0 − 1
2

1
2

1
2

1
2 −1 1

2
1
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝

S̃11 S̃14 S̃12 + S̃13 S̃14 S̃11

S̃21 S̃24 S̃22 + S̃23 S̃24 S̃21

S̃31 S̃34 S̃32 + S̃33 S̃34 S̃31

S̃41 S̃44 S̃42 + S̃43 S̃44 S̃41

⎞
⎟⎟⎠. (66)

Note that all |S̃ab| = 1/2 since the theory contains only
Abelian anyons. Thus Eq. (66) determines all matrix elements
of S̃, except for S̃22 = −S̃23 = −S̃32 = S̃33. (The equality
−S̃23 = −S̃32 follows from the fact that a modular S matrix
is symmetric.) At the same time, we have from T n = nT̃

that θ1 = 1, θ2 = θ3 = eiπ/4, θ4 = −1. Furthermore, the (2,2)
component of the equation S̃2 = �(S̃T̃ )3 reads

1
2

(
1 + 4S̃2

22

) = 1
2

(
1 + 8iS̃3

22

)
(67)

yielding the unique solution S̃22 = −i/2, that also satisfies
|S̃22| = 1/2. We can use the thus obtained S̃ matrix to compute
the fusion coefficients from Eq. (65), and we find that they are
all non-negative integers. The new fusion rules are

2×2 = 3×3 = 4, 2×3 = 1, (68)

which are distinct from the toric code fusion rules. The
resulting TQFT coincides with the gauged Chern number 2
superconductor from Kitaev’s 16-fold way [4]. We have thus
shown that this TQFT is obtained in a unique way through
condensation in a double layer of Ising theories (two gauged
Chern number 1 superconductors). In fact, one can iterate this
procedure to obtain all TQFTs appearing in Kitaev’s 16-fold
way. A natural open question is to find out which TQFTs
exhibit such a closed structure with unique condensations.
Using the formalism developed above, we will show below that
another simple non-Abelian TQFT, the Fibonacci category,
does not admit a similar structure, since it does not allow for
any condensation.

One may wonder whether Eq. (65) needs to be imposed
as a separate condition on the possible solutions for S̃, or
whether it follows from the other conditions in the above list.
To show that Eq. (65) is required, we discuss the example
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of four layers of Ising TQFTs in Appendix G, for which
there exist a unitary and symmetric S̃ matrix, except that the
fusion coefficients generated from S̃ by Verlinde’s formula in
Eq. (65) are not integer. Therefore it does not correspond to
an allowed condensation transition and the list of conditions
is not complete without Eq. (65).

VIII. LAYER CONSTRUCTIONS
AND UNCONDENSABLE BOSONS

In this section, we apply the condensation formalism to
TQFTs A(N) that are tensor products of N identical layers
of a TQFT A. There are several motivations to study such a
construction:

(1) Some TQFTs are characterized by a Zm grading under
layering: N = m layers can be physically equivalent to the
trivial TQFT in the bulk. For a theory to be condensable to
nothing, m is constrained by the fact that the chiral central
charge, which is conserved under condensation, must vanish
(mod 8). Condensation provides a way to determine the
grading m as well as all the TQFTs for N = 1, . . . ,m layers.
See the following Sec. VIII A for discussions and details of
examples.

(2) The grading of TQFTs has an immediate physical
implication: Kitaev’s 16-fold way, which we discuss below,
characterizes 16 different chiral superconductors in (2+1)
dimensions.

(3) Layer constructions have been proposed to gain insight
into (3+1)-dimensional phases with topological order, for
which there is currently no systematic understanding [85].
The idea is to couple N layers of a TQFT A by a condensation
transition in such a way that the number of anyons after
condensation does not scale with N . Some of the anyons that
restrict to deconfined particles have a nontrivial particle in
every layer. Their restriction is then interpreted as a string
excitation of the (3+1)-dimensional theory. We discuss an
example in the following Sec. VIII A.

Before condensation, the general structure of A(N) is

S ′
A(N) = SA ⊗ · · · ⊗ SA︸ ︷︷ ︸

N times

, T ′
A(N) = TA ⊗ · · · ⊗ TA︸ ︷︷ ︸

N times

, (69)

for the modular matrices and

N ′c
a,b =

N∏
i=1

N
ci

ai ,bi
, d ′

a =
N∏

i=1

dai
, θ ′

a =
N∏

i=1

θai
, (70)

for the fusion matrices, quantum dimensions, and topological
spins. Here, Nc

a,b, da and θa , are the fusion coefficients,
quantum dimensions, and topological spins of A and the
respective primed quantities belong to A(N). We have labeled
the anyons in A(N) by a vector a = (a1, . . . ,aN )T of anyons
in each layer, 1, . . . ,N , where each entry ai can be any of the
anyons in A.

A. Theories with Zm-graded condensations

1. SU(3)1: fourfold way

As a simple example, let us consider the SU(3)1 TQFT. It
has three Abelian anyons 1, 3, 3̄ with fusion rules

3×3 = 3̄, 3̄×3̄ = 3, 3×3̄ = 1 (71)

and topological spins θ3 = θ3̄ = ei2π/3. Now, we consider
multiple layers of SU(3)1. Notice that since each layer has a
automorphism symmetry 3 ↔ 3̄, all statements below should
be understood modulo this automorphism symmetry applied
to every layer.

Clearly, the m = 2 layer theory SU(3)1 × SU(3)1 has no
bosons and therefore no condensation transition is possible.

The m = 3 layer theory SU(3)1 × SU(3)1 × SU(3)1 has
eight bosons. However, up to the automorphism, there is
a unique condensation corresponding to bosons (1,1,1),
(3,3,3), and (3̄,3̄,3̄) restricting to the vacuum 1′ and all other
bosons confined. Besides the vacuum, two more particles are
deconfined: 3′ with lifts (3,3̄,1), (1,3,3̄), (3̄,1,3), and 3̄′ with
lifts (3̄,3,1), (1,3̄,3), (3,1,3̄). Together, 1′, 3′, and 3̄′ furnish
SU(3)1, which differs from SU(3)1 by complex conjugation
of the topological spins. It might seem unusual that the
condensation of multiple layers of chiral theories results in
an antichiral theory, but we remind the reader that the chiral
central charge is only conserved modulo 8 under condensation
transitions and hence −2 − 2 − 2 = 2 mod 8 is allowed.

Then, the m = 4 layer theory is SU(3)1 × SU(3)1, which
can be condensed to the trivial TQFT by condensing simul-
taneously (3′,3) and (3̄′,3̄), which confines all other particles.
We have thus shown that condensation induces in a unique
way a Z4 grading in the layered SU(3)1 TQFTs.

2. Ising: Kitaev’s 16-fold way

We want to couple N layers of the Ising TQFT, which is
defined in Eq. (61). For condensation, the simplest boson that
we can build consists of the ψ particles in two consecutive
layers n + 1 and n + 2,

Bn := (1n,ψ,ψ,1N−n−2), (72)

where 1n stands for the vacuum particle in n consecutive
layers. All bosons Bn, n = 0, . . . ,N − 2, are condensed. We
will identify all bosons of this form with the vacuum, building
a simple current condensate. From

(1n,ψ,ψ,1N−n−2) × (· · · ,ψ,1, · · · ) = (· · · ,1,ψ, · · · ), (73)

we see that consistency requires that any pair of anyons
(· · · ,ψ,1, · · · ) and (· · · ,1,ψ, · · · ) restrict to the same anyon
after condensation. Here, · · · stands for any sequence (that
agrees between the two particles). Furthermore, by fusion with
the condensate we have

(1n,ψ,ψ,1N−n−2) × (· · · ,σ,1, · · · ) = (· · · ,σ,ψ, · · · ). (74)

However, θ(···σ1··· ) = −θ(···σψ ··· ), implying that the restrictions
of (· · · σ,1 · · · ) are confined, because they have another lift
(· · · σ,ψ · · · ) with different topological spin. By that argument
we have shown that the set Q consisting of particles with least
one and at most N − 1 σ ’s restricts only to confined particles.
On the other hand, we know that particles containing no σ ’s
(i.e., only 1’s or ψ’s) restrict to single deconfined particles: (1)
by closure of the condensate, any particle with even number
of ψ and otherwise 1 restricts to the new vacuum 1′. (2) Any
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particle with odd number of ψ and otherwise 1 restricts to the
deconfined particle ψ ′. Their fusion rule is

ψ ′ × ψ ′ = 1′. (75)

The only particle left to consider is σ (N) ≡ (σ, . . . ,σ ). It
is easy to show that σ (N) × Q ⊆ Q. It then follows from the
a = σ (N),b ∈ Q, t = ϕ component of Eq. (5) that σ (N) and
particles in Q restrict to disjoint sets of particles, because
the right-hand side of Eq. (5) is zero in this case, as none of
the particles in Q restrict to the vacuum. However, then the
restriction of σ (N) cannot possibly contain confined particles
as those confined particles would have just a single lift σ (N),
which is impossible from the definition of confined particle.
Hence σ (N) restricts only to deconfined particles, and we can
identify Q as the set of lifts of all confined particles.

