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Monte Carlo simulations are a powerful tool for elucidating the properties of complex systems, but when
applied to fermionic quantum systems, quantum Monte Carlo (QMC) algorithms suffer from the so-called
“negative sign problem,” causing the computational effort to grow exponentially with problem size. Here we
demonstrate that the fermion sign problem originates in topological properties of the configurations. Using
the widely used determinantal approaches, that remove the trivial sign problem due to particle exchange, we
prove that the negative sign of a configuration is a topological invariant—an imaginary time counterpart of the
Aharonov-Anandan phase—and reduces to a Berry phase in the adiabatic limit. This provides an intriguing
connection between QMC simulations and classification of topological states.
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The powerful method of Monte Carlo sampling can be
applied to quantum systems by introducing an imaginary
time formulation of the Schrödinger equation which describes
classical particles performing a random walk in an external
potential [1]. Identifying finite imaginary times with the
inverse temperature β = 1/kBT has led to the path-integral
formulation of quantum mechanics, where the partition func-
tion Z = Tr exp(−βH ) of the quantum system is mapped into
a sum Z = ∑

c wc over the paths c with statistical weights
wc. The stochastic sampling of these paths forms the basis of
finite temperature quantum Monte Carlo (QMC) algorithms,
which have been widely applied to simulate quantum lattice
models [2–5], the electronic structure of materials [6,7],
ultracold atoms [8,9], nuclear matter [10], and lattice quantum
chromodynamics [11].

While in classical systems the Boltzmann weights are
always positive, in QMC the weight of a configuration can
be negative due to particle statistics or gauge fields [12].1

Negative weight configurations then cancel contributions
of positive ones, resulting in an exponential increase of
statistical errors with system size and inverse temperature
(see Appendix A for details). The sign problem hence
severely limits the applicability of QMC methods. While it
is representation-dependent, which leaves hope for a solution,
it is also nondeterministic polynomially (NP) hard [13]. This
implies that unless P = NP [14], which is believed to be
highly unlikely, there is no generic solution.

Since the sign problem can be solved in specific cases
[15–19], one may ask if a broader solution may exist for a
restricted class of models, such as Hubbard models. The origin
of the sign problem in these models has remained controversial
and several, so far unsuccessful, attempts at a solution have
been made [4,20–28]. In this paper we will show that the origin
of the sign problem in common fermionic QMC approaches
lies in topological properties of the path configurations and a
nonzero Aharonov-Anandan phase picked up during evolution
[29]. We will here only consider unbiased algorithms, ignoring

1Similar sign problems can appear in other contexts when sampling
sums and integrals that include negative terms, however we are here
exclusively concerned with the sign problem arising from the use of
quantum Monte Carlo algorithms to simulate a system of fermions.

approximations such as the fixed node approximation [30]
which may modify the physics of the model.

The simplest QMC approach is the world-line algorithm
(WL-QMC), which samples real-space world lines of particles
evolving in imaginary time. Indistinguishable particles can be
exchanged during the evolution, as sketched in Fig. 1. For
fermions, an odd number of exchanges results in a final state
that differs in sign from the initial state. After closing the trace
it thus contributes with a negative weight. The topological
nature of the sign problem, due to the braiding of fermions,
is readily apparent. It implies that no local transformation can
remove this sign problem but more drastic changes of the
representation are needed. In some specific cases this sign
problem might be removed by an ansatz on the distribution of
positive and negative sign regions of phase space [31].

The hope to solve the sign problem by restricting the
sampling to antisymmetric wave functions has prompted the
development of determinantal QMC algorithms which have
become state of the art in fermionic simulations [4,5,32–35].
Most of these are formulated in an auxiliary field approach
which maps interacting fermions to noninteracting ones
coupled to a fluctuating auxiliary field. Integrating out the
fermions, one ends up with an action of only the bosonic
auxiliary field. Nevertheless, contrary to initial expectations
[36], these algorithms still suffer from an exponential sign
problem whose origin has been controversially discussed
[12,22,25,27,28,37–39].

To illustrate that the remaining sign problem is linked to
a nontrivial value of a topological invariant, we will initially
focus on the Hubbard mode, but note that our conclusions
apply more generally. The Hamiltonian of the Hubbard model,

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ −

∑
iσ

μσ c
†
iσ ciσ + U

∑
iσ

c
†
i↑ci↑c

†
i↓ci↓,

(1)
describes fermions with spin σ = ↑,↓, that hop between
neighboring lattice sites with a matrix element t and interact via
an on-site repulsion U . The spin-dependent chemical potential
μσ combines the chemical potential μ and a Zeeman term. Our
knowledge of the phase diagram of the Hubbard model remains
incomplete, not the least due to the fermion sign problem.

To perform auxiliary-field QMC one discretizes the inverse
temperature into small imaginary time steps dτ . We use
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FIG. 1. Time evolution in the world-line representation for
2 + 1 dimensions. The configuration returns either to itself without
exchanging particles and has a positive weight or particles exchange,
resulting in a negative sign. The topological nature becomes apparent
when connecting the two world lines by sheet, which closes either to
a cylinder or a Möbius strip.

an infinitesimal notation but understand that it refers to
both discrete time formulations with finite time steps δτ

and the infinitesimal limit.2 Using a Hubbard-Stratonovich
decomposition one rewrites the contribution of each of the
interaction terms to the weight exp(−dτH ) of one time step as

e−dτUc
†
i↑ci↑c

†
i↓ci↓ →

∫ ∞

−∞
dρie

− ρ2
i

2dτ |U | +ρi (c
†
i↑ci↑+c

†
i↓ci↓)

