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We study the behavior of exciton polaritons in an optical microcavity with an embedded semiconductor quantum
well. We use a two-component exciton-photon approach formulated in terms of path integral formalism. In order
to describe spatial distributions of the exciton and photon condensate densities, the two coupled equations of the
Gross-Pitaevskii type are derived. For a homogeneous system, we find the noncondensate photon and exciton
spectra, calculate the coefficients of transformation from the exciton-photon basis to the lower-upper polariton
basis, and obtain the exciton and photon occupation numbers of the lower and upper polariton branches for
nonzero temperatures. For an inhomogeneous system, the set of coupled equations of the Bogoliubov—de Gennes
type is derived. The equations govern the spectra and spatial distributions of noncondensate photons and excitons.
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I. INTRODUCTION

In the last two decades there has been extensive work on
Bose-Einstein condensation in the system of two-dimensional
exciton polaritons in optical microcavites (see the reviews
[1-4] and the references therein). The profound investigation
of properties of the polariton system has taken place [5—13].
Bose condensation has been demonstrated [14-21] and many
features of the polariton Bose condensate such as superfluidity
[22,23], vortices [18,24-34], and soliton [21,35-38] formation
were studied, and have been shown to have specific character in
the nonequilibrium spatially inhomogeneous system of exciton
polaritons. Recently, phenomena such as ballistic transport
over macroscopic distances [39,40], spontaneous oscillations
[41-43], Josephson-like effects [44-50], optical Aharonov-
Bohm [51] and spin Hall effects [52], and spontaneous pattern
formation [53,54] are actively discussed.

The most common theoretical approach is the mean field
description with help of the Gross-Pitaevskii equation

'hBCD " VO + o od 1

N T T e ’ )
where & is the wave function of the polariton condensate and
g is the potential of the polariton-polariton interaction.

Besides, a growing number of explorers use the cou-
pled exciton-photon equations of the Gross-Pitaevskii type
[22,33,34,38,55-58]
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Here x and v are the wave functions of the exciton and photon
condensates correspondingly, g is the potential of the exciton-
exciton interaction, and hS2 is the energy of the Rabi splitting.

In this paper we study the behavior of exciton polaritons in
the framework of the two-component exciton-photon approach
both in the mean field approximation and beyond.
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In the framework of the mean field approximation we
discuss the conditions of equivalence of the approaches
(1) and (2). In order to use more simple one-component
description (1) one has to write out the Hamiltonian of the
system including exciton and photon creation and annihilation
operators, perform the Hopfield canonical transformation from
the exciton-photon to the lower-upper polariton basis, neglect
the upper polariton branch as empty at low temperatures,
and regard polaritons on the lower polariton branch as a
dilute Bose gas weakly interacting via the exciton component.
Such an approach has led to a great amount of important
results (see the broad review of the approach in Ref. [4]).
The problem is that the canonical transformation from the
photon-exciton to the polariton basis is performed in the
momentum space and hence it requires the spatial unifor-
mity or quasiuniformity of the system. With the up-to-date
traps having dimensions of the order of a dozen microns
[17,59-63], one can perform the canonical transformation
at each point in space in the frame of the quasiclassical
approximation. However, the latest experiments have already
studtheied systems with micron dimensions [40,64,65] and
it is likely that the trend of miniaturization will go further.
Besides, the Bose condensed system can exhibit topological
defects such as vortices and solitons [18,21,24-37] and
spontaneously forming patterns [53,54]. In this work we derive
and discuss the criterion when the one-component polariton
approach (1) is applicable, using the more strict exciton-photon
description (2).

Beyond the mean field approximation, we mainly discuss
the canonical transformation from exciton and photon states
to that of lower and upper polaritons. Even in the case
of the spatially homogeneous system the unitary Hopfield
transformation from the exciton-photon basis to the lower-
upper polariton basis does not lead to the Hamiltonian
diagonalization in the presence of the condensate. It is
known that the diagonalization in a Bose condensed system
is performed with help of the pseudounitary Bogoliubov
transformation. As a result, the new quasiparticles, bogolons,
arise. The difference between the transformation types causes
a certain mathematical difficulty. In the paper we combine
both transformations in the single one and get quasiparticles

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.104530

A. A. ELISTRATOV AND YU. E. LOZOVIK

which can be called polariton bogolons. The coefficients
of the obtained transformation are the Hopfield coefficients
renormalized by the condensate.

The approach is formulated in terms of path integral
formalism for the following reasons. First, this formalism
allows the study of both condensate and noncondensate parts
of the system from the unified point of view. The second
advantage is the use of coherent states, which are the natural
choice for an exploration of quantum properties of light
emitted from the polariton system. After all, the method
involves the Matsubara technique and hence it is proved to
be effective for a study of the polariton behavior at nonzero
temperatures. The application of the path integral method to
a weakly interacting condensed Bose gas can be found in the
excellent review by Stoof [66].