We can say more about the restriction of σ (N). Note DU =
DA/q = 2N/2N−1 = 2, because q is equal to the number
of condensed bosons i.e., q = 2N−1. As we already know
1′,ψ ′ are deconfined, DU = √

1 + 1 + . . . = 4, where . . . are
additional contributions from the restriction of σ (N). When N

is not a multiple of 8, there are just two options. Either case
(1) (σ, . . . ,σ ) splits into just two Abelian particles distinct
from 1′,ψ ′ or case (2) (σ, . . . ,σ ) has a single restriction with
quantum dimension

√
2. [When N is a multiple of 8, the σ

string is itself a fermion or boson and could restrict to the ψ ′
and the vacuum, respectively. However, by DU = 2, it is not
possible that ψ ′ and the σ string have a common restriction
in the case where N is an odd-integer multiple of 8 (since
DU = √

3 in that case). The case where N is a multiple of
16 will be discussed separately below.] Consider now from
Eq. (64) the matrix element that corresponds to any particle t

in the restriction of (σ, . . . ,σ ) and the identity in A,

nt
(σ,··· ,σ ) =

√
2

N

2
dt , (76)

since we know from the discussion following Eq. (74) that t

has only one lift, (σ, . . . ,σ ).
From the condition that nt

(σ,··· ,σ ) is integer, we conclude
that case (1) applies to even N and case (2) to odd N . We now
analyze the two cases separately.

a. Case N odd. According to Eq. (76), we have
(σ, . . . ,σ ) → 2(N−1)/2σ ′. It follows from the fusion rules of
the original theory, i.e., from Eq. (5) by choosing a = b =
(σ, . . . ,σ ), that

σ ′ × σ ′ = 1′ + ψ ′. (77)

Thus 1′,σ ′,ψ ′ furnish the same (Ising) fusion algebra as 1,σ,ψ

do in every layer. The spin factors of the deconfined restrictions
are given by

θ1′ = 1, θσ ′ = e2π iν/16, θψ ′ = −1, (78)

where ν = N mod 16 is an odd integer, for N is odd. We have
thus obtained all TQFTs with Ising fusion rules that appear in
Kitaev’s 16-fold way.

b. Case N even. If N is even, Eq. (76) yields the restriction
(σ, . . . ,σ ) → 2N/2−1a′ + 2N/2−1b′ with equal coefficients. To
find the fusion rules for a′ and b′, we solve Eq. (64). This

leaves two possibilities:

a′ × a′ = b′ × b′ = 1′, a′ × b′ = ψ ′, (79)

a′ × a′ = b′ × b′ = ψ ′, a′ × b′ = 1′. (80)

Here, Eq. (79) are the toric code fusion rules. Which of the
two cases applies can be determined from the equation S̃2 =
�(S̃T̃ )3 = C̃, by using the topological spins

θa′ = θb′ = e2π iN/16. (81)

For N = 2mod4 one finds the solution Eq. (80) and for N =
4mod4 one finds the solution Eq. (79).

The case where N is a multiple of 16 has to be considered
separately. The condensation described here leads to the toric
code TQFT in which a′ and b′ are bosons. We have shown
above that the toric code can be condensed to the trivial TQFT
by condensing either a′ or b′ (which were called e and m

before). Thus, in the case where the σ string is a boson, two
condensations are possible: one leads to the toric code and
in the other one, in which the σ string restricts in part to
the vacuum, leads to the trivial TQFT. The toric code is also
the TQFT that was proposed to describe a gauged s-wave
superconductor without topological edge modes [86].

Together, this Z16 grading represents Kitaev’s 16-fold way,
yielding a (non-)Abelian fusion category for the vortices of
even (odd) layer length. From the point of view of layer
construction [85], we note that ψ ′ is a pointlike fermionic
excitation in 3D space, while σ ′, a′ and b′ are to be interpreted
as vortex or linelike excitations in 3D, because their lift has a
nontrivial anyon in each layer.

It is tempting to consider the topological orders that have
been proposed in Refs. [87,88] as the possible symmetry-
preserving gapped surface terminations of time-reversal sym-
metric (3+1)-dimensional superconductors as another exam-
ple of a theory with Z16 grading under condensation. The
topological index ν of the bulk superconductor has been
shown to be only meaningful mod 16 in the presence of
interactions. The ν = 1 surface topological order was proposed
to be nonmodular category SO(3)6, while that for ν = 2 is
the so-called T-Pfaffian state. We do not further elaborate on
possible condensations in this theory here, as the focus of
the present work is on condensation in modular categories.
However, if we were to apply the formalism of Eq. (64) to
this problem, none of the possible condensation transitions in
a double layer SO(3)6×SO(3)6 would lead to the T-Pfaffian.
Rather, one can condense all bosons in SO(3)6×SO(3)6 to
obtain the trivial nonmodular TQFT {1,f } with only one
Abelian fermion f .

B. Theories with Z-fold way: Fibonacci TQFT

Not every TQFT has a Zm-graded structure under conden-
sation. The simplest counter-example is the Fibonacci TQFT
with the single nontrivial anyon τ and the fusion rule

τ × τ = 1 + τ. (82)

It has topological spin θτ = ei4π/5 and quantum dimension
dτ = φ, where φ = (1 + √

5)/2 is the golden ratio.
First, we want to show that no condensation is possible

in five layers of Fibonacci, despite the presence of the boson

115103-11



NEUPERT, HE, VON KEYSERLINGK, SIERRA, AND BERNEVIG PHYSICAL REVIEW B 93, 115103 (2016)

(τττττ ). We will show that there is no matrix M that describes
a condensation and satisfies Eq. (48). To see this, consider the
(1,b) component of the equation MSFib(5) = SFib(5)M ,

∑
a

nϕ
a (SFib(5) )a,b = 1

(2 + φ)5/2

∑
a

daMa,b. (83)

Observe that the right-hand side is nonnegative for any b.
Specializing to b = (τ,1,1,1,1), we find the left-hand side

(2 + φ)−5/2
(
φ − n

ϕ

(τττττ )φ
4
)
, (84)

which is negative for any n
ϕ

(τττττ ) � 1, i.e., for any conden-
sation. Therefore no condensation transition is possible in 5
layers of Fibonacci (see Ref. [17] for an alternative proof).

Second, let us show further that no condensation is possible
in ten layers of Fibonacci. Besides the vacuum, there is a boson
with a τ anyon in every layer, which we denote by (10τ ),
and 252 = (10

5

)
bosons with τ anyons in exactly five layers.

Again, we will show that there is no matrix M that describes
a condensation and satisfies Eq. (48). To see this, we consider
the (1,b) component of the equation MSFib(10) = SFib(10)M , but
this time for the choice b = (10τ ). Up to an overall factor of
the total quantum dimension, the equation reads

n
ϕ

1 φ10 +
∑

a∈5τ bosons

(−1)5φ5nϕ
a + (−1)10n

ϕ

(10τ )

= n
ϕ

(10τ ) +
∑

a∈5τ bosons

φ5Ma,(10τ ) + φ10M(10τ ),(10τ ). (85)

Using n
ϕ

1 = 1, it simplifies to

0 = φ5(M(10τ ),(10τ ) − 1) +
∑

a∈5τ bosons

(
nϕ

a + Ma,(10τ )
)
. (86)

We can see that Eq. (86) has no nontrivial solution: since
φ5 is irrational, the first term needs to be zero on its own,
which requires M(10τ ),(10τ ) = 1. This implies that (10τ ) does
not condense, as it has noninteger quantum dimension and
would therefore have to split in order to condense. However,
the second term in Eq. (86) is a sum of nonnegative numbers
that can only vanish if n

ϕ
a = 0, ∀a. Hence none of the bosons

condenses.
In fact, one can show that no condensation is possible for

any number of layers N of the Fibonacci TQFT [89]. We will
reformulate this proof much more easily using the formalism
developed in this paper elsewhere in a way that also generalizes
to other TQFTs [90].

Obstructions against the condensation of bosons within
our formalism can only ever occur in theories that contain
non-Abelian anyons. In Abelian theories, any potentially
condensing boson J is a simple current (of order d), and one
can explicitly construct a theory in wich J is condensed as
follows; form all the orbits [a] with respect to J , as defined
in Eq. (30). The orbit of the identity is the condensate. If all
anyons in an orbit [a] have the same topological spin, the orbit
labels a particle t[a] in the theory U , otherwise all particles in
the orbit are confined. If t[a] is unconfined, choose n

t[a]

b = 1 if
b ∈ [a] and n

t[a]

b = 0 otherwise. Further, choose S̃t[a],t[b] = dSa,b

and

Ñ
t[c]
t[a],t[b]

=
d∑

n=0

Nc×J n

a,b , (87)

for t[a], t[b], and t[c] unconfined. In can be readily shown that
this choice is a consistent solution to Eqs. (64) and (65) and
therefore a valid condensation within our formalism.

IX. CONCLUSIONS

In summary, we derived a framework for the condensation
of anyons that is applicable to modular tensor category models
of topological order. Our derivation is based on a small number
of physical assumptions and focuses on the computation of the
modular matrices S̃ and T̃ of the theory after condensation.
Based on this, we propose an algorithm to carry out this
computation. This algorithm first seeks symmetric nonnegative
integer matrices M that commute with the modular matrices
S and T of the original theory. It then proceeds by factorizing
M = nnT in a product of a nonnegative integer matrix n

with itself. Finally, the equations Sn = nS̃ and T n = nT̃ are
solved. Our algorithm has proven to be practically useful in
all examples that we studied. We finally demonstrated that
the equations that are central to our derivation are powerful
constraints on condensation transitions in general.