, (2)

where ρi is one component of the auxiliary field. Here a
particle-hole transformation is performed on one spin species
in the case of repulsive interactions. Other choices of auxiliary
field decouplings exist but do not improve the sign problem
[5,21]. A discrete version, more common in practice [40], is
discussed in Appendix B. Our derivation and its conclusions
can be repeated for any such transformation with real fields.3

After the Hubbard-Stratonovich decomposition we obtain
an action that is quadratic in the fermion field operators. One
integrates out the fermion degrees of freedom, obtaining a
partition function Z = ∫

D[ρ(τ )]Z↑[ρ]Z↓[ρ] that is a path
integral over just the auxiliary field configurations. The weight
of a specific configuration ρ(τ ) is given by

Zσ [ρ] = det

[
1 + eβμσ T exp

∫ β

0
dτ H aux[ρ(τ )]

]
, (3)

where T indicates time ordering and the chemical potentials
μσ may have been changed by the particle-hole transforma-
tion. The matrix H aux is defined through the auxiliary field
Hamiltonian:

Ĥ aux[ρ(τ )] = −t
∑
〈ij〉,σ

c
†
iσ cjσ +

∑
i

ρi(τ )n̂i

=
∑
ij,σ

H aux
ij (τ )c†iσ cjσ . (4)

2As always in the definition of path integrals the integrand is well
defined only at finite time steps δτ . Using the notation of infinitesimals
implies that the limit δτ → 0 is taken after performing all evaluations
at finite δτ

3We note the generic transformation e
−dτUc

†
↑c↑c

†
↓c↓ →∫ ∞

−∞ dρP (ρ)e− ρ2
2dτ |U | +ρ(c†↑c↑+c

†
↓c↓) with an arbitrary probability

distribution P . Similar transformations can take into account
particle-hole superpositions using a Bogoliubov transformation.

In certain symmetric cases, for example in the spin-balanced
attractive Hubbard model or the half-filled repulsive one, Z↑
and Z↓ have the same sign for each configuration, thus making
all weights positive.

As for most QMC algorithms, the zero-temperature limit
can be obtained by letting β → ∞. In this way the evolution
operator approaches the projector onto the ground state. Taking
the expectation value of this operator on a trial wave function
nonorthogonal to the ground state, one obtains the so-called
projection-QMC scheme, for which all of our derivations can
be repeated identically.

The origin of the sign problem in determinantal QMC
methods has been controversial from the beginning. Already
the first paper suggested that the sign problem should be
absent for smooth auxiliary fields [4]. However, attempts
to remove the sign problem by introducing a smoothing
term to the action failed [36]. It has also been suggested
that in a ground state projector version of the algorithm a
topological sign problem may exist due to particle exchange
similar to WL-QMC [22]. A similar claim was made based
on an example in the adiabatic limit at T = 0, where a
topologically nontrivial soliton was found to be responsible for
the negative sign in a specific configuration [38]. The absence
of a sign problem for smooth paths reappeared in recent
claims based on a bosonization approach [27,28]. Following
a different line of argument, it was suggested that the sign
problem was merely an artifact of numerical instabilities
and could be ignored [25,39]. However, these claims were
refuted by comparing to numerically exact solutions on small
clusters [26].

To investigate the role of time discretization and nu-
merical inaccuracies in the sign problem, we performed
simulations using δτ as small as t/200 and implemented
a resilient numerical stabilization procedure and a 4096-bit
precision version of the algorithm. We found that smaller time
steps, numerical stabilization, and high precision improved
the sign problem, but there remained configurations with
negative sign even after smoothing the paths (i.e., cutting
the high frequency components). This indicates an intrinsic
sign problem even for smooth paths in the continuous time
limit.

To elucidate the origin of these negative signs we discuss
the structure of single-fermion modes in Haux. While instanta-
neous eigenvectors |ψn(τ )〉, defined by

Haux(τ )|ψn(τ )〉 = εn(τ )|ψn(τ )〉, (5)

seem intuitive, the important ones are the time integrated
eigenvalues and eigenstates of the evolution matrix G(0; β) =
T exp

∫ β

0 dτ ′H aux[ρ(τ ′)]:

G(0; β)|φn(0)〉 = λn|φn(0)〉. (6)

We stress that this definition does not depend on smoothness
or any periodicity of the evolution, and it is completely valid
for the case of interaction expansion algorithms and zero-
temperature methods (see Appendix C).
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FIG. 2. Imaginary time evolution of the highest occupied state
|φn(τ )〉 for a smoothed negative-sign configuration on a 4 × 4
Hubbard plaquette. Red (blue) color indicates regions of positive
(negative) wave function.

We examined the evolved eigenvectors (which are the also
the eigenstates of the time shifted evolution4)

|φn(τ )〉 = T exp
∫ τ

0
dτ ′H aux[ρ(τ ′)]|φn(0)〉 (7)

for negative sign configurations and we found that there are al-
ways some that change sign during time evolution, i.e., λn < 0.
The evolution of one of these states is plotted in Fig. 2, where
the negative and positive domain wind around each other,
giving a negative weight.

Expressing the weight of Eq. (3) in terms of the λn, we
obtain

Zσ [ρ] =
∏
n

(1 + λne
βμσ ), (8)

which is negative whenever an odd number of negative-
sign single-particle states are more than 50% occupied, i.e.,
|λn| > e−βμ.