Most explorers share the opinion that the main feature of
the polariton Bose condensate is its nonequilibrium nature. The
simple phenomenological model of the nonequilibrium Bose
condensed polariton system was developed in the series of
works by Wouters, Carusotto, Ciuti, and Savona [22,23,67,68].
Recently the attempt of its microscopical proof with help of
the Keldysh nonequilibrium technique was made in Ref. [54].
Here we restrict our consideration to the equilibrium case, as
we believe that combining the two-component exciton-photon
approach together with both the path integral method and the
Keldysh nonequilibrium technique will result in the loss of
clarity. We analyze the equilibrium Bose condensed polariton
system without pumping and photon decay from the cavity
at a nonzero, but sufficiently small temperature. Moreover,
we do not take into account the spin degree of freedom of
polaritons.

The paper is organized as follows. In Sec. II we describe
the geometry of the polariton system and introduce the exciton
and photon one-particle eigenstates. In Sec. III we write the
partition function of the system as a path integral, which
contains an action fully describing our system. The exciton
and photon quantum fields in the path integral formalism are c-
number fields written in the basis of coherent states. In Sec. IV
we turn to the Bose condensed polariton system and write out
both exciton and photon fields as a sum of the order parameter
and fluctuations around it. The part of the action, which
does not contain fluctuations, is the Pitaevskii-like functional.
Its minimization leads to the two coupled equations of the
Gross-Pitaevskii type. These equations give the description
of the system of the two coupled condensates in the mean
field approximation. We analyze the properties of the obtained
equations and find the conditions of equivalence between the
one-component and two-component approaches. In order to
explore the noncondensate part of the system, in Sec. V we
analyze the quadratic in the fluctuations part of the action. The
most important result here is the canonical transformation from
the exciton-photon basis to the lower-upper polariton basis,
mentioned above. Moreover, we obtain noncondensate particle
energy spectra and calculate exciton and photon occupation
numbers for lower and upper polariton branches at nonzero
temperatures. In Sec. VI we derive the set of coupled equations
of the Bogoliubov—de Gennes type. These equations govern
the energy spectra and spatial distributions of the noncon-
densate excitons and photons in a spatially inhomogeneous
system.
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II. GEOMETRY AND ONE-PARTICLE EIGENSTATES

We study a system of exciton polaritons in a semiconductor
optical microcavity with an embedded quantum well. In
the simple case when the quantum well possesses in-plane
translational symmetry, energy spectrum of excitons in the
region of small in-plane momenta has the form
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where ¢ is the dielectric constant of the medium, s(e(’)‘) =
2mexe” /2B is the 2D exciton binding energy, mex = m, + my,
is the 2D exciton mass, and m, and m, are the effective masses
of an electron and a hole, respectively.

An external confining potential V*(x) for excitons in the
quantum well can be created. Experimentally, there are several
methods to realize the confinement of excitons. One of them
is the exciton energy shifting using a stress-induced band-gap
shift [17,59,61].

We assume one-particle eigenstates describing noninter-
acting excitons confined by the external potential V*(x) to be
found from the time-independent Schrodinger equation

h2v2
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The set of solutions y,(X) is orthonormalized
de Xn(X) Xm(X) = dum (5)
and full
D () Fn(x) = 8(x — X)) (6)
n

In the case of the planar microcavity the photons in the region
of small in-plane momenta have the following dispersion:

he mwhe p>
M= — K+~ —. 7
€ \/E 1 + L\/En + Zmph ( )

Here mp, = why/e/cL is the effective photon mass. We
consider the lowest state n = 1.

There are several experimental approaches to realize the
confinement of photons [62]. It is, for example, creating a
special dielectric permittivity profile inside the cavity which
would lead to photon localization, or making a trap for photons
based on special shaping of the microcavity width L(x) (up to
creation of a finite system limited by mirrors from all sides).
In this case the effective photon mass my, and the first term in
(7) become functions of coordinates. As a result, the following
one-particle problem arises for photons in the microcavity with
a nonconstant width L(x):

—h—zv< : vy (x)>+<”—hc—eph>w(x)—o
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We will assume microcavities to possess in-plane translational
symmetry, and will not consider microcavities with photon
confinement, i.e., mpy(X) = mpy = const. The one-particle
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problem for photons reduces to

2v72
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Similarly to the above exciton one-particle eigenstates, we as-
sume the set of solutions of this problem to be orthonormalized
and full

/dX 1pn(x)'(pm(x) = Sum, (10)
D () Pn) = 8(x — X). (1)

III. ACTION AND FREE-FIELD GREEN’S FUNCTIONS

In the functional approach, the grand-canonical function of
the exciton-photon system is the functional integral

Z = / DX DX D‘W D‘& e_%s[i’x»‘/}a‘//]’ (12)

where the action S consists of four terms
S[X’Xﬂ/_/alﬁ] = ex[)_(7X] + Sph[&f‘ﬁ]
+SRabi[)_(’X’IZ,’I//]+Sint[X7X]v (13)

describing excitons, photons, Rabi splitting, and interexciton
interaction, respectively:
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1 [ ,
Swlix] = =57 dt/dxdx
0

x XX, DX, )V (x = x)x (X, 1)x(x,7). (17)

Here g = kgT, where kg is the Boltzmann constant, T is
the temperature, and x (x,7) and ¥ (x,7) are the field operators
written in the basis of coherent states and hence they constitute
c-number functions connected with yx,(X) ¥, (x) via relations

XET) =D 1D (), YT =D YD) Yu(X),

(18)

with the coefficients of expansion y,(t) and ¥, (7) dependent
on time.