This leads us to several open problems that are not answered
by the present work. One concerns the assumption that βt = 0
for all confined particles t . We have shown in Secs. V and VI
that this relation follows from weaker assumptions for certain
theories. But a general proof of this statement is lacking, so
that it remains an assumption for us. Other questions concern
the uniqueness of solutions and the transitivity of condensation
transitions. For example, given an M , is there a unique n that
solves M = nnT and leads to a valid condensed theory? And
given such a solution n, is there a unique consistent solution S̃

and T̃ ? In a similar vein, is the condensed theory completely
characterized by the coefficients n

ϕ
a ?1 At present, we do not

have counterexamples against affirmative answers to these
questions.

Another future direction could be the condensations in the
presence of global symmetries [82]. When we have global
symmetries on top of a topologically ordered system, the
anyons may transform in a projective representation. A direct
consequence is that certain condensations may not be able to
happen if all global symmetries are respected.
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APPENDIX A: ESSENTIALS OF MODULAR
TENSOR CATEGORIES

In this appendix, we present a short review of the modular
tensor category description of a (2+1)-dimensional TQFT.
This approach only describes the low-energy excitations of
the TQFT, i.e., the anyons. The anyons are usually labeled by
objects a,b,c, . . . and are supplemented by other data, such
as the fusion coefficients Nc

ab. For a comprehensive overview
of the category theory approach of TQFT, we refer the reader
to Refs. [5,15,69]. Here, we only present a brief and simple
review of the important properties that we frequently use in
this paper.

1. Fusion rules and quantum dimension

The anyons of a TQFT can fuse. When two anyons come
close to each other spatially, they can fuse into other anyons.
An analogy can be drawn to the algebra of spins: if we take
two spin 1

2 particles, they can fuse into either spin 0 and spin
1 particle. For this, we would write, in group representation
theory, the fusion rule 1

2× 1
2 = 0 + 1. In general, the fusion of

anyons in a TQFT is represented via

a × b =
∑

c

Nc
abc, (A1)

where a,b,c are labels for the anyons, and the fusion
coefficients Nc

ab are non-negative integers. The fusion can be
represented by a state |a,b; c,μ〉 in the fusion vector space
V ab

c . Here, μ = 1, . . . ,Nc
ab labels the vectors that form a basis

of the Nc
ab-dimensional fusion vector space V ab

c .
Just like the fusion of spins, we require that the fusion rules

are symmetric or commutative, that is, a × b is equivalent to
b × a. This translates to

Nc
ab = Nc

ba. (A2)

Moreover, fusion rules are also associative. Suppose we
take three anyons a,b,c and try to fuse them. Then we have
two ways to do so: (a × b) × c and a × (b × c). We require the
fusion rule to be associative by requiring that the two fusions
yield the same result. In terms of the fusion coefficients, this
translates to ∑

d,e

Nd
abN

e
dc =

∑
d,e

Ne
adN

d
bc. (A3)

Other important data associated with anyons are their
so-called quantum dimensions da,db, . . .. This concept appears
because anyons are associated with nontrivial internal Hilbert
spaces. Again, we can take the example of spins to illustrate
this. In the case of spin 1

2 , where 1
2× 1

2 = 0 + 1, spin 1
2

is associated with a two-dimensional Hilbert space, and
meanwhile spin 0 is associated with a one-dimensional Hilbert
space, spin 1 a three-dimensional Hilbert space. As we can
see, the total dimension of Hilbert space does not change after
fusion. The product 1

2× 1
2 has a (2×2 = 4)-dimensional Hilbert

space, while 0 + 1 has a (1 + 3 = 4)-dimensional Hilbert
space. Similarly, in a TQFT, we also have

dadb =
∑

c

Nc
abdc. (A4)

The above equation can be viewed as an eigenvalue equation of
a matrix Na whose entries are (Na)bc = Nc

ab. The eigenvector is
(db), the eigenvalue is da . Equation (A3) says that all matrices
Na,Nb, . . . commute and thus they have common eigenvectors,
one of which is the vector of all quantum dimensions. The total
quantum dimension of a TQFT D is defined as the norm of the
quantum dimension vector, D = √∑

a d2
a .

If all anyons of a TQFT have quantum dimension 1,
we call such a theory Abelian. If there exist anyons with
quantum dimension larger than 1, we call such a theory
non-Abelian. This is intimately related to the Perron-Frobenius
theorem, where da is a Frobenius eigenvalue, and hence
has to satisfy minb

∑
c(Na)bc � da � maxb

∑
c(Na)bc. Hence

da > 1 implies that there exists a b such that
∑

c(Na)bc > 1,
so a × b contains more than one particle.

2. Braiding, topological spin, and modular matrices

Another physically important concept in a TQFT is braid-
ing. This allows us to determine how a state transforms when
its anyons are adiabatically moved around each other. In
Abelian theories, when we adiabatically move an anyon a

fully around another anyon b, the state transforms through
multiplication by a universal monodromy phase. For example,
if we take a fermion around a π flux, the wave function obtains
a topological minus sign −1. Another special case is when we
exchange two identical Abelian anyons a. This process defines
the topological spin θa for the particle a.

In non-Abelian theories, the braiding operation Rab be-
tween two anyons a and b is an operator that acts on the
Hilbert space V ab

c , which describes states of a and b that fuse
into a fixed anyon c. If we denote a basis of V ab

c by |a,b; c,μ〉
with μ = 1, . . . ,Nc

ab, then Rab has the representation

Rab|a,b; c,μ〉 =
∑

ν

[
Rab

c

]
μν

|b,a; c,ν〉. (A5)

In this notation, the topological spin for an anyon a is defined
as

θa = 1

da

∑
c

dcTrc
[
Raa

c

]
, (A6)

where Trc[· · · ] is the trace taken in the fusion vector space
V aa

c .
Given the braiding Rab, we can construct the modular

matrices S and T which are the same modular matrices
encoding the global data of S and T in a CFT. They are given
by

Sab =
∑

c

Nc
abTr

[
Rab

c Rba
c

]
dc, (A7a)

Tab = θaδab. (A7b)

By definition, S is a symmetric matrix. Moreover, in a modular
tensor categories, S and T are unitary matrices satisfying
S†S = SS† = 1, T †T = T T † = 1.
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In Refs. [18,91–93], the S matrix is used as an order
parameter to detect topological phase transitions and anyon
condensations. The implicit assumption in doing so is that
the S matrix represents physical, measurable properties of the
state, unlike, say, the gauge-dependent F symbol, which is
another MTC data that we will not introduce here.

APPENDIX B: QUANTUM DIMENSIONS OF A AND T

1. Proof of da = ∑
r∈T nr

a dr

From the Eq. (5) we obtain, by multiplying both sides by
the quantum dimension dt of the particle t in the T theory and
summing over t∑

r,s,t∈T
nr

an
s
bÑ

t
rsdt =

∑
c∈A,t∈T

Nc
abn

t
cdt =

∑
r,s∈A

nr
an

s
bdrds, (B1)

where we are only consideringT theories which are also fusion
categories (not braided ones) and hence satisfy the equivalent
Eq. (A4) for the T theories∑

t∈T
Ñ t

rsdt = drds. (B2)

We then have the trivial re-writing

∑
c∈A

Nc
ab

(∑
t∈T

nt
cdt

)
=

(∑
r∈T

nr
adr

)(∑
s∈T

ns
bds

)
, (B3)

which means that (
∑

t∈T nt
cdt ) is an eigenvalue of the matrix

(Na)bc with eigenvalues and eigenvector (
∑

r∈T nr
adr ) and

(
∑

s∈T ns
bds), respectively. Since the eigenvector has positive

entries, by the Perron-Frobenius theorem, the eigenvalue is the
largest eigenvalue of the Na matrix, and hence it is indeed da:

da =
∑
r∈T

nr
adr . (B4)

2. Proof of dr = 1
q

∑
a∈A nr

a da

We start with Eq. (5), multiply by da and sum over a ∈ A.
Using Eq. (A4), it follows∑

r,s∈T

∑
a∈A

nr
adaÑ

t
rsn

s
b =

∑
a,c∈A

nt
cN

c
abda = db

∑
c∈A

nt
cdc. (B5)

For the simplicity of notations, let αt ≡ ∑
c∈A dcn

t
c, which

satisfies the eigenvalue equation

∑
r∈T

(∑
s∈T

ns
bÑs

)
tr

αr = dbαt . (B6)

Notice the unorthodox use of the matrix (Ñs)tr = Ñ t
sr , unlike

in the line following Eq. (A4). We define the matrix this way
in order not to use the equation nt

a = nt̄
ā . This matrix has the

vector of quantum dimensions (d1, . . . ,dN )T, where N are the
number of particles in the fusion category T , as an eigenvector
∀s in (Ñs)tr . Since we are using the Ñs matrix in an unorthodox
fashion (it is the transpose of the usual Ñs matrix), we prove
the statement∑

t

Ñ r
st dr = dsdt =

∑
t

Ñ t̄
sr̄ dr = dsdt̄ . (B7)

It follows from the above that
∑

r (Ñs)trdr = dsdt . Hence
(d1, . . . ,dN )T is a common eigenvector of all the Ñs , even
as defined in the unusual way above.