We now present a simple, smooth auxiliary field config-
uration that allows us to understand how the negative signs
emerge. This configuration is given by the auxiliary field
Hamiltonian

H aux(τ )=
⎛
⎝v sin(τ ) −t −t

−t v sin(τ + 2π/3) −t

−t −t v sin(τ + 4π/3)

⎞
⎠,

(9)

which couples a periodic three-site chain to a rotating external
field of strength v. Similar configurations can be constructed
for longer chains. The noninteracting limit v = 0 trivially
has positive weights λn = e−βεn . Since G(τ ; β) is real and
has positive determinant, no eigenvalue can vanish, complex
eigenvalues λn must come in complex conjugate pairs, and

4One can verify it by directly applying the shifted evolution
G(τ ; β) = T exp

∫ τ+β

τ
dτ ′H aux[ρ(τ ′)], where the auxiliary field is

extended periodically. For projection methods the same applies by
inserting the projection on the trial wave function at time β.
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FIG. 3. Eigenvalues of the single-particle propagator G(0; β)
with β = 1 as a function of field strength v of the auxiliary
Hamiltonian (9). The dotted lines represent the projections of the
paths onto the plane.

there must always be an even number of negative eigenvalues,
as was sketched in Ref. [16].

By plotting, in Fig. 3, the eigenvalues of G(0; β), we
see that by increasing v a doubly degenerate positive real
eigenvalue splits into a complex conjugate pair that winds
around the λ = 0 line and rejoins on the negative real axis. A
sign problem can appear upon further increasing v beyond this
critical value v∗ ≈ 11.2, as the pair splits into two different
real negative eigenvalues, and one of the corresponding states
becomes occupied and the other unoccupied. Increasing β

shows v∗ → 0 such that in the zero-temperature limit the
sign problem can occur for any interaction strength and only
depends on the geometry of the auxiliary field configuration.
This winding of pairs of eigenvalues around zero, to become
negative, causes the bosonization treatment of Ref. [27] to
break down (see Appendix D).

We turn now to the most general case, without assumptions
on the size or nature of the system. The only requirement is
that the weight of a configuration can be written as

w(c) = det[1 + G(0; β)]. (10)

The sign of a single-particle state in the general case
is understood as a geometric phase by decomposing the
eigenvalues in Eq. (6) as λn = eiθnωn where ωn > 0. The
phases θn, given by

eiθn =
β∏

τ=0

〈φn(τ + dτ )|φn(τ )〉, (11)

are imaginary time versions of the Aharonov-Anandan (AA)
phase, which is used to describe the geometric properties of
nonadiabatic unitary evolution [29]. The global geometric
phase θ determining the sign of the configuration is then
obtained as the sum of the individual AA phases θn of the
occupied levels, which in turn depend only on the geometric
properties of the auxiliary field. The weights ωn either diverge
or vanish in the β → ∞ limit, which means that a level is
either fully occupied or completely empty, as expected in the
case of zero thermal fluctuations.

As we see, θ can be nonzero even for smooth field
configurations, a fact that was missed by Refs. [4,27]. Since
the auxiliary Hamiltonian is real, and complex eigenvalues of
G(0; β) are always degenerate and thus do not contribute to
the overall phase of the configuration, we only consider real
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FIG. 4. Instantaneous levels of the Hamiltonian (9) for v = 6.

λn. For these eigenvalues, the wave functions |φn(τ )〉 can be
chosen to be real at all times, implying that the AA phases
θn are quantized to be either 0 or π . The phases vanish if
the wave function can be chosen real and single-valued, i.e.,
ψ(0) = ψ(β) at all times τ . However, it may not be possible
to make such a choice globally continuous over τ ∈ [0,β], and
the wave function may change sign during evolution, resulting
in θn = π .

When the evolution becomes adiabatic, such as if we stretch
a smooth finite temperature configuration by taking β → ∞,
the Hamiltonian is locally constant and e−δτH (τ ) projects onto
the instantaneous eigenvectors so that |ψn(τ )〉 = |φn(τ )〉. The
weights then are wn = exp[− ∫ β

0 εn(τ )dτ ] and the AA phases
θn reduce to Berry phases.

Our result relates the fermionic sign problem to the field
of geometric phases arising from cyclic evolution [41–43].
Quantizations of these phases are known to appear as a
consequence of symmetry and correspond to topological
invariants, as, e.g., in the integer quantum Hall effect [44].
Recently these concepts are widely utilized in the field of
symmetry protected topological (SPT) phases and topological
insulators [45,46]. Extensive classification of topological insu-
lators exists [47,48], assigning topological invariants to gapped
single-particle Hamiltonians depending on their symmetries.
Connecting systems with different topological invariants is
guaranteed to give raise to metallic interface or edge states
that are topologically protected against disorder.

The analogy between the our framework and topological
materials can made more concrete by identifying the single-
particle states of our model at a definite imaginary time τ with
bands of a one-dimensional crystal, and relating τ to the crystal
momentum k. Each band has a quantized AA θn = 0,π phase
accumulated, moving across the Brillouin zone as illustrated
in Fig. 4, that is a topological invariant and can only change by
introducing complex gauge fields or closing the band gap. For
nonadiabatic evolution, integrated eigenstates contain different
contributions from the instantaneous ones. The sign of a
configuration depends on which contributions are dominant,
as we illustrate in Appendix E. This allows us to understand
two core principles that allow sign-problem-free simulations.

First, in the presence of time-reversal-like symmetries,
single-particle states come in Kramers pairs, with both states
having the same geometric phase. As a consequence, the
total phase winding vanishes, making the model sign-free, as

shown in Refs. [16,18,19]. Second, the common wisdom that
half-filled bipartite lattices are sign-problem free is shown to be
a consequence of a topological constraint causing the negative
eigenvalue pairs to be in even numbers (see Appendix F).

Our approach applies also to diffusion QMC (DMC)
schemes, in which many-body states are generated by inter-
preting the elements of the Hamiltonian or evolution matrix as
the transition matrix of a Markov process. DMC is conceptu-
ally similar to a zero-temperature version of WL-QMC and, as
in the latter, sign problems can occur due to particle exchange.
This led to the development of a family of DMC schemes
that restrict the sampling to antisymmetric wave functions,
in the hope of solving the sign problem [23,24]. However,
even when formulating DMC explicitly in the space of Slater
determinants there is still a residual sign problem that does not
originate from particle exchange and bosonic collapse.