We include the detuning E( between the exciton spectrum
es* = Eg + p*/2me, and photon one SSh = p*/2my, into Sex
and consider Ey > 0.
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Furthermore, we will assume the exciton interaction to have
the approximate form V(x — x') = V §(x — X).
The partition function Sex[x, x ] can be rewritten as

] B
/dr/dx/ dr/dxx(xr)

XG;((O)(X,I;X,‘L’)X(X,‘L' ), (19)
where
G_I(O)(X»HX/,T/) = —l(ﬁi - v + V=x) + Ep — M)
& A\ 0t 2me

x8(x —x)8(t — 1) (20)

or, equivalently,
( ERAS
aT 2Mex
=—hs(x—x)8(r — 7). 2D
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Substituting (x — x’) from (6) and using the equality

8z —1) = 1/3 Ze*"wm“*f” (22)

we obtain

1
Ge_xl(O)(X’T;X/’T,) = _ﬁ Z (_ihwm + Szx + E() — ,LL)

n,m

—iwu(t—=1")
w(X) (X)) —————. 23
X Xn (%) X (X') hB (23)
The solution of Eq. (21) reads
G k) ; /1 ! = — n
x()(X, 73X, 7)) nz”; e +8§"+E0—MX (x)
, e ion(T—1")
(X)) ——. 24
X X (X)) "B (24)

Since the functions G;(l(o) and G () are mutually inverse, they

obey the relation GEX(O)G;(I(O) = [, where I is the unity matrix.
In coordinate space this relation has the form

hp
/ dt” / dax” Gex(o)(x,r;x”,r”)G;(l(O)(x”,r”;X’,r’)
0
=8x—x)8(t — 7). (25)

Similarly, we can write Spn[v/,¥] as

7 hB hB
S f [ e [ axin
h 0 0

X G;hl(o)(x,r;x’,r/)l//(x’,r/), (26)
where
Gl (xTix. 7)) = 1 (hi B h2v? - M)
ph®) A\ 9t 2mpy,
x 8(x —x)s(r — ), 27)

and write out for photons formulas analogous to (21), (23),
(24), and (25).
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IV. COUPLED GROSS-PITAEVSKII-LIKE EQUATIONS

We now turn to the Bose condensed exciton-photon system.
Let us introduce the time independent order parameters x((Xx)
and Yy(x) as
V(x,7) = Yo(x) + ¥'(x,7),

(28)

x(X,7) = xo(X) + x'(x,7),

where x'(x,7) and ¥'(x,1) are the fluctuations of the exciton
and photon quantum fields around the order parameters
Xxo(x) and ¥o(x). We shall use the Bogoliubov approximation
assuming x'(x,7) < xo(X) ¥'(X,7) < ¥o(x), i.e., we confine
ourselves to the case of low temperatures.

Substituting the definitions (28) into the action given by (13)
and rearranging the derived terms according to their orders in
x'(x,7) and ¥'(x,7), we obtain the following results.

The zeroth-order part of the action is given by

BB Fpl X0, %05 Yo, Vol

h2
=hp / dx { . IVxoX)I* + [V(X) + Eg — ullxoX®)|*

h2
2m ph

IVyro(x)* — plox)|?

Vi
+ 7°|xO<x)|“ +

hQ -
+ 5 WoM)xe®) + %(X)Xo(x)]} (29)

and has the form of the Pitaevskii functional.

According to the semiclassical method, the functional
reaches its minimum at functions xo(x) and vy(x), for which
the functional variation vanishes. Equivalently we can set the
part of the action linear in x'(x,7) and ¥'(x,7) equal to zero.
As a result, we obtain the set of coupled stationary equations
analogous to the Gross-Pitaevskii equation:

n2v? x
- +V (X) + E() — U

2mex
hQ
+ V0|X0(X)|2) Xo(®) + —=1o(x) =0, (30)
h2v? hQ
<— ) — M) Yo(X) + TXO(X) =0.
Mph

These equations provide a minimum of the functional (29)
and describe the system of the two coupled condensates in the
mean field approximation.

Let us discuss the derived equations by considering first
the homogeneous case V*(x) = 0. In the absence of the
Rabi splitting 72 = 0, the chemical potential of excitons
equals pu = Eg + Vong', same as for the conventional one-
component Bose condensed gas. Here we introduced the
exciton condensate density |xo|> = ng*. It is known that the
Rabi splitting leads to the appearance of the two branches in
the energy spectrum, which are referred to as the lower and
upper polariton states (below we denote them by superscripts
“L” and “U”). The chemical potential is equal to

pH0 = L[ (By + Von) 5 (Eo + Vong)” + 1262]
(€29)
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and varies within the interval wu® e [u!L) 0],u) €
(1Y) oo], where u'l:V) = (Eg  VE; + h2Q%)/2.

In both cases the solution of the set of Egs. (30) has the
form

1 u?— Egu — h2Q2/4

X0 = s
0 Vo 2
(32)
hQ | 1 pu?— Egu — h2Q2%/4
Yo=—.— .
2u Vo 2

For the lower polariton state, the exciton and photon con-
densate phases differ by 7z, since the chemical potential is
always negative. For the upper polariton state, the exciton and
photon condensate phases coincide and the chemical potential
is positive.