We now sum Eq. (B6) over b to get

∑
r∈T

(∑
b∈A

∑
s∈T

ns
bÑs

)
tr

αr =
(∑

b∈A
db

)
αt . (B8)

The matrix (
∑

b∈A
∑

s∈T ns
bÑs)tr is a completely positive

matrix with integer strictly positive coefficients: for any
t,r , there exists s such that Ñ t

sr > 0 and for every s there
exists an ns

b > 0. As such, it satisfies a stronger version
of the Perron-Frobenius theorem, which says that there is
a unique eigenvector with all elements positive, and all
other eigenvectors have at least one negative element. As
such, since αt is all positive, we identify it as the unique
largest eigenvector. However, since the Ñs have a common
eigenvector, the quantum dimensions of the condensed theory,
we then can identify this eigenvector with

αt =
∑
c∈A

dcn
t
c = qdt , (B9)

where q is a proportionality constant. We now find two
expressions for it. First, multiplying Eq. (B9) by dt and
summing over t gives

q
∑
t∈T

d2
t =

∑
c∈A

dc

∑
t∈T

nt
cdt =

∑
c∈A

d2
c , (B10)

where the last equality follows from Eq. (B4). This implies

q = D2
A
/
D2

T . (B11)

Furthermore, multiplying Eq. (5) by dadb for t = ϕ and
summing over a,b reads∑

c∈A
Nc

abn
ϕ
c =

∑
t∈T

nt
an

t̄
b, (B12)

which implies∑
a,b,c∈A

dadbN
c
abn

ϕ
c =

∑
t∈T

∑
a∈A

dan
t
a

∑
b∈A

dbn
t̄
b = q2D2

T . (B13)

On the other hand,

q2D2
T =

∑
a,b,c∈A

dadbN
c
abn

ϕ
c

=
∑

b,c∈A
d2

bdcn
ϕ
c

= D2
A

∑
c∈A

dcn
ϕ
c , (B14)

hence

q =
∑
c∈A

dcn
ϕ
c . (B15)

APPENDIX C: CHIRAL ALGEBRA

In this section, we review the connection between the above
formalism and CFT. As pointed out by Bais and Slingerland
[16], the mathematics of boson condensation has a parallel
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in conformal field theories. First, for at least some MTCs A,
the particle labels are in one-to-one correspondence with the
conformal families in some (not necessarily unique) CFT. (The
MTC-conformal block correspondence generalizes Witten’s
work [56] on the relationship between Chern-Simons theory
and chiral Wess-Zumino-Witten models.) Second, when this
correspondence holds, the process of condensation in the
TQFT is closely related to extending the chiral algebra in
the CFT [94].

Let us consider a CFT with a chiral algebra A which
contains the stress tensor T (z) and all locally commuting
holomorphic operators in the theory such as currents J a(z)
associated to Lie groups, etc. The mode expansions of
these operators give rise to infinite dimensional algebras,
like Virasoro, Kac-Moody, or W algebras. The irreducible
representation spaces of the chiral algebra A, denoted by Ha ,
are labeled by the primary fields a, whose number is finite in
a RCFT. The primary fields are in one-to-one correspondence
with the anyons of a TQFT. The TQFT is nothing but the CFT
reduced to its basic topological data like braiding and fusion
matrices, etc. (However, due to this reduction, several distinct
CFTs may correspond to the same TQFT.)

For each representation space Ha , there is a character

χa(τ ) = TrHa
e2πiτ (L0−c/24), (C1)

given by the partition function of the states in Ha propagating
along a torus with modular parameter τ (with Im τ > 0). The
constant c is the central charge of the CFT and L0 is the zero
element of the Virasoro algebra. The modular transformations
act on the characters as

χa(τ + 1) = θae
− iπc

12 χa(τ ),

χa

(
− 1

τ

)
=

∑
b

Sabχb(τ ), (C2)

where θa = e2πiha is the topological spin, ha the conformal
weight of the primary field a. The full CFT also contains an
antichiral algebra, Ā, which for simplicity, we assume to be
isomorphic to A. Correspondingly, the complete Hilbert space
is the tensor product H = ⊕aHa ⊗ H̄a and the total partition
function is

Zdiag(τ,τ̄ ) =
∑

a

χ̄a(τ̄ )χa(τ ), (C3)

which is modular invariant thanks to the S, T unitarity: SS† =
T T † = 1. The pairing between the left and right states of a
nonchiral CFT can be more general than (C3)

Z(τ,τ̄ ) =
∑
a,b

χ̄a(τ̄ ) Mab χb(τ ), (C4)

where M is called the mass matrix which must satisfy
[S,M] = [T ,M] = 0 to guarantee the modular invariance of
the partition function (C4). A fundamental problem in RCFT
is to classify all possible modular invariant partition functions,
that is, mass matrices M . This program has been achieved for
theories with simple currents [77–79], but it is far from being
solved in general.

There are three types of mass matrices: (i) those associated
to automorphisms of the fusion rule algebra, (ii) those
corresponding to a chiral extension of A, and (iii) a

combination of (i) and (ii). This result is related to the
naturality theorem due to Moore and Seiberg: In a CFT when
the left and right chiral algebras are maximally extended
the field content matrix defines an automorphism ω of the
fusion rule algebra, i.e., Ma,b = δa,ω(b) [84]. A chiral algebra
A ⊗ Ā is called maximally extended when it includes all the
holomorphic and antiholomorphic fields in H (i.e., those with
integer conformal weights) [83].

The mass matrices and the associated naturality theorem
have a precise correspondence within the boson condensation
encountered in the main text. Let us explain it in more detail.

An extension of the chiral algebra A can arise if there
exists a subset {γi} of primary fields with integer conformal
weights that are mutually local. One can therefore add these
holomorphic fields to those already included in A to obtain an
extended chiral algebra U . It is then clear that the representa-
tion spaces of the new algebra U should be a combination of
those of the original algebra A. In particular, the (irreducible)
conformal family vector space Hϕ corresponding to the new
identity representation ϕ will be the direct sum of the old
identity conformal family H1 plus the conformal families
corresponding to the old primaries γi , that isHϕ = H1 ⊕i Hγi

.
The fields γi correspond to the bosons that condense in the
TQFT. The space Hϕ is the CFT version of the vacuum after
condensation.

The irreducible representation spaces of the extended chiral
algebra U , denoted by Hu, break down into the direct sum of
irreducible representations Ha of the smaller algebra A. Such
decompositions are called branching rules and are noted as

Hu → ⊕a∈Anu
aHa. (C5)

The branching coefficient nu
a gives the multiplicity of the

irreducible representation a of A in the decomposition of the ir-
reducible representation u of U . The fields appearing in the de-
composition (C5) have to be mutually local with respect to the
fields in the chiral algebra U . From Eqs. (C5) and (C1) follows
the expression for the character of the representation u in terms
of the characters of the representations a [recall Eq. (C1)] [94]:

χ̃u(τ ) =
∑
a∈A

nu
a χa(τ ), u ∈ U . (C6)

The primary field u corresponds to a deconfined anyon in
the TQFT. The TQFT Eq. (4) means in CFT that the primary
fields that built up a representation of the extended algebra
must have the same conformal weights modulo integers. On
the other hand, if a field a is such that the orbit γi × a, ∀i

contains fields with different conformal weights, then they
disappear from the representation theory of U . These fields
are associated to the confined anyons defined in Eq. (3). Given
the characters (C6) of the extended chiral algebra U , one can
construct the diagonal partition function

Z̃(τ,τ̄ ) =
∑
u∈U

|χ̃u(τ )|2, (C7)

which when written in terms of the characters (C1) of A reads
like Eq. (C4) with

Mab =
∑
u∈U

nu
a nu

b. (C8)
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This equation shows that an extension of the chiral algebra
gives rise to an off-diagonal partition function and in turn to
a boson condensation in the TQFT.

The original and chirally extended CFTs are both assumed
to be modular theories, with their characters transforming
under modular transformation S and T of the torus parameter
τ as

χ̃s

(
− 1

τ

)
=

∑
t

S̃st χ̃t (τ ) =
∑
t,a

S̃stn
t
aχa(τ )

=
∑

b

ns
bχb

(
− 1

τ

)
=

∑
a,b

ns
bSbaχa(τ ), (C9)

i.e.,

nS̃ = Sn. (C10a)

Similarly,

nT̃ = T n, (C10b)

where S̃ and T̃ are modular matrices for the U algebra. Equa-
tions (C10a) and (C10b) also appear as matching conditions
in the study of gapped domain walls between two topological
phases [40].

One can easily deduce that [M,S] = [M,T ] = 0. More-
over, through Eqs. (C10a) and (C10b), we can show that
(1) c̃ = c (mod 24), (2) θs = θa , if ns

a �= 0, (3) nC̃ = Cn, (4)
q ≡ ∑

a n
ϕ
ada = DA/DU , and (5) dt = 1

q

∑
a∈A nt

ada , where

C̃ and C are the charge conjugation matrices for the U and
A theories, respectively, and DU and DA are total quantum
dimension of the U and A theory, respectively.

So far we have discussed the mass matrices that correspond
to extensions of the chiral algebra. The other possibility is
that the mass matrix is a permutation P of the irreducible
representations of A that corresponds to an automorphism
of the fusion rules [94]. This case does not describe boson
condensation. The third possibility is that the mass matrix
describes an off diagonal partition function of the chiral algebra
U , namely, M = nP̃ nT, with P̃ a permutation automorphism
of the fusion rules of U . These possibilities were mentioned
before in connection with the Moore and Seiberg naturally
theorem [84].

The conclusions we obtain above, including Eqs. (C10a)
and (C10b), can be viewed as necessary conditions for boson
condensation. So, a solution of the above consistency equations
does not guarantee the existence of a boson condensationA →
U . It could still happen, for example, that the fusion coefficients
derived from such a solution via the Verlinde formula are not
integers (see Appendix G for an example). Then, the solution
has to be discarded. However, the absence of a solution does
imply that there is no boson condensation A → U .