The topological origin of the sign problem discussed here
corresponds to the residual one encountered in DMC and WL-
QMC. In fact, a configuration in determinantal QMC can be
mapped into a sum of configurations in DMC [49,50] and WL-
QMC [51] by taking into account all possible permutations
of the particles. Thus, DMC and WL-QMC are subject to
two sign problems: one trivially due to Slater determinants
being antisymmetric sums of configurations, and the residual
topological one discussed in this paper.

Once the wave-function antisymmetry is taken into account,
the exponential sign problem of fermionic QMC is due to a
nontrivial topological invariant. Hence, negative signs cannot
be simply removed by any local modification or basis change.
Understanding the sign of Monte Carlo configurations in
terms of Aharonov-Anandan phases of the single-particle
eigenstates, and the connection to topological insulators and
superconductors, clarifies long-standing open questions about
the fermion sign problem [4,22,27,28,37], opening interesting
perspectives for further studies, and providing a path towards
the construction of a wider class of sign-problem-free models.
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APPENDIX A: THE NEGATIVE SIGN PROBLEM

The foundation of quantum Monte Carlo (QMC) simulation
is a mapping of a quantum system to an equivalent classical
one by expressing both the partition function

Z = Tr exp(−βH ) =
∑
c∈�

wc (A1)

and the thermal expectation values of any observable,

〈O〉 = 1

Z
Tr[O exp(−βH )] = 1

Z

∑
c∈�

Ocwc, (A2)
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as a sum over set of “classical” configurations �. In the case
of a path-integral representation this is the set of all path
configurations, c is a specific path, wc its weight, and Oc

the contribution of the path to the expectation value of the
observable O.

For non-negative weights wc � 0, this classical system can
be sampled by choosing a set of M configurations {ci} from
� according to the distribution wci

. The average can then
estimated by the sample mean

〈O〉 ≈ O = 1

M

M∑
i=1

Oci
, (A3)

within a statistical error

�O =
√

Var O

M
(2τO + 1), (A4)

where Var O is the variance of O and τO is the integrated
autocorrelation time of the sequence {Oci

}.
The standard way of dealing with the negative weights wc

is to sample with respect to the absolute values of the weights
|wc| and to assign the sign sc ≡ sgn wc to the quantity being
sampled:

〈O〉 =
∑

c Ocwc∑
c wc

=
∑

c Ocsc|wc|
/∑

c |wc|∑
c sc|wc|

/∑
c |wc|

≡ 〈Os〉′
〈s〉′ . (A5)

While this allows Monte Carlo simulations to be performed,
the errors increase exponentially with the particle number N

and the inverse temperature β. To see this, consider the mean
value of the sign 〈s〉 = Z/Z′, which is just the ratio of the
partition functions of the fermionic system Z = ∑

c wc with
weights wc and the bosonic system used for sampling with
Z′ = ∑

c |wc|. As the partition functions are exponentials of
the corresponding free energies, this ratio is an exponential of
the differences �f in the free energy densities [12,52,53]:

〈s〉 = Z

Z′ = exp(−βV �f ), (A6)

where V is the volume of the system. As a consequence,
the relative error �s/〈s〉 increases exponentially with particle
number and inverse temperature:

�s

〈s〉 =
√

(〈s2〉 − 〈s〉2)/M

〈s〉 =
√

1 − 〈s〉2

√
M〈s〉 ∼ eβV �f

√
M

. (A7)

Similarly the error for the numerator in Eq. (7) increases
exponentially, and the time needed to achieve a given relative
error scales exponentially in V and β.

APPENDIX B: BSS ALGORITHM

For the discussions in the main paper we focus on the
Blankenbecler-Scalapino-Sugar (BSS) algorithm [4], but note
that our results apply more broadly to any auxiliary field
algorithm. To explain this algorithm in more detail we split
the Hubbard Hamiltonian into noninteracting and interacting

parts:

H0 = −t
∑
〈ij〉,σ

c
†
iσ cjσ −

∑
iσ

μσ c
†
iσ ciσ , (B1)

HI = U
∑
iσ

c
†
i↑ci↑c

†
i↓ci↓. (B2)

We then decompose the thermal density matrix using a
Trotter decomposition

e−βH = lim
N→∞

(e− β

N
H0e− β

N
HI )N (B3)

coupled with either a continuous Hubbard-Stratonovich trans-
formation

e−dτUc
†
i↑ci↑c

†
i↓ci↓ =

∫ ∞

−∞
dρie

ρ2

2dτU
+ρi (c

†
i↑ci↑−c

†
i↓ci↓), (B4)

where the auxiliary field ρi can take any real value, or
alternatively a discrete one

e−dτUc
†
i↑ci↑c

†
i↓ci↓ = 1 + γ c

†
i↑ci↑c

†
i↓ci↓

= 1

2

∑
σi

(1 + √
γ σic

†
i↑ci↑)(1 − √

γ σic
†
i↓ci↓)

= 1

2

∑
ρi

e−dτρi (c
†
i↑ci↑−c

†
i↓ci↓), (B5)

where γ = 1 − e−dτU and the auxiliary field ρi can have the
two values − ln(1 ± √

edτU − 1)/dτ . ρi diverges with dτ →
0, showing its fractal nature.