The energy of the homogeneous system per unit area, as it
follows from (29), can be calculated as follows:

E®Y = Egnex + 1Vo(n)” F hy/ngnl’,  (33)
where ngh = ||? is the photon condensate density.

Thus, when the homogeneous exciton-photon system is the
condensate of lower polaritons, it has the minimal energy E©.
When the system is the condensate of upper polaritons, it
has the maximal energy EY). The difference between these
energies per one particle is the energy of Rabi splitting A£2 (in
the limit of low density). The energies of the uniform states,
for which phases of the exciton and photon condensates differ
by a value ranging from O to r, are situated within the interval
[ED, EW]. Such states are time dependent, since the exciton
and photon condensates cyclically turn into each other, i.e.,
a kind of the internal Josephson effect takes place [58]. Here
we confine ourselves only to the study of the lower polariton
branch with the energy E™), omitting further the superscript
“L” for shortness.

Substituting Eq. (32) into (33), we get the connection
between the energy and the chemical potential

1 1 R*Q? 3 ntQt
E=— |+ PQ*—E} — ——Ey— — )
2V 2 m 16 2
(34)
We introduce the polariton condensate density as the sum
ng =ng +nd. (35)

Substituting Eq. (32) into (35), we find the connection between
the polariton condensate density and the chemical potential

b1 1 Q2 1 K
n, 270 " —

0= e Ey 16 00 ] (36)
With the help of Eqgs. (34) and (36) we can easily prove that
JdE/ 8n(’; = W, 1.e., the chemical potential is equal to the change
in the energy as one extra polariton is added to the system. It is
worth pointing out that the expressions (32) could be obtained
from the condition that the energy has a minimum at a fixed
value of chemical potential (d E/dng"), = (8E/8ngh)u =0.
As it is seen from (32), in the limit of large density u© — 0
the polariton condensate becomes mainly a photonic one,
and behaves like an ideal Bose gas for which © =0 is a
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true statement. This fact is in contradiction with the relation
which can be obtained with use of the conventional Hopfield
coefficients. For example, if Eg =0 we would obtain ng* =

ngh. We will return to this question in Sec. VII.

Let us next discuss the inhomogeneous case. The lower
equation in (30), describing the photon condensate, possesses
the spatial scale which plays a role of the healing length and
equals

h

gph = ,—_2mphu .

The length &,, has a minimal value in the limit of zero density
and increases with the chemical potential.

For the upper equation in (30), describing the exciton
condensate, the healing length equals

h
A 2mex(Eg — 1)

and increases with the chemical potential as well.

It is important to point out that the relation mpyp/mex ~
10~* observed typically in experiments causes the following
inequality:

(37

gex = (38)

Eph > Sex~ (39)

Let us now study the conditions of the equivalence of the
two-component exciton-photon and one-component polariton
approaches. These approaches are obviously equivalent in
the homogeneous case, when vy = (hQ/Z,u)XQ,n(’)’ = |yol® +
| x0]%. We expect these local relations to be valid also in the case
of smooth densities change. We rewrite the lower equation in
(30) in the integral form using the fact that the MacDonald
function Ky(x) (see, for example, [69]) is the Green’s function
of the equation. Thus we have

1 h&2

Yolr) = —>——

> Ko(Ir — r'[) xo(r")dr'. (40)
T2

Here we introduced the dimensionless vector r = Xx/&y.
Taking the asymptotics Ko(x) ~ /7 /2xe* valid for x — 0o
into account, we can expand the smooth function x(r’) in a
power series in the vicinity of r' = r and keep only the first
terms
1
/
ry~ x(r)+ Vyxr) s+ — ——5;5i, (41

Xo() X (1) + V xo(r) 22}: g, e (4D
where s = 1 — r. We substitute this expansion into (40) and
integrate it with respect to ds = s ds de¢. Here it is convenient
to use the integral formula for the MacDonald function

Ko(x) = (42)

00 e
—d.
/; vt —1
As a result, the gradient term and the term containing the
second mixed partial derivative vanish after the integration
with respect to the angle d¢, and we obtain

AXO(X)]
xox) |’

where A is the Laplace operator. Therefore, the condition
that determines the applicability of the local relations between

hQ ,
Yo%) = 2000 [1 +£2 43)

PHYSICAL REVIEW B 93, 104530 (2016)

(a) n%h (b) (©)
eX
ng o e
Mo
g ! 1 2 AN
X (um) X (um) X (um)

FIG. 1. Examples where exciton and photon condensate densities
deviate from a unique polariton condensate density derived with help
of the one-component model: (a) the core of the exciton-polariton
vortex, Eo =0, Q2 =30meV, my, = 105m,, t = 0.85 min, (b)
the boundary of the exciton-photon condensate in the box poten-
tial, u = 0.7 wmin, and (c) the exciton-photon condensate in the
harmonical trap with potential kx?/2 where k = 5 x 10~ eV /cm?
(the dashed lines show the densities calculated in the Thomas-Fermi
approximation). See for details Refs. [33,56].

particles densities is

Ap® 1
XO(X) [?h '

(44)
which means that the relative exciton density change must be
small on the scales comparable to the photon healing length.