APPENDIX D: CONDENSATIONS IN SU(2) CFTS

To illustrate some properties of the condensation transition
we consider the family of CFTs that correspond to SU(2) at
level k. These theories have (k + 1) primary fields in corre-
sponding conformal blocks labeled by integers a = 0, . . . ,k

that are denoted as φa , and the corresponding conformal
characters are denoted as χa . (In the corresponding TQFT,

the anyon with a = 0 is the vacuum.) The matrix elements of
the modular S and T matrices are given by

Sab =
√

2

2 + k
sin

π (a + 1)(b + 1)

k + 2
, (D1)

and

Tab = e
2π i a(a+2)

4(k+2) δab, c = 3k

k + 2
. (D2)

All the modular invariant partition functions of this CFT
were obtained by Cappelli, Itzykson, and Zuber who found
a surprising correspondence with the ADE classification of
Lie groups [95]. The complete list is

ZAk+1 =
k∑

n=0,n∈Z

|χn|2,

ZD2�+2 =
2�−2∑

n=0,n∈2Z

|χn + χ4�−n|2 + 2|χ2�|2,

ZD2�+1 =
4�−2∑

n=0,n∈2Z

|χn|2 + |χ2�−1|2

+
2�−3∑

n=1,n∈2Z+1

(χnχ̄4�−2−n + χ4�−2−nχ̄n),

ZE6 = |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2,
ZE7 = |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2

+ |χ8|2 + χ8(χ̄2 + χ̄14) + (χ2 + χ14)χ̄8,

ZE8 = |χ0 + χ10 + χ18 + χ28|2
+|χ6 + χ12 + χ16 + χ22|2 , (D3a)

where k = 4� in ZD2�+2 , k = 4� − 2, and in ZD2�+1 , while k =
10 in ZE6 , k = 16 in ZE7 , and k = 28 in ZE8 . Here, χa are the
characters of the irreducible representation spaces of the chiral
algebra of SU(2)k .

The origin of these off-diagonal partition functions is the
following. (1) D2�+2: J = φ4�, is a bosonic simple current with
integer conformal weight hJ = �. For � = 1, φ4 is a current
that yields a chiral extension corresponding to the conformal
embedding SU(2)4 ⊂ SU(3)1. (Notice that the central charge
of the two CFTs is the same cSU(2)4 = cSU(3)1 .)

(2) D2�+1: the simple current J = φ4� has half-odd confor-
mal weights, hJ = � − 1/2, so it does not yield an extension of
the chiral algebra, i.e., it does not correspond to condensation.
The partition function can be written as ZD2�+1 = ∑

a χa χ̄ω(a),
where ω is the unique automorphism of the fusion rules,
namely ω(a) = a for a even and ω(a) = k − a for a odd.

(3) E6: chiral extension with the field φ6 with h6 = 1. This
is not a simple current. The chiral extension corresponds to
the conformal embedding SU(2)10 ⊂ SO(5)1, both CFT’s have
the same central charge, namely c = 5/2. The SO(5)1 algebra
can be constructed with five Majorana fermions (i.e., Ising
models). In the SU(2)10 theory, one has h4 = 1/2,h10 = 5/2,
h3 = 5/16, h7 = 21/16, so that h10 − h4 = 2 and h7 − h3 =
1. The field φ3 can be built from the product of 5 spin fields of
the Ising model, which have hσ = 1/16.
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(4) E7: explained by an exceptional automorphism of the
D10 chiral algebra [84,94] [see Eq. (D9)].

(5) E8: chiral extension with three operators with h10 = 1,
h18 = 3, and h28 = 7. The remaining fields in ZE8 have
weights: h6 = 2/5, h12 = 7/5, h16 = 12/5, h22 = 22/5. The
central charge is c = 14/5, which coincides with that of G2 at
level k = 1 [94].

The results explained above can be summarized in the
following table:

Type k Z Comments

Ak+1 k – –
D2�+2 4� EXT SU(2)4 ⊂ SU(3)1

D2�+1 4� − 2 AUT –
E6 10 EXT SU(2)10 ⊂ SO(5)1

E7 16 AUT –
E8 28 EXT SU(2)28 ⊂ (G2)1

(D4)

where E6, E7, E8, and G2 are the exceptional Lie groups,
while EXT and AUT stand for an extension of the chiral

algebra and an automorphism of the theory, respectively. Note
that some theories, e.g., k = 16 have a D as well as a E

invariant, as in the case that we will now discuss in detail.

1. SU(2)16

The SU(2)16 CFT is special in that it has two different
off-diagonal partition functions, given by [recall Eq. (D3a)]

ZD10 = |χ0 + χ16|2 + |χ2 + χ14|2 + |χ4 + χ12|2
+ |χ6 + χ10|2 + 2|χ8|2 (D5)

and

ZE7 = |χ0 + χ16|2 + (χ2 + χ14)χ̄8 + χ8(χ̄2 + χ̄14)

+ |χ4 + χ12|2 + |χ6 + χ10|2 + |χ8|2. (D6)

Both of these theories correspond to a condensation of the
boson a = 16. There are exactly two distinct solutions to the
equation [M,S] = [M,T ] = 0, given by

M (1) = nnT, M (2) = nP̃ nT, (D7)

where

nT =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (D8)

and

P̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (D9)

is an automorphism of the theory U . These two solutions for M are in one-to-one correspondence with the two off-diagonal
partition functions above. Here, M (1) encodes the condensation transition itself, while the existence of the additional matrix M (2)

is related to the “naturality theorem” discussed in the main text and in Appendix C.
Interestingly, the equation Sn = nS̃, that yields the S matrix of the theory after condensation, has two distinct solutions S̃ and

S̃ ′, where

S̃ = 2

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin
(

π
18

)
1
2 cos

(
2π
9

)
cos

(
π
9

)
1
2

1
2

1
2 1 1

2 − 1
2 − 1

2 − 1
2

cos
(

2π
9

)
1
2 − cos

(
π
9

) − sin
(

π
18

)
1
2

1
2

cos
(

π
9

) − 1
2 − sin

(
π
18

)
cos

(
2π
9

) − 1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2 1

1
2 − 1

2
1
2 − 1

2 1 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D10)

and S̃ ′ is obtained by exchanging the last two rows of S̃, a so-called Galois symmetry [96]. Both matrices S̃ and S̃ ′ yield the same
fusion rules Ñt , e.g.,

Ñ3̃ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 1 1 1
0 1 1 2 1 1
1 1 2 2 1 1
0 1 1 1 0 1
0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠. (D11)
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It is worth noting that this condensation of a theory without
multiplicities (all Nc

ab in SU(2)16 are 0 or 1) yields a theory with
multiplicities: some of the Ñ s

tr in Eq. (D11) are larger than 1.

2. SU(2)28

The SU(2)28 CFT is special in that it also has two different
off-diagonal partition functions, given by [recall Eq. (D3a)]

ZD16 = |χ0 + χ28|2 + |χ2 + χ26|2 + |χ4 + χ24|2
+ |χ6 + χ22|2 + |χ8 + χ20|2 + |χ10 + χ18|2
+ |χ12 + χ16|2 + 2|χ14|2 (D12)

and

ZE8 = |χ0 + χ10 + χ18 + χ28|2
+ |χ6 + χ12 + χ16 + χ22|2. (D13)

As is clear from ZE8 , the particles 10, 18, and 28 are bosons,
besides the vacuum 0. The two partition functions correspond
to two distinct condensations possible in SU(2)28. These are the
only condensations possible. Their corresponding n matrices
can be read off directly from these partition functions.

The partition function ZE8 stands for a condensation of all
bosons with n

ϕ
a = 1 each. The resulting theory is the Fibonacci

TQFT with particles 6, 12, 16, and 22 each restricting to the
τ particle.

The partition function ZD16 corresponds to the condensation
of the top-level boson 28 only, which results in a nine-particle
non-Abelian TQFT with some multiplicities larger than 1. For
example, the restriction of 10 and 18, which we call 5̃, obeys
the fusion rule [cf. Eq. (D11)]

5̃ × 5̃ = 0̃ + 1̃ + 2̃ + 3̃ + 2 · 4̃ + 2 · 5̃ + 2 · 6̃ + 7̃ + 8̃.

(D14)

APPENDIX E: PROOF OF EQS. (21a) AND (21b)

We can show Eq. (21a) via∑
t∈U

βtβ
∗
t =

∑
t∈U

∑
a,b∈A

dadbn
t
an

t
bθaθ

∗
b

=
∑

a,b∈A
dadb

∑
t∈U

nt
an

t
b

=
∑
t∈U

(∑
a∈A

dan
t
a

)2

= q2
∑
t∈U

d2
t

= q2D2
U , (E1)

where in the second equality, we have used θa = θb,∀nt
an

t
b �=

0, when t ∈ U , because in this case both a and b are in the lift
of a deconfined t .