The partition function can be then rewritten as a sum over
all configurations of the auxiliary field:

Z =
∑

{ρi (τ )}
tr

[
N∏

τ=1

e− β

N
H0e−dτρi (c

†
i↑ci↑−c

†
i↓ci↓)

]
(B6)

Since the product in the trace is composed of one-particle
operators only (exponents are quadratic in the fermionic
fields), the result can be obtained through the determinant
of matrices in the single-particle picture:

Z =
∑

{ρi (τ )}
det

{
1 +

N∏
τ=1

e− β

N
H0e−dτρi (c

†
i↑ci↑−c

†
i↓ci↓)

}
, (B7)

where the operators have been replaced by matrices. This can
be written compactly using a time-ordered exponential

Z =
∫

D[ρ(τ )] det

{
1 + T exp

∫ β

0
dτHaux[ρ(τ )]

}
, (B8)

having defined

Haux[ρ(τ )] = Hkinetic +
∑

i

ρi(τ )(n̂i,↑ − n̂i,↓). (B9)

Moreover, it can be decomposed into the product of determi-
nants for the up and down spin components:

Z =
∫

D[ρ(τ )]Z↑[ρ]Z↓[ρ]. (B10)

When the two contributions are equal, the algorithm is sign-
problem free.
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In the case of an attractive potential U < 0, one can obtain
a decomposition of the interacting Hamiltonian with a field
that couples to the total number of particles rather than the
magnetization:

e−dτc
†
i↑ci↑c

†
i↓ci↓ =

∑
ρi

e−dτρi (c
†
i↑ci↑+c

†
i↓ci↓). (B11)

In this case, and in absence of any magnetic field making the
up and down populations imbalanced, we have Z↑ = Z↓ and
the sign problem vanishes. The same is true when one looks
at the half-filled repulsive case, which is related to the above
by a particle-hole transformation.

The zero-temperature algorithm is obtained from the fact
that in the long imaginary time limit the density matrix
exp(−βH ) becomes identical to the projector onto the ground
state |ψ0〉. Then one can start from a trial wave function |φT 〉
having finite overlap with the ground state. The decomposition
above can then be applied to the following expressions:

〈φT |e−βH |φT 〉

= 〈φT |
∫

D[ρ(τ )]T exp
∫ β

0
dτ Haux[ρ(τ )]|φT 〉, (B12)

〈φT |e− βH

2 Oe− βH

2 |φT 〉

= 〈φT |
∫

D[ρ(τ )]T exp
∫ β

β/2
dτ Haux[ρ(τ )]OT exp

×
∫ β/2

0
dτHaux|φT 〉. (B13)

If the trial wave function is a Slater determinant, the expres-
sions above reduce to a simple determinant, as in the case of
the finite temperature algorithm.

A conceptually simpler view comes from the fact that the
trial wave function can be thought of as the ground state of a
trial Hamiltonian HT . In this case we can rewrite (B12) as

〈φT |e−βH |φT 〉 = lim
θ→∞

tr[e−θHT e−βH0 ]. (B14)

From this representation one can trivially see that all the
derivations in the main text can apply unchanged to the
zero-temperature algorithm.

1. Arbitrary precision algorithm

To examine the sign of a configuration we implemented
the BSS algorithm using arbitrary precision floating point
numbers. This required the implementation of a QR algorithm,
used to compute the determinant in Eq. (3) of the main text,
and a double QZ step, to find the eigenvalues of the product G.
Both algorithms were implemented following Ref. [54]. The
power method was used to calculate eigenvectors for Fig. 2 of
the main text.

The QZ step is a decomposition followed by an exchange
of Q and R. The step is performed twice to keep all terms real:

A = QR → A′ = Q−1AQ = RQ = Q′R′

→ A′′ = Q′−1A′Q′ = R′Q′. (B15)

Since this high precision algorithm is too slow for actual
simulations it was primarily used to periodically check for

correctness of weights. The algorithm gave the same results
in all our tests for 4096 and 2048 bits of precision, but
lower precision calculations using 1048 or 512 sometimes
gave different results, in agreement with observed condition
numbers that were as high as 10300.

2. Stabilization procedure

At the core of the BSS algorithm is the calculation of the
matrix

G(β) = T exp
∫ β

0
dτ ′H aux[ρ(τ ′)] (B16)

in Eq. (3) of the main text. Using a discrete time formulation
with M time steps, one has to compute a product of matrices

Gi = e−δτ H (τi ) (B17)

with δτ = β/M . The configuration weight is then computed
as

Z = det

(
1 +

M∏
i=1

Gi

)
. (B18)

However, multiplying a string of matrices results, in
general, in a very ill-conditioned matrix. As the ratio between
the largest and lowest eigenvalue diverges, information about
the lowest eigenvalues and eigenstates is lost when the ratio
between smallest and largest eigenvalues become of the order
of roundoff. Calculations of the determinant of G(β) then
become inaccurate.

Numerical stabilization of the product of matrices with
an acceptable accuracy is made possible by periodically
decomposing the intermediate result using a rank-revealing
decomposition, such as a singular value decomposition (SVD)
or pivoting QR. An SVD is performed on each partial product
of a subset consisting of m of the matrices Gi , corresponding
to an evolution of time τ = mδτ . We start with

m∏
i=1

Gi → UkD1V
T

1 . (B19)

The next set of m matrices is then multiplied by UD and
decomposed again:(

2m∏
i=m+1

Gi

)
U1D1 → U2D2V

T
2 . (B20)

The procedure is repeated until the full product has been
performed:

M∏
i=1

Gi = UM/mDM/mV t
M/m · · ·V T

1 . (B21)

The value of m (or equivalently τ ) should be chosen so that the
condition number of the partial products can be stored within
machine precision.