In topological structures such as vortices and solitons,
the exciton density changes considerably on the scales
of the exciton healing length. The same picture takes place near
the boundaries of the condensate confined by the box potential.
In all these cases the one-component polariton approach is not
applicable [see Figs. 1(a) and 1(b)].

The extensively used Thomas-Fermi approximation con-
sists of neglecting the quantum pressure terms in Egs. (30)
at sufficiently high densities of condensate particles. The
obtained estimate establishes the range of validity of Thomas-
Fermi approximation. In the regions where the condition (44)
fails true exciton and photon condensate densities deviate
from the polariton one calculated in the Thomas-Fermi
approximation [see Fig. 1(c)].

The solution of Egs. (30) for the harmonic trap is published
in Ref. [56], the vortex solution is discussed in Ref. [33].

V. NONCONDENSATE PARTICLES
A. Matrix Green’s function

We can represent the quadratic part of the action S94 as a
quadratic form

X
ho(" . '
Squad — __/ dT/dX [)—(/’w/’x/’w/] -G_l . Ig/ ,
2 Jo X
,(//./
(45)
where the Green’s function has a matrix structure
X/
v’ 7
-G = 2 (X" v'x" ¥ (46)
,(p/
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and can be written as

2Vol xo®)I?

1| w2
—1 . _ -1 -
G 'x,;x,1) = G (x,7;X 7)) — 7 Voio(x)?

0

where

-1
Gex(()) 0

. 0 G
G =

ph(0)
0 0

0 0
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h&2/2 VOXO(X)2 0
0 0 0 8(x — x)( ) “7
_ r— 1)),
0 2Volxo®)|*  h&2/2
0 /2 0
0 0
0 0 48)
G ooy 0
—1
0 GPh(O)

Here G;(io)(x,t;x’,t’) and G;‘l(o)(x,r;x’,r’) are the inverse exciton and photon Green’s functions given by (20) and (27),

respectively.

We can rewrite (47) as G™! = G(_O; — X, where X is a matrix formed by self-energies. Multiplying this equation from the

left by G(o) and from the right by G~! we obtain the Dyson equation G = G(g) + G()EZG. Some Green’s functions from G
are presented in Fig. 2. We will only consider the case of a uniform system V*(x) = 0. The exciton and photon single-particle

energies have the form
2

2

ex _ ex_ P ph _ .ph _ p 4
R e ek A (49)
Substituting u, Egs. (20) and (27) into (47) gives
o ihoy Q)2 Voxg 0
hQ/2  ER-ih 0 0
Gy = | 2 B e O , (50)
Vo X, ETH ihowy h/2
0 hQ/2  EY+ihoy
where we introduced the energies as
X €X €X 1 EO
Ey = &g+ Eo — it +2Vono = & + 5 (Voro = v/ (Eo + Vono)? + 12Q%) + ( — + Vono | (51
1 E
ER = e — = ef + 5 (Voo — v/(Eo + Voo + 12Q%) — (7‘) + Von0> : (52)

Hereafter we denote n§* by ng and replace xo by /g €'?.

B. Spectrum

The determinant of the matrix G~!(p, ) is zero at the poles
o of the matrix G(p,w). Equating the determinant to zero and
solving the obtained equation for w?, we arrive at the polariton
energy spectrum modified by the condensate:

1 2 Q2
2 (LUR2 _ 2 h2 2.2
hwp _§<E§X +E§ Vong + 2 )
1 ex2 h2 2 2\2
+ 5{(—Ep + ERY + Ving)
2
+ Q[ (ES + ER') — Vingl}.  (53)
In the absence of the condensate ny = 0, it follows from

Egs. (51) and (52) that ES* = 5 + Eo — ., Ey = b’ — 1,
and Eq. (53) gives

hotl"") = 3 (Eo + 5* + €5

2
£ 3 (Eo e — o) 4 12022 —
=V —p. (54)

(

One can see that the spectrum turns into the energy dispersion
of the lower and upper polaritons.
In the absence of the Rabi splitting we have

x2 2
Woy = 3(E5© + EX — Ving)
+ L (—ES? 4 BB 4 Vgn}), (55)
which gives the photon energy spectrum
hwp = £EB" = £ (eB" — 1) (56)

and the exciton energy spectrum modified by the condensate

hop = % E§? — Vind = £, o5 + 2Vongegs = %ef.
(57)

Equation (57) is the Bogoliubov dispersion law. Here we
assume u = Ey + Vyng as discussed in Sec. I'V.

For small momenta p — O the lower branch takes the
phononlike form

hol) = vp, (58)
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FIG. 2. Diagrammatic representation of some Dyson equations
from G = G(g) + G XG. Solid and dotted lines represent free-field
exciton and photon Green’s functions, respectively. Double wiggly
line represents exciton-exciton interaction counted in the ladder
approximation. Circle represents the Rabi splitting. (a) Exact exciton
Green’s function. (b) Exact photon Green’s function. (c) Exact
anomalous exciton-photon Green’s function. (d) Exact anomalous
photon-exciton Green’s function.

where v; is the sound velocity. Assuming that o = mpp/Miex =
0,Vong < A2, which is commonly encountered in practice,
the velocity can be estimated as follows:

hZQZ V()n() (59)
= |
’ Eé —+ FLZQZ 4mph
At p — 0 the upper branch has the form
) r’
hoy) = A+ ——, (60)
P 2m®
where
1 3E
A= \Ej+ @2+ o 1+ —=0 | Veno (61)
E} + h2Q2
in the limit Vyng < h$2, and
1 |:1 <l Ey ) h*Q? v } 1
IR DA - 372 Yono|
my 2 |2 + 122 (E} + n22?) Mph
(62)

in the approximation o = mpp/mex = 0,Vong < hS2.
In the limit of large momenta p — oo the lower polariton
branch turns into the dispersion law of free excitons

.
2mex
+ E() + 3Vol’l()).