We can show Eq. (21b) via∑
t∈T

βtβ
∗
t =

∑
a,b∈A

dadbθaθ
∗
b

∑
t∈T

nt
an

t
b

=
∑

a,b,c∈A
dadbθaθ

∗
b Nb

acn
ϕ
c

=
∑

b,c∈A
dbn

ϕ
c

∑
a∈A

daθaθ
∗
b Na

cb̄

= DA
∑

b,c∈A
dbn

ϕ
c θcScb

= D2
A

∑
c∈A

(∑
b∈A

ScbSb1

)
nϕ

c θc

= D2
A

∑
c∈A

δc1n
ϕ
c θc = D2

A. (E2)

Moreover, we can show another relation that is useful in
Appendix F:∑

r,s∈T
βrβ

∗
s Ñ t

rs =
∑

a,b∈A
dadb

θa

θb

∑
r,s∈T

nr
an

s
bÑ

t
rs

=
∑

a,b,c∈A
dadb

θa

θb

Nc
abn

t
c

= D2
A

∑
c,b∈A

θcS1bSbcn
t
c

= D2
Ant

1

= D2
Aδt,ϕ. (E3)

APPENDIX F: βt = 0 FOR THE SIMPLEST
CASE OF CONDENSATION

In this section, we prove that βt = 0 for a confined particle
t ∈ T /U in a special case: there is only one confined particle
t0 which has two lifts with lifting coefficients 1. For clarity, we
start by listing the assumptions used in the following proof.
Several of them have been emphasized in the main text. To be
complete, we repeat them here.

(1)
∑

r,s∈T Ñ t
rsn

r
an

s
b = ∑

c∈A Nc
abn

t
c. (2) A deconfined par-

ticle t ∈ U ⊂ T has θa = θb if both nt
a �= 0,nt

b �= 0 ∀a,b.
Otherwise, it is confined. It follows from this definition that
every confined particle must have at least two lifts in the A
theory. (3) Ñ t

rs = 0 if r,s ∈ U and t ∈ T /U . That is, U is
closed under fusion. (4) A is a MTC. (5) T /U = t0. Moreover,
nt0

a1
= nt0

a2
= 1. For all other a �= a1,a2 ∈ A, nt0

a = 0. For
clarity, we divide the long proof into several sections below.

1. Quantum embedding index

The main task of this section is to prove that in this simplest
case, we have q = 2. That means the condensate has only one
nontrivial boson with quantum dimension 1. As the condensate
has only one boson, this boson is its own antiparticle. The
boson, since it has quantum dimension 1 and is its own anti-
particle, is a power 2 simple current (see Sec. V), and hence
has βt0 = 0 as proved in Sec. V. Here, we prove the same result
in a different way. From Eqs. (21a) and (21b), we have that

βt0β
∗
t0

=
∑
t∈T

βtβ
∗
t −

∑
t∈U

βtβ
∗
t

= D2
A − q2D2

U

= D2
A(1 − q) + q2d2

t0
, (F1)
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where we used that D2
U + d2

t0
= D2

T = D2
A/q. Put in another

way,

2
∑

a<b∈A
nt0

a n
t0
b dadb[1 − cos(αa − αb)] = D2

A(q − 1), (F2)

where θa = exp(iαa). This equation imposes quite strong
constraints because the right-hand side equals (1 + x +∑

a∈A d2
a δ

n
t0
a >0)(q − 1), where the x � 0 is the cumulative

quantum dimension squared of the particles of A that split
into the deconfined particles of the U and that are not identity.
For our case of only nt0

a1
= nt0

a2
= 1, the above equation gives

2da1da2

[
1 − cos

(
αa1 − αa2

)]
�

(
1 + d2

a1
+ d2

a2

)
(q − 1). (F3)

For q � 3, this inequality cannot hold. Hence we arrive at the
conclusion that for a theory with only one confined particle
in T /U that lifts to only two particles in A with unit lifting
coefficients n, there can be only one condensed boson, and
hence 2 � q < 3.

However, 2 � q < 3 implies q = 2 by the following rea-
son: using the definition of q, the inequality can be rewritten

1 �
∑

b∈A;b �=1

n
ϕ

bdb < 2, (F4)

where the 1 excluded in the summand is the vacuum in A,
and ϕ is the vacuum of the T theory. Hence there is one and
only one boson B with n

ϕ

B = 1 and 1 � dB < 2. However, if
its quantum dimension is smaller than 2, it cannot split since

dB = 1 +
∑

t �=ϕ∈T
nt

Bdt (F5)

would imply ∑
t �=ϕ∈T

nt
Bdt < 1, (F6)

which has only the solution nt
B = 0 for all t �= ϕ ∈ T , because

dt � 1.
Hence there is only one condensed boson, and it has

quantum dimension 1, and moreover q = 2. Thus B is a simple
current which implies βt0 = 0 by the proof in Sec. V. We have
obtained this result in a different way that also reveals other
general properties of theories satisfying the assumptions 1–5.
For q = 2, using Eq. (F2), we then have

D2
A = 2da1da2

[
1 − cos

(
αa1 − αa2

)]
= 1 + x + d2

a1
+ d2

a2
. (F7)

Since x � 0 we necessarily have π/2 < αa1 − αa2 < 3π/2.
We now prove that dt0 = da1 = da2 as follows. Summing

dai
= dt0 +

∑
t �=t0

nt
ai
dt (F8)

over i = 1,2 yields

da1 + da2 = 2dt0 +
∑
t �=t0

(
nt

a1
+ nt

a2

)
dt . (F9)

Further, since qdt0 = da1 + da2 = 2dt0 [from Eq. (6b)], it
follows that ∑

t �=t0

(
nt

a1
+ nt

a2

)
dt = 0, (F10)

which implies nt
a1

= nt
a2

= 0, ∀t �= t0. Hence from Eq. (F8)

dt0 = da1 = da2 . (F11)

To summarize, using assumptions 1–5, we have proved that
q = 2 and the condensate has only one nontrivial boson B with
quantum dimension 1. Moreover, the quantum dimensions of
t0, a1, and a2 are the same, dt0 = da1 = da2 .

2. Fusion rules

In this section, we find the fusion properties of a1 and a2.
Recall from the previous section that these two particles restrict
only to the confined particle t0. From Eq. (5), we have∑

t∈T
nt

an
t
b =

∑
c∈A

Nb
acn

φ
c = δa,b + Nb

aB. (F12)

Now choose a = a1 and b �= a1,a2. The left-hand side is then
zero, as a1 only goes into the confined particle t0 while no
other particle in A besides a1,a2 restrict to t0 (assumption 5).
It follows that

0 = Nb
a1B

,b �= a1,a2. (F13)

By choosing b = a2, we have

1 = nt0
a1

nt0
a2

= N
a2
a1B

(F14)

and similarly for a1 and a2 interchanged. We hence proved that

a1 × B = a2, a2 × B = a1,

a1 × a1 = 1 + . . . , a2 × a2 = 1 + . . . . (F15)

By comparing the quantum dimension, we have exhausted all
fusion channels in the first two equations. Also, ā1 = a1, ā2 =
a2, because if ā1 = a2 then θa1 = θa2 , which is not allowed
since t0 is by assumption confined.

Using the quantum dimension for the T theory∑
t∈T Nt

rsdt = drds , we have the following implications:

r,s ∈ U ⇒
∑
t∈U

Ñ t
rsdt = drds,

r ∈ T /U = t0,s ∈ U ⇒ t ∈ T /U = t0

⇒ Ñ
t0
t0sdt0 = dt0ds,

⇒ Ñ
t0
t0s = ds,

r,s ∈ T /U = t0 ⇒ Ñ
t0
t0t0dt0 +

∑
t∈U

Ñ t
t0t0

dt = d2
t0
,

⇒ Ñ
t0
t0t0dt0 +

∑
t∈U

dtdt = d2
t0
,

⇒ Ñ
t0
t0t0dt0 + D2

U = d2
t0
.

(F16)

The last equation together with D2
T = D2

U + d2
t0

gives

dt0

(
2dt0 − Ñ

t0
t0t0

) = D2
T . (F17)

From Eq. (F16), since Ñ
t0
t0s = ds , every deconfined particle

s has to appear in the fusion of the confined particle with itself
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and the quantum dimension of every deconfined particle is an
integer.

We now refine the statement as a summary of this section:
for a theory with only one confined particle t0 ∈ T /U which
lifts to only two particles a1, a2 in A with unit lifting
coefficients nt0

a1
= nt0

a2
, there can be only one condensed boson

of quantum dimension 1, dt0 = da1 = da2 and Ñ r
t0t0

= dr ∈ Z+,
∀r ∈ U . Also, a1 × B = a2, and furthermore a1 = ā1, a2 = ā2.

3. βt0 = 0

We now use Eq. (23) for t = t0 and expand the sum using
the assumption that two deconfined particles cannot fuse to a
confined particle

θbDA
∑
c∈A

Sbcθcn
t0
c

=
⎛
⎝ ∑

r,s∈T /U
+

∑
r∈T /U

∑
s∈U

+
∑

s∈T /U

∑
r∈U

⎞
⎠Ñ t0

rsn
s
bβr

= Ñ
t0
t0t0n

t0
b βt0 +

∑
s∈U

Ñ
t0
t0sn

s
bβt0 +

∑
r∈U

Ñ
t0
rt0n

t0
b βr

= Ñ
t0
t0t0n

t0
b βt0 +

∑
s∈U

dsn
s
bβt0 +

∑
r∈U

drn
t0
b βr

= Ñ
t0
t0t0n

t0
b βt0 +

∑
s∈T

dsn
s
bβt0 +

∑
r∈T

drn
t0
b βr

− dt0n
t0
b βt0 − dt0βt0n

t0
b

= βt0n
t0
b

(
Ñ

t0
t0t0 − 2dt0

) +
∑
s∈T

dsn
s
bβt0 +

∑
r∈T

drn
t0
b βr

= −βt0n
t0
b

D2
T

dt0

+ dbβt0 +
∑
r∈T

drn
t0
b βr , (F18)

where we have used Eq. (F16) and in the last line we used
Eq. (F17). We can compute the remaining sum easily:∑

r∈T
drβr =

∑
r∈T

∑
a∈A

drn
r
adaθa

=
∑
a∈A

d2
a θa = DA�A, (F19)

where �A = exp(i2πc/8) with c the central charge of the A
theory. We have hence proved the relation

θbDA
∑
c∈A

Sbcθcn
t0
c = βt0

(
db − D2

T
dt0

n
t0
b

)
+ DA�An

t0
b . (F20)

For the case when the particle t0 has two lifts with coefficients
1, we have

θbDA(Sba1θa1 + Sba2θa2 ) = βt0

(
db − D2

T
dt0

n
t0
b

)
+ DA�An

t0
b .