We used the arbitrary precision algorithm to check the
numerical accuracy of negative sign configurations encoun-
tered with different numbers of decompositions. Our results
confirmed that, while negative signs can creep into the
simulation due to numerical errors with a low number of
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FIG. 5. Average sign s and number of particles n at μ = 0
(U/2 below half-filling) as a function of temperature computed
with varying distances τ between SVD decompositions on a 6 × 6
plaquette. With decreasing temperature, coarser decompositions start
to develop a worse sign problem than finer grained ones. This
influences even the simplest observables such as particle density.

decompositions, such errors disappear with a finer-grained
stabilization scheme. This is corroborated by the results shown
in Fig. 5.

Thus we confirm that there are no issues with numerical
stability and precision issues provided that the stabilization
scheme is performed correctly.

APPENDIX C: CONTINUOUS-TIME QMC

We can use the same derivations also to understand the sign
problem in a CTQMC scheme. The following is based on the
LCT-INT scheme detailed in Ref. [35]. Other schemes such as
CT-INT and CT-AUX can be equally treated, since the weights
are identical in both algorithms.

Continuous-time quantum Monte Carlo (CTQMC) meth-
ods stem from a perturbative expansion

Z = tr e−βH = tr
[
e−βH0T e− ∫ β

0 dτ HI (τ )
]

=
∞∑

k=0

1

k!
tr

[
T e−βH0

∫ β

0
dτ1 · · ·

∫ β

0
dτk

k∏
i=1

(−HI (τi))

]
,

(C1)

where (after a chemical potential shift)

HI = −U
∑

x

(1 − c
†
x↑cx↑)(1 + c

†
x↓cx↓). (C2)

The weight can be rewritten as

Z =
∑

k

∫ β

0
dτ1

∫ β

τ1

· · ·
∫ β

τk−1

dτk

∑
x1,...,xk

w(c), (C3)

where the factor 1
k! is taken care of by time ordering τ1 < τ2 <

· · · < τk . c = {(x1,τ1), . . . ,(xkτk)} denotes a continuous-time
path-integral configuration with k vertices. The weight can still
be cast in the necessary form

w(c) = det[1 + G(0; β)]. (C4)

The analysis from the main text proceeds unchanged.
The matrix G is defined as

G(0; β) = e−(β−τk )H0h(xk) · · · e−(τ2−τ1)H0h(x1)e−τ1H0 , (C5)

where

[h(xi)]xσ,yσ ′

= U (δxyδσσ ′ + δxxi
δxiyδσ↑δσ ′↑ − δxxi

δxiyδσ↓δσ ′↓), (C6)

CT-QMC now proceeds by sampling from all possible con-
figurations c according to their weight w(c). It can be more
intuitive to imagine a smoothed vertex

h̃(xi) =
√

2π

ε

∫
dτ e

−τ2

2ε2 e−τH0 h(xi)e
τH0 (C7)

and letting ε → 0+.
While it is common to employ CTQMC in an auxiliary field

framework, this is not necessary, as illustrated here and in Ref.
[35]. This shows that the analysis in the present paper applies
beyond auxiliary field schemes and adiabatic approximations.

APPENDIX D: RELATIONSHIP TO PRIOR WORK

In this section we discuss in more detail the relationship
of our results to prior work, in particular the suggestion of a
topological sign problem in projector QMC [22], Berry phases
in spin models [37], and the suggestion that the sign problem
can be removed by bosonization [27].

We were made aware of an unpublished result by J.
Hirsch, where a negative-sign auxiliary field configuration was
explicitly constructed to create two localized single-particle
fermionic states, distant from each other, and then braid them
[55]. In this configuration there is a clear link between the
exchange of particles and the sign. This view, however, cannot
be translated to the general case, where the single-particle
states are delocalized.

1. Projection Monte Carlo

The first suggestion of a topological origin of the sign
problem appears in the context of the projector quantum
Monte Carlo (PQMC) method, attempting to explain the sign
problem similar to the world line algorithm in terms of particle
exchange [22].
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In PQMC one takes the T → 0 limits, which allows the
trace over the thermal density matrix

Ĝ(ρ,β) =
N∏

τ=1

e− β

N
H0e−dτρi (c

†
i↑ci↑−c

†
i↓ci↓) (D1)

for a particular auxiliary field configuration ρ to be replaced
by a projection from a trial state |ψT 〉 (as long as this state is
not orthogonal to the ground state):

Z[ρ] = 〈ψT |Ĝ(β)|ψT 〉. (D2)

By choosing a trial state that is a Slater determinant of p

fermions described by the p × n matrix P ,

|ψT 〉 =
∏
p

(Pp1c
†
1 + · · · + Ppnc

†
n)|0〉, (D3)

we can express the overlap of |ψT 〉 with the time evolved
state Ĝ(β)|ψT 〉 as a determinant in terms of the single-particle
matrices:

〈ψT |Ĝ(β)|ψT 〉 = det(P T G(β)P ) (D4)

If, as is the case for the world-line Monte Carlo, the
configuration comes back to itself, i.e., |ψT 〉 ∝ Ĝ(β)|ψT 〉, it
would be clear that each fermion has either come back to its
original state or has exchanged with another particle. In this
case the sign would be positive or negative depending on the
sign of the permutation involved.

This simple picture is complicated in the current case
since the time evolved state Ĝ(β)|ψT 〉 is, in general, not
proportional to |ψT 〉. Moreover, it cannot even be written as
a Slater determinant of orthogonal vectors as the projection
will squeeze the p single-particle wave functions that make up
|ψT 〉 towards the same ground state.

In Ref. [22] a Gram-Schmidt orthogonalization of the
vectors is used to obtain the weight as the determinant of one
orthogonal matrix Q times a positive-determinant matrix. The
sign then depends on whether Q describes a proper or improper
rotation (i.e., rotation plus reflection). Since the orthogonal
matrix can be defined at each time step, after specifying a
connection to uniquely identify Q at each step, one can see the
evolution as an open curve in the space of orthogonal matrices.