1
hol) = + 5(\/(Eo + Vono)? + h2Q2
(63)

If 22 = 0, the square root should be taken with the negative
sign; this corresponds to u = Eg + Vyny.
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a
0.01
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FIG. 3. Polariton energy spectrum modified by the condensate.
The momentum is expressed in the units of /m,h€2, the energy
is expressed in the units of A2. (a) Vyng = 0, (b) Vong = 0.1AL2,
(c) Vong = 0.25hL2, (d) Vyng = 0.4h€2, and (e) Voyng = 0.5h%2. Inset:
Phononlike spectra in the vicinity of zero momentum.

The upper branch for p — oo takes the similar form

2

1

hol = —2”; + 5 W(Eo + Vono) + P22
ph

— (Eo + Vono)). (64)

The outlined properties of the polariton spectrum modified
by the condensate are shown in Fig. 3. We see that the
energy and momentum of the polariton resonance increase
with the condensate density. This resembles a positive detuning
between the exciton and photon modes.

It is worth to note that the obtained spectrum of excitations
has a model-dependent character. We use in our model a
quite simple description of the exciton-exciton interaction, not
regarding the composite nature of excitons and spin degrees of
freedom (see [5] and the references therein). There are many
other factors affecting the spectrum of the excitations, among
them, for example, the phase-space filing, resonant pump, and
finite time of the polariton’s life. These factors were included
in the phenomenological two-component model proposed
by Carusotto and Ciuti [22]. Using their model the authors
obtained the spectrum of the collective excitations, which
differs from (53). The main difference is that the obtained
spectrum is complex. This leads to the onset of instabilities of
different types. The authors used the matrix analogous (47) but
further concentrated on the study of superfluidity conditions
in a polariton system and so dropped the upper polariton
branch. The microscopic derivation of the phenomenological
coefficients used by Carusotto and Ciuti in their model is
appropriated by Haug et al. [54].

C. Polariton basis

Let us perform the transformation from the exciton-photon
basis (x,¥, X, ) to the polariton basis (P, pW) pL) pU)),
where P) and P(Y) describe the lower and upper polaritons,
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A. A. ELISTRATOV AND YU. E. LOZOVIK

respectively. We shall carry out the canonical
transformation
LU (LU 5 4 LU T
P =0ty 40y Dy + 08 g 4+ 50V, (69)

where n(L U),nipr v

cients to be found.

v;i’U) ,and v](/,Lp’U) are the unknown coeffi-

J

In the Appendix we present two methods of finding the coefficients n(L U),n%

PHYSICAL REVIEW B 93, 104530 (2016)

It is clear that

P(L U) _ =(L, U) =

nx —(L )wp_i_v(L U)Xp+v(L U),(//p (66)

and therefore the two bases are related to each other by the
equation

O I A A
rol L w0 |
pb - v® Vl(/f? ng(Lp) ﬁ;pr) Wl (67)
0 I O

GO WU and v, The result is

eié(L,U) 1 1

1292 /4 — (E* + hoy ) (ER +hoy")

P(L’U) —
)
\/Zng"U) \/hza)f,u)2 — hza)g‘)2

hQ
hollV) — EPM) & +—1/f}
hw:,L’U)—EBh |:( P p) Pt TP

(L,U) ph
+ Vong e¥¢ heop — Ep

R2Q2 /4 —

Here £Y) are the phases which up to an arbitrary phase &
satisfy the equation £ = &) —7/2 = ¢,

In a sense, these transformations incorporate both the
Hopfield transformation for polaritons and the Bogoliubov
transformation for weakly interacting Bose gas.

For A2 =0 the expression (68) in the case of lower
polariton yields

&gt + Vono + 8B

P(L) e X
B P
2,
8;" + Vong — &8

2ip+ik P - . 69
+e 285 Xp (69)

The coefficients of x,Xp are the coefficients up and v, of
the Bogoliubov transformation. An upper polariton turns into
a photon: PéU) = ¢t Yrp. For Vong = 0 the expression (68)
yields

(L,U) SE)L - gh
P = - Xp
\/(85 — V) 4 224
hQ/2
+ Vp. (70)

\/ (8" — e)’ + m22/4
Here the phase £ is assumed to be zero. The coefficients of x,
and v, are the Hopfield coefficients.