(F21)

Note that the right-hand side of the above equation is the same
whether we choose b = a1 or b = a2—use dt0 = da1 = da2 .

Therefore

Sa1a1θ
2
a1

+ Sa1a2θa1θa2 = Sa2a2θ
2
a2

+ Sa1a2θa1θa2

⇒ Sa1a1θ
2
a1

= Sa2a2θ
2
a2

. (F22)

We now prove another relation. Starting from Eq. (5) and
using the Verlinde formula for MTCs gives∑

s,r∈T
Ñ t

rsn
r
an

s
b =

∑
c∈A

Nc
abn

t
c

=
∑

c,m∈A
Sbm

Sam

S1m

Sc̄mnt
c

=
∑
m∈A

Sbm

Sam

S1m

∑
c∈A

Sc̄mnt
c. (F23)

Multiply both sides by Sb̄e and sum over b, while using∑
b∈A

Sb̄eSbm =
∑
b∈A

SbēSbm =
∑
b∈A

SēbSbm = δem, (F24)

where we have used the property of S matrix Sab = Sāb̄. This
gives ∑

s,r∈T
Ñ t

rsn
r
a

∑
b∈A

Sb̄en
s
b = Sae

S1e

∑
c∈A

Sc̄en
t
c. (F25)

Defining P t
a ≡ ∑

c∈A Scan
t
c, we rewrite∑

s,r∈T
Ñ t

r̄sn
r
aP

s
e = Sae

S1e

P t
e . (F26)

We now pick a = B, the condensed boson. Since dB = 1 as
we have proved, we only have nonzero n

ϕ

B = 1, and we have∑
s∈T

Ñ t
ϕsP

s
e = (

P t
e

) = SBe

S1e

P t
e . (F27)

There are hence two solutions:
A. P t

e = 0.
B. SBe/S1e = 1 if P t

e �= 0, ∀e ∈ A,∀t ∈ T .
For e = a1,a2 case B is not possible. We show this as

follows: assume e equals either a1 or a2. Then B implies∑
c∈A

Nc
Ba1

θcdc =
∑
c∈A

Nc
1a1

θcdc

= θa1da1 = θa2da2 , (F28)

where we used Eq. (16), which is an expression for the entries
of S matrix, and Nb

Ba1
= δba2 . Since da1 = da2 this would imply

θa1 = θa2 , which again is not possible as t0 is confined.
Hence, for e equals either a1 or a2, we have

P t
a1

= P t
a2

= 0, ∀t ∈ T . (F29)

Choosing t = t0 we have the two equalities

Sa1a1 + Sa2a1 = Sa2a2 + Sa2a1 = 0, (F30)

which imply

Sa1a1 = Sa2a2 . (F31)
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This equation, along with Eq. (F22) now has the two
solutions

A1: Sa1a1 = Sa2a2 = Sa1a2 = 0 (F32)

and

A2: θ2
a1

= θ2
a2

. (F33)

If A2 is the solution, we are done because it means θa1 =
−θa2 (the equality θa1 = θa2 is not possible by assumption of
t0 confined) and hence βt0 = 0, which is what we wanted to
prove.

For A1, we can prove that it does not yield a consistent
solution. Observe that Eq. (F21) gives

βt0

(
da1 − D2

A
2da1

)
= −DA�A , (F34)

where we have used D2
T = D2

A/q = D2
A/2. By definition

βt0 = da1 (θa1 + θa2 ). This gives the equation

ei(α1− 2πc
8 ) + ei(α2− 2πc

8 ) = − 2DA

2d2
a1

− D2
A

. (F35)

Since the right-hand side is real, we must have α1 − 2πc
8 =

−(α2 − 2πc
8 ) = γ1 and hence

cos γ1 = − DA

2d2
a1

− D2
A

. (F36)

Using Eq. (F7) we obtain D2
A = 2d2

a1
[1 − cos(2γ1)] =

4d2
a1

sin(γ1)2 (with π/2 < 2γ1 < 3π/2, since D2
A � 1 + 2d2

a1
)

and substituting this in Eq. (F36) becomes

cos(γ1) = − | sin(γ1)|
da1 cos(2γ1)

. (F37)

We also have

D2
A = qD2

T = 2
(
d2

t0
+ D2

U
)

= 2
(
2d2

t0
− Ñ

t0
t0t0dt0

) = 4d2
a1

− 2Ñ
t0
t0t0da1 , (F38)

where we have used that dt0 = da1 as well as Eq. (F16).
Plugging in the expression for DA we then have

Ñ
t0
t0t0 = da1 [1 + cos(2γ1)] = 2da1 cos(γ1)2. (F39)

We need one last equation to show that case A1 cannot be true.
This comes from Eq. (E3), which we use for the case t = t0:

Ñ
t0
t0t0βt0β

∗
t0

+
∑
s∈U

Ñ
t0
t0sβsβ

∗
t0

+
∑
s∈U

Ñ
t0
t0sβ

∗
s βt0 = 0. (F40)

From the already proved Ñ
t0
t0s = ds and

∑
s∈T dsβs = DA�A,

we find

0 = βt0β
∗
t0

(
Ñ

t0
t0t0 − 2dt0

) + β∗
t0
DA�A + βt0DA�∗

A

= −βt0β
∗
t0

D2
T

dt0

+ β∗
t0
DA�A + βt0DA�∗

A

= −(
4d2

t0
− D2

A
) D2

A
qdt0

+ β∗
t0
DA�A + βt0DA�∗

A, (F41)

where we have used that βt0β
∗
t0

= 4d2
t0

− D2
A, which follows

from Eq. (F1) with q = 2. Hence the above becomes

0 = −Ñ
t0
t0t0DA + β∗

t0
�A + βt0�

∗
A

= −Ñ
t0
t0t0DA + 2da1 [cos(γ1) + cos(γ2)]

= −Ñ
t0
t0t0DA + 4da1 cos(γ1). (F42)

Since π/2 < γ1 < 3π/2, the right-hand side is negative so the
equation cannot possibly hold. Hence only case A2 is possible
which means θa1 = −θa2 and hence βt0 = 0.

APPENDIX G: CONDENSING FOUR
LAYERS OF ISING TQFT

Here we give some detail on one particular condensation
in a theory composed of a tensor product of four layers of the
Ising TQFT. We show that, generically, in our algorithm in the
main text Sec. VII, we do need to check that the resulting S̃

matrix gives integer fusion matrices using Verlinde’s formula.
This is not a complete discussion of all possible condensations
in the four layer Ising theory.

We focus on the condensate containing 1111, 11ψψ ,
1ψ1ψ , and 1ψψ1, but not ψψψψ , ψψ11, ψ1ψ1, and ψ11ψ .
(Including these other bosons in the condensate would yield the
ν = 4 theory from Kitaev’s 16-fold way.) The corresponding
M matrix has only one nonzero entry on the column (and row)
that corresponds to the σσσσ particle, namely, Mσσσσ,σσσσ =
4. Since the quantum dimension dσσσσ = 4, this allows for
two distinct solutions n: one in which σσσσ particle restricts
to twice some particle a and one in which it splits into
four Abelian particles a1, a2, a3, a4. In both cases, we
can find solutions to Eq. (64) that are unitary and satisfy
S̃2 = �(S̃T̃ )3 = C̃.

However, for the theory in which the σσσσ particle splits
into four particles, the fusion coefficients Ñt obtained from
Eq. (65) are not all nonnegative integers (some of them are
±1/2). This establishes by example that we have to impose
that Ñt is nonnegative integer valued, in addition to the other
conditions in Sec. VII. It also shows that in the example at
hand, despite the ambiguity in the possible solutions for n,
the particle content (up to possible automorphisms) of the
final theory is fixed by the choice of condensate. Whether
this statement is true in general is presently not known
to us.

The allowed solution, in which σσσσ particle restricts to
twice the same particle, is the one we naively expect, upon
inspection of the anyons in the condensates by the following
argument: all condensed anyons have a vacuum particle 1 in
the first layer. Hence the Ising theory in the first layer will
be preserved under condensation and the result is a direct
product of the ν = 1 Ising theory and the ν = 3 Ising theory
from Kitaev’s 16-fold way. The particle that σσσσ twice
restricts to is the direct product of a ν = 1 Ising σ and ν = 3
Ising σ , which we have already proved in Sec. VIII A 2 has
nσ ′

(σσσ ) = 2.
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APPENDIX H: CONDENSATIONS
IN THE QUANTUM DOUBLE OF D2

To demonstrate the power of our approach to condensation,
we will list here all possible condensations in the TQFT cor-
responding to the quantum double of D2. All the information
about this theory including its fusion rules can be found in

Ref. [97]. To tackle this task with a less systematic approach
would be a challenge, not only because it contains 22 particles,
but also because ten of them are bosons, leading to a wealth
of possible condensates.