The relationship between this representation of the many-
body wave function and the Aharonov-Anandan phases of
the single-particle states is an interesting topic and deserves
additional study.

2. Spin Berry phase

An interpretation of the sign problem in terms of a
spin Berry phase was suggested by Ref. [37]. There an
auxiliary field decomposition of the Heisenberg Hamiltonian
HI = J

∑
〈ij〉 si · sj is proposed. Decoupling the spins with

an auxiliary vector field �i(τ ), the weight for a given field
configuration is expressed as

Z =
∫

D�Z[�] =
∫

D�e− ∫ β

0 J−1 ∑
〈ij 〉 �i (τ )·�j (τ )dτ

× tr

[
T exp

∫ β

0
dτ

∑
i

�i(τ ) · si(τ )

]
. (D5)

The phases gained by the eigenvectors under imaginary time
evolution are standard Berry phases of the decoupled spins
and may generate a phase problem for the spin Hamiltonian.
To our knowledge this paper is the first discussion of a Berry
phase in a diffusive (imaginary time) context.

The paper then speculates that a similar Berry phase of spin
fluctuations may be the origin of the fermion sign problem in
the Hubbard model. However, this relationship is not worked
out, and in particular because there is no clear relationship
between the auxiliary vector field for the decomposition of spin
models and the auxiliary scalar field used in fermionic models.
Note also that the auxiliary field approach is not used for spin
Hamiltonians, since it generally introduces a phase problem
even in models that have no sign problem in a world-line
formulation. As we have seen, while the origin of the sign
problem is also a geometric phase in the Hubbard model, it is
not related to the spin Berry phase of Ref. [37].

3. Bosonization

Efetov, Pépin, and Meier [27] suggested that bosonization
can be used to remove the sign problem. In their approach the
logarithm of the weight of a configuration is written as

ln Z[ρ] =
∫ 1

0

∂vZ[vρ]dv

Z[vρ]
+ ln Z[0] + 2πin, (D6)

where n is an arbitrary integer, as the phase of ln Z is only
defined up to a multiple of 2π . This can be understood as
obtaining the weight Z[ρ] of a configuration starting from
the free Hamiltonian Z[0] and slowly ramping up the field
strength. As long as the integral remains real, no sign change
can occur in the weight. Whether this is true depends on the
behavior of 1/Z[vρ]. Since the integrand is real, it might seem
reasonable to assume that the integral is as well; this, however,
assumes the absence of divergencies. Following the analysis in
the main text, we now explicitly show how such divergencies
arise. Making the dependence of the configuration weight on
the strength of the auxiliary field v explicit, we obtain

Z[vρ] =
∏
n

[1 + eβμλn(v)], (D7)

for which the bosonization procedure gives

ln Z[ρ] − ln Z[0] =
∑

n

∫ 1

0
dv

λ′
n(v)

e−βμ + λn(v)

=
∑

n

∫
γn

dλ
1

e−βμ + λ
, (D8)

where γn is the trajectory of the nth eigenvalue. We can see
from our three-site example that one of the eigenvalues crosses
the pole at −e−βμ at some value of the field strength v. In this
case the integrand must be rewritten using the regularization

1

x
→ P 1

x
± πiδ(x), (D9)

depending on whether it is regularized using the advanced or
retarded Green function. Regardless of the choice, the integral
will pick up a contribution πi for each eigenvalue crossing the
pole, and the weight will be negative when the number of such
crossings is odd. As we can see, divergencies are common
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and linked to a change in the Berry phase of the states when
increasing the field strength.

A different bosonization scheme was later suggested, which
modifies the probability distribution to make all the weights
positive [28]. While this method is expected to give different
expectation values on finite size lattices, the authors argue that
it will converge to the correct values the thermodynamic limit.
However, this has not yet been demonstrated.

4. Solitonic solutions

A similar analysis to the present paper has been carried
in Ref. [38]. The numerical precision obtainable with 32-bit
and 64-bit floating point numbers was examined, concluding
that several different methods to perform matrix computations
(sparse matrix methods, Gaussian eliminations, and small rank
updates) are essentially equivalent up to a certain condition
number. It was then concluded that the results were correct
when results in 32-bit and 64-bit precision agreed. Our findings
confirm that this is the case by comparing finite and arbitrary
calculations.

The authors also explicitly constructed an auxiliary-field
configuration having a negative eigenvalue smaller than −1.
This was achieved for the continuum limit in both space and
time and in the ground state limit β → 0. Since the constructed
zero mode is a soliton and topologically nontrivial, the authors
conclude that topological features of the auxiliary field and
fermionic wave function may be the root cause for the sign
problem. They identified two main problems in their conjecture
related to the discretization of space and adiabaticity. First,
solitonic solutions are qualitatively different in the continuum
and on a lattice [38]. Second, their solution is an adiabatic
one. As adiabatic configurations are a zero-probability set
in the ground state limit, the topological origin remained a
conjecture. Our proof of a topological invariant (the AA phase)
being related to the sign even in the nonadiabatic limit confirms
the conjecture of these authors.

Reference [38] also makes an important point that the
fermionic weight Z[ρ] can be written as a ratio of two bosonic
weights:

det[1 + G(0; β)] = det[1 − G2(0; β)]

det[1 − G(0; β)]
, (D10)

where both the numerator and denominator of the righ-hand
side can be written as a series with positive summands.
However, the authors caution that when negative eigenvalues
are present, this series becomes similar to

−1 = 1
1−2 = 1 + 2 + 22 + 23 + · · · , (D11)

i.e., a series that, while formally having a finite value, does
not converge in practice when sampled via Monte Carlo. This
shows once again that seemingly innocuous manipulations that
appear to remove the sign problem may in fact also make the
Monte Carlo estimates incorrect.