In Fig. 4 we plot the momentum dependencies of the
calculated coefficients. It is seen that the coefficients for
the lower polariton similar to the Bogoliubov transformation
coefficients have a singularity at zero momentum. This is due
to the fact that, by virtue of Eq. (58), ha)(L) in the denominator
of Eq. (68) behaves like v p. In add1t10n, the presence of

(Ee" + hw(L U))(Eph ha)g"U))

[(hng~U>+Egh) Ao 79&1,} . (68)

(

the condensate shifts the balance between the excitons and
photons to the photons in both polariton branches. Apparently,
itis a consequence of the positive detuning between the exciton
and photon modes discussed in Sec. V B. It is worth pointing
out that exciton-photon interaction causes an extremely slow
decay of the coefficient v,

1.0 1.0
Sl S
= =y a de
0.0 10 2.0 0.0 1.0 20
1Y P
1.0
Z=ab 08 g
- =y
0.2 04
0.0 1.0 2.0 0.0 1.0 2.0
p P
0.3 0.2
0.0 1.0 20 0.0 1.0 2.0
p P
0.3 0.06
o Sa
S 2>
> > e
01 b e 002}
0.0 7.0 2.0 0.0 1.0 20
p 1Y

FIG. 4. The transformation coefficients from excitons and pho-
tons to lower and upper polaritons as functions of momentum.
The momentum is expressed in the units of \/m,;,hQ2. (a) Vong =
0, (b) Vong = 0.1~ (c) Voney = 0.25A22, (d) Vone = 0.4h<2, and
(C) Vono = 0.5h%.
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D. Occupation numbers

We can find the noncondensate exciton density taking into account that n®™ = —G(x,7,X,7+). Using Eq. (A12) we
obtain

n™ =— 3" Gu(p.k)

p#0.k
0|2 L 0|2
}ng(p)’ |V( ) ‘r))(p ‘ }v)((p)
== . (L)+. ()+ ; U)+. ) [ (7D
prok | —iher + hayp iy + hoy — —ihwy + hwp i hoy + hwp

To evaluate the sum over Matsubara frequencies, we use the formula

1 eiwkﬂ 1
n—0 hp Xk: iwg — (e —n)/h ePle—n) _ 1 (72)
and find that
0 @) ) 2
M|+| L |n;+| )
B Z TP _ 1 ;p) + Z T D ) +| WP (73)
p#0 N p#0 -
Substituting the explicit expressions for the coefficients n(L U),nf/i & v;ﬁ U v](/,L 'Y) we can write this equation as follows:
o1 ,
n — V exL + Z nexU , (74)
p#0 p#£0

where the first term contains the sum over exciton occupation numbers of the lower polariton branch

2 2
et _ _—Eg“ + R0l — (W74 —EQER + ESRPol’ + EY (1974 1 roo 5)
S oy’ = ey g A2 e -

and the second sum is over exciton occupation numbers of the upper polariton branch

2 2
v BN R0l — ()P4 —EQEY + ESHP0Y + EY (%4 1 (1 1 a6
Y ) Rk’ — Rwy? hol \2 ° ePhop —
Similarly, for photons one has
Sl : :
A DI SR DD (7
p#0 p#0
where
wy | —E A+ Rel’ — ()P /4 + Vind N —ES2ER + ER R0l + ES()? /4 + ES'Ving 1 (1 . )
n = — | - -
P 2(h2a)1§2 — h%ogz) hzwéz — hza)gz hog \ 2 Py —
(78)
ex 2 ex2 -ph h 2 ex h
o _ P Rol” = (hQP/4+ Ving  —EfCEy + Ey Rol” + ESQP A+ EyVing 1 (1 L
P 2(h2a)l§2 — hzwgz) hza)}%z — hza)gz hol \2 Py — 1
(79)

Here nghL and np ~ are the photon occupation numbers of the lower and upper polariton branches.

Let us now analyze the results. In the absence of the Rabi splitting the first term in Eq. (75) equals 1/2 and the brackets’
coefficient in the second term turns into (S;X + Vong)/(hwp), where hay is given by Eq. (57). Both terms in Eq. (76) are equal to
zero, i.e., there are no excitons in the upper branch. As a result, for excitons we obtain the expression

phU’

ex’ exL’ exU’ €p + Vono — hwp &p + Vono 1
= = , 80
n, n, - +n, 2heoy + oy SAhop _ (80)

which is the standard momentum distribution of noncondensate particles in the Bogoliubov model.
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FIG. 5. Exciton and photon momentum distributions in the lower
and upper polariton branches. Momentum is expressed in the units
of ,/mpth. (a) Vol’l() = 0, (b) V()I’lo = Oth, (C) V()l’lo = 025779,
(d) Vong = 0.4h%2, and (e) Vong = 0.5AK2. The inset shows the
exciton momentum distribution in the lower polariton branch at large
momenta (of the order of | /mey/my, ~ 10%).

Both terms in (78) are equal to zero, i.e., there are no
photons in the lower polariton branch. The first term in (79)
equals —1/2 and the brackets’ coefficient equals 1. Thus for
photons we obtain

PHYSICAL REVIEW B 93, 104530 (2016)

finite value:

(82)

but then it starts increasing with growth of momentum. Such
behavior is a consequence of very slow drop of the coefficient
v%) (see the previous subsection). The further behavior of
the exciton noncondensate distribution is shown in the inset
of Fig. 5(a). It is seen that the distribution drops off at
very large momenta. It is worth noting that the population
of the upper polariton branch is high (comparable with that
of the low polariton branch). This population increases with
the condensate density. The maximum of the population
corresponds to the region of the polariton resonance and shifts
to large momenta with the growth of the condensate density.