In the basis (1,1̄,J1,J2,J3,J̄1,J̄2,J̄3,χ,χ̄,σ+
1 ,σ+

2 ,σ+
3 ,σ−

1 ,

σ−
2 ,σ−

3 ,τ+
1 ,τ+

2 ,τ+
3 ,τ−

1 ,τ−
2 ,τ−

3 ), the modular S and T matrices
of the theory are given by

S = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 −2 −2 2 2 2 2 2 2 −2 −2 −2 −2 −2 −2
1 1 1 1 1 1 1 1 2 2 2 −2 −2 2 −2 −2 2 −2 −2 2 −2 −2
1 1 1 1 1 1 1 1 2 2 −2 2 −2 −2 2 −2 −2 2 −2 −2 2 −2
1 1 1 1 1 1 1 1 2 2 −2 −2 2 −2 −2 2 −2 −2 2 −2 −2 2
1 1 1 1 1 1 1 1 −2 −2 2 −2 −2 2 −2 −2 −2 2 2 −2 2 2
1 1 1 1 1 1 1 1 −2 −2 −2 2 −2 −2 2 −2 2 −2 2 2 −2 2
1 1 1 1 1 1 1 1 −2 −2 −2 −2 2 −2 −2 2 2 2 −2 2 2 −2
2 −2 2 2 2 −2 −2 −2 4 −4 0 0 0 0 0 0 0 0 0 0 0 0
2 −2 2 2 2 −2 −2 −2 −4 4 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 −2 −2 2 −2 −2 0 0 4 0 0 −4 0 0 0 0 0 0 0 0
2 2 −2 2 −2 −2 2 −2 0 0 0 4 0 0 −4 0 0 0 0 0 0 0
2 2 −2 −2 2 −2 −2 2 0 0 0 0 4 0 0 −4 0 0 0 0 0 0
2 2 2 −2 −2 2 −2 −2 0 0 −4 0 0 4 0 0 0 0 0 0 0 0
2 2 −2 2 −2 −2 2 −2 0 0 0 −4 0 0 4 0 0 0 0 0 0 0
2 2 −2 −2 2 −2 −2 2 0 0 0 0 −4 0 0 4 0 0 0 0 0 0
2 −2 2 −2 −2 −2 2 2 0 0 0 0 0 0 0 0 −4 0 0 4 0 0
2 −2 −2 2 −2 2 −2 2 0 0 0 0 0 0 0 0 0 −4 0 0 4 0
2 −2 −2 −2 2 2 2 −2 0 0 0 0 0 0 0 0 0 0 −4 0 0 4
2 −2 2 −2 −2 −2 2 2 0 0 0 0 0 0 0 0 4 0 0 −4 0 0
2 −2 −2 2 −2 2 −2 2 0 0 0 0 0 0 0 0 0 4 0 0 −4 0
2 −2 −2 −2 2 2 2 −2 0 0 0 0 0 0 0 0 0 0 4 0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H1)

T = diag(1,1,1,1,1,1,1,1,1,−1,1,1,1,−1,−1,−1,i,i,i,−i,−i,−i). (H2)

This theory contains three automorphisms: one can simultaneously exchange the subscripts 1 ↔ 2, 1 ↔ 3, or 2 ↔ 3 on all
anyons that carry such an index.

One obtains 31 solutions for M to the equations Eq. (48), when only symmetric nonnegative integer M with M1,1 = 1 are
allowed and the triangle constraint Ma,a + Mb,b � 2Ma,b is imposed in order to avoid M that involve automorphisms in the U
theory. One solution is the identity matrix. Four solutions do not admit a decomposition M = nnT with a nonnegative integer
matrix n. The remaining 26 solutions are distinct condensations. Below we give a complete list of all these possible condensates
n

ϕ
a that lead to a consistent TQFT. They are grouped by the type of resulting theory.

a. Condensation to trivial theory. The following six choices of n
ϕ
a lead to a trivial TQFT (only the vacuum is left). Notice that

n
ϕ
a > 1 in some cases.

a = 1 1̄ J1 J2 J3 J̄1 J̄2 J̄3 χ σ+
1 σ+

2 σ+
3

n
ϕ
a = 1 0 1 1 1 0 0 0 2 0 0 0

n
ϕ
a = 1 1 0 0 0 0 0 0 0 1 1 1

n
ϕ
a = 1 1 0 0 1 0 0 1 0 0 0 2

n
ϕ
a = 1 1 0 1 0 0 1 0 0 0 2 0

n
ϕ
a = 1 1 1 0 0 1 0 0 0 2 0 0

n
ϕ
a = 1 1 1 1 1 1 1 1 0 0 0 0

(H3)
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b. Condensation to toric code. The following seven choices of n
ϕ
a lead to the toric code TQFT defined in Eq. (57).

a = 1 1̄ J1 J2 J3 J̄1 J̄2 J̄3 χ σ+
1 σ+

2 σ+
3

n
ϕ
a = 1 0 1 1 1 0 0 0 0 0 0 0

n
ϕ
a = 1 1 0 0 0 0 0 0 0 0 0 1

n
ϕ
a = 1 1 0 0 0 0 0 0 0 0 1 0

n
ϕ
a = 1 1 0 0 0 0 0 0 0 1 0 0

n
ϕ
a = 1 1 0 0 1 0 0 1 0 0 0 0

n
ϕ
a = 1 1 0 1 0 0 1 0 0 0 0 0

n
ϕ
a = 1 1 1 0 0 1 0 0 0 0 0 0

(H4)

c. Condensation to double semion. The following six choices of n
ϕ
a lead to the double semion TQFT with four Abelian particles

1, b, s, s̃ and the modular matrices

SDS = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎠, TDS = diag(1,1,i, − i). (H5)

There are examples where Maa = 4, but the respective particle a has quantum dimension 2. If a splits into four particles, Eq. (6b)
requires it to have at least quantum dimension 4. Hence the solution to M = nnT needs to have nt

a = 2, ruling out the other
option of splitting into four particles that was discussed in Appendix G for the four layers of Ising TQFT.

a = 1 1̄ J1 J2 J3 J̄1 J̄2 J̄3 χ σ+
1 σ+

2 σ+
3

n
ϕ
a = 1 0 0 0 0 0 0 1 0 0 0 1

n
ϕ
a = 1 0 0 0 0 0 1 0 0 0 1 0

n
ϕ
a = 1 0 0 0 0 1 0 0 0 1 0 0

n
ϕ
a = 1 0 0 0 1 1 1 0 0 0 0 0

n
ϕ
a = 1 0 0 1 0 1 0 1 0 0 0 0

n
ϕ
a = 1 0 1 0 0 0 1 1 0 0 0 0

(H6)

d. Condensation to Abelian theories with 16 anyons. The following seven choices of n
ϕ
a lead to Abelian theories with 16

anyons. The n
ϕ
a are grouped and listed below.

a = 1 1̄ J1 J2 J3 J̄1 J̄2 J̄3 χ σ+
1 σ+

2 σ+
3

n
ϕ
a = 1 0 0 0 0 0 0 1 0 0 0 0

n
ϕ
a = 1 0 0 0 0 0 1 0 0 0 0 0

n
ϕ
a = 1 0 0 0 0 1 0 0 0 0 0 0

n
ϕ
a = 1 0 0 0 1 0 0 0 0 0 0 0

n
ϕ
a = 1 0 0 1 0 0 0 0 0 0 0 0

n
ϕ
a = 1 0 1 0 0 0 0 0 0 0 0 0

n
ϕ
a = 1 1 0 0 0 0 0 0 0 0 0 0

(H7)

The first three lines share the same S̃, T̃ matrices since and differ by an automorphism in A. So do the next three lines. The
third group has only one condensing boson 1̄. The modular matrices for each of the groups are listed as follows:

S̃
(1)
16 = SDS ⊗ SDS, T̃

(1)
16 = TDS ⊗ TDS, (H8a)
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S̃
(2)
16 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 −i i i −i i −i −i i
1 1 −1 −1 1 1 −1 −1 i −i −i i −i i i −i
1 1 −1 −1 −1 −1 1 1 −i i i −i −i i i −i
1 1 −1 −1 −1 −1 1 1 i −i −i i i −i −i i
1 −1 1 −1 −i i −i i 1 1 −1 −1 i −i i −i
1 −1 1 −1 i −i i −i 1 1 −1 −1 −i i −i i
1 −1 1 −1 i −i i −i −1 −1 1 1 i −i i −i
1 −1 1 −1 −i i −i i −1 −1 1 1 −i i −i i
1 −1 −1 1 i −i −i i i −i i −i −1 −1 1 1
1 −1 −1 1 −i i i −i −i i −i i −1 −1 1 1
1 −1 −1 1 −i i i −i i −i i −i 1 1 −1 −1
1 −1 −1 1 i −i −i i −i i −i i 1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T̃
(2)

16 = diag(1,1,1,1,1,1,−1,−1,1,1,−1,−1,i,i,−i,−i), (H8b)

S̃
(3)
16 = STC ⊗ STC, T̃

(3)
16 = TTC ⊗ TTC. (H8c)
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