APPENDIX E: THE ADIABATIC LIMIT

Given a configuration ρ at temperature β, we can relate it
to a second one ρ ′ at β ′ simply by scaling (“stretching”)

ρ ′(τ ) = ρ

(
β

β ′ τ
)

. (E1)

FIG. 6. The periodic eigenstates |φ(τ )〉 of the three band model
are shown for different temperature β at v = 6. The line positions
correspond to the instantaneous bands of Fig. 4 in the main text, and
the line thickness is proportional to the overlap |〈φn(τ )|ψm(τ )〉|2. At
very low temperature (bottom row), the periodic eigenstates follow
the instantaneous ones, as the configuration is stretched and the
adiabatic approximation becomes valid. The lowest band A is always
topologically trivial and does not give rise to a negative sign. At low
temperatures the second and third bands B and C carry a π Berry
phase and are topologically nontrivial. Since only band B is occupied,
the overall configuration is negative. Raising the temperature (top
row), the adiabatic approximation breaks down and bands B and C

become degenerate and do not contribute a net phase to the weight.

In the limit T → 0, the evolution can be taken piecewise
constant, so that the element e−δτH (τ ) essentially projects onto
the instantaneous eigenstates.

In Fig. 6 we illustrate the adiabatic limit for the smooth
three-site configuration of the main text. We plot the overlap
overlap |〈φn(τ )|ψm(τ )〉|2 of the time-periodic eigenstates
|φn(τ )〉 with the instantaneous ones |ψm(τ )〉 at three tem-
peratures: above the critical value for the appearance of a
sign problem in this configuration, just below the critical
value, and at very low temperature. One can observe how at
high temperature two periodic eigenstates are degenerate and
have the same overlaps. As the eigenvalues λn split at lower
temperature, the overlaps also start to differ and the periodic
states pick up a nontrivial phase from the instantaneous states.
When the adiabatic approximation becomes valid (last row),
each periodic state follows the corresponding band.

It is interesting to note that the phase in the intermediate
temperature (middle row) is already nontrivial but the adiabatic
approximation is not yet valid. This is evidenced by the fact
that the periodic states do not follow the instantaneous ones,
and the particles cross from one band to the other near the gaps.

APPENDIX F: BIPARTITE LATTICES

It is common wisdom that half-filled bipartite lattices can
be simulated without a sign problem. However, until recently
no rigorous proof has been devised and no general scheme for
devising sign-problem-free simulations was known. We can
show that this fact is the result of a topological obstruction,
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that forces the number of occupied topologically nontrivial
levels to be even.

In a half-filled, bipartite lattice with sublattices A,B, one
can find a decomposition of H [ρ] such that

eτH [ρ]η = ηe−τH [ρ], (F1)

where η = (−1)x flips the wave-function sign sites belonging
to sublattice B. Consequently we see that the full evolution
matrix G satisfies

Gtη = ηG−1. (F2)

Turning to the single-particle levels Gψi = λiψi , we focus on
the real nontrivial ones, i.e., λ < 0. While of course there is
an even number of such eigenvalues, we need to prove that the
number of those λi < −1 is even as well.

We first see, that due to the above chiral symmetry (F2),

ψt∗
i ηψj = ψt∗

i GtηGψj = λiλjψ
t∗
i ηψj , (F3)

which implies that ψi is orthogonal (with respect to the metric
η) to all other eigenvectors except ψj with λj = λ−1

i . We call
ψi eigenvectors corresponding to eigenvalue λi < −1 and ψ̃i

those with eigenvalue λ−1
i . Then we can choose

ψt∗
i ηψj = 0, (F4)

ψ̃ t∗
i ηψ̃j = 0, (F5)

ψt∗
i ηψ̃j = δij , (F6)

which means that we can identify ψ̃i(x) = (−1)xψi(x).
We now turn to show that a topological obstruction is

present. If we take the restriction of G to one sublattice GAA

we see by continuity that it must have a positive determinant.5

5In fact, if the determinant vanishes, we would have a state (v,0)
such that GAAv = 0,

v†v = (vt ,0)η

(
v

0

)
= (vt ,0)GtηG

(
v

0

)
= −vtGt

BAGBAv,

which is clearly contradictory, hence det GAA cannot vanish and by
extension cannot become negative.

In physical terms this means that if we start with a wave
function restricted to the A sublattice, evolution will never
make it vanish on the whole A sublattice, because the density
difference between sublattices ψtηψ is conserved.

We now show how this leads to sign-problem-free simula-
tions. The explicit form of GAA is

1 + η

2
G

1 + η

2
= 1

4

∑
i

λi(1 + η)ψiψ̃
t∗
i η(1 + η)

+λ−1
i (1 + η)ψ̃iψ

t∗
i η(1 + η), (F7)

but since (F4)–(F6) imply ψ̃i = ηψi , we have

1+η

2
G

1+η

2
= 1

4

∑
i

(
λi +λ−1

i

)
(1+η)ψiψ

t∗
i (1+η) (F8)

and consequently

det GAA =
∏

i

(
λi + λ−1

i

)
> 0, (F9)

which proves that there are an even number of (λi,λ
−1
i ) pairs

and the determinant det(1 + G) is positive.
An algebraic proof that takes care of the case with

degenerate eigenvalues was found on the mathematical website
MathOverflow [56] through the open collaboration of many
researchers. Unlike the present proof, the full mathematical
statement generalizes to degenerate eigenvalues. Since such
configurations are a null measure set in any case, this
is of marginal importance for actual simulations. The full
theorem (nicely summarized in Terence Tao’s blog [57]) also
characterises completely the set of interactions that can be
simulated without a sign problem and determines the invariants
associated with negative-sign sectors.
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