We remark that the population of the upper polariton
branch substantially differs from zero only for unrealistically
high values Vyny compared to i$2. This fact proves the one-
component model use in homogenous polariton systems. On
the other hand, recent researches [] concerning the Rabi-like
oscillations in exciton-photon condensates take into account
the full spectrum of excited states and their occupation
numbers [43,58,70].

VI. COUPLED BOGOLIUBOV-DE GENNES-LIKE
EQUATIONS

In order to investigate the inhomogeneous case we intro-

' ' ’ 1 duce the operators
= = (81) P
N 2v?
Kex = — + V) — u, (83)
2mex
which is the standard distribution of particles in the ideal R m2v2
Bose gas. In Fig. 5 we plot the noncondensate exciton and Kph = — e K, (84)
photon distributions at zero temperature. At small momenta the ph
exciton distribution is linearly decreasing starting from some and solve the following eigenvalue problem:
|
Rex+2Volxo®)*  h82/2 Vo(xo(x))? 0 7 [u® 1o 0 07[uw®
hQ/2 R 0 0 ||t b |01 00 ul (%) )
A = hawy
Vo(Xo(x))? 0 Ke+2Volxo®P  hQ/2| | v x) 00 -1 0| vyi®
0 0 h2/2 Ron J LoP"x) 0 0 0 —1][sMx)

Thus, we obtain a set of equations which is an analog of the Bogoliubov—de Gennes system of equations and describes excitations

in the system of coupled condensates of photons and excitons:

2v72
(— V4 VEX) — o+ 2V0no(X)> U (x) + Vol xo(X)*vE*(x) + h—Quzh(x) = hw,u*(x),

2mex

2

h2v2 h2
(— oy M) uPP(x) + TMZX(X) = hw,u"(x),
p

(86)

h2v2 ex ex = 2 ex hQ2 h ex
(— + VI —n+ 2Vono(X)> U, (%) + Vol Xo()] 7w, (X) + —-vp' (%) = —hw, v, (%),

2mex

2

h2v? hQ
(‘ - u) V) + v (%) = —hw, v ().
Zmph 2
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Similarly to Eq. (73), one can write an expression for
noncondensate excitons

5 { 1S @] + [0 )|

nex’ (X) —

e + ’v;X(X)|2} 87)

n#0

and for photons

ph 2 ph 2
n"‘“’(x>=2!|”" L) +!v5‘“<x>!2}~ (58)
n#0

Functions ug*(x), vﬁ"(x),uﬁh(x), and th(x) are normalized as

/dx( us @) + [uP )| = [ @] = [P @)[*) = 1.
(89)

This equation is analogous to Eq. (A6) and can be obtained in
the same manner.

The solutions of the set of Egs. (86) are out of the scope of
the present discussion and will be published elsewhere.

VII. CONCLUSIONS

In Sec. V we obtained the renormalized Hopfield coeffi-
cients for noncondensate particles and now we are going, in
some sense, to extend them to the condensate. The Hopfield
coefficients for polaritons of the condensate do not exist,
at least if we obtain the condensate as a result of the
Bogoliubov-like canonical transformation. Their divergence
at small momenta can be regarded as the criterium of
the condensate presence. Nevertheless, the ratio of noncon-

densate occupation numbers 7%~ and n" stays finite when
p — 0. For sufficiently low temperatures we find, using (68),

exL’ (L2 2

e g ©0)
phL’ — (L)|2 202 ~ _ph’

"p vy, |© PO 2 g

where ng* = Ix0]? and ngh = |y|? are taken from (32). With
this result we can introduce the Hopfield-like coefficients
Xo and Cy for the condensate using the normalization
|Xol> + |Col? = 1 and the relation | Xo|* / |Co|?* = 4u?/h*Q2.
We obtain
u h$2/2

where p is given by (31). We ought to keep in mind the
restricted sense of the introduced coefficients, as they only
give the right relation between exciton and photon condensate
densities and their phases, but do not serve the true coefficients
in a canonical transformation. In the limit Vyng — O the
coefficients Xy and Cy coincide the Hopfield coefficients for
p = 0 from (70). The use of the renormalized coefficients (91)
instead of the conventional Hopfield coefficients resolves the
contradiction mentioned in Sec. I'V.

In conclusion, we believe that the approach presented in
the paper may be useful in sharply inhomogeneous polariton
systems, whose characteristic spacial scales are comparable
to the photon healing length. In homogeneous systems the

Xo = on

PHYSICAL REVIEW B 93, 104530 (2016)

method leads to some fine results such as renormalized Hop-
field coefficients for the condensate, details of the spectrum of
excitations, and their occupation numbers. The results obtained
in the paper can serve as the theoretical background for further
investigations in the field discussed. The path integral method
we used has essentially more abilities than were demonstrated
in the work. The method opens an effective way to analyze the
formation and dynamics of a nonequilibrium condensate. The
two-component approach based on the path integral method
leads to the two-component diagram technique, which was
briefly presented (Fig. 2), although not used here. All this
aspects will be discussed in future works.
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APPENDIX: DERIVATION OF CANONICAL
TRANSFORMATION

Let us denote the matrix in the right-hand side of (67)
by B. We need to find the coefficients of the matrix B so
as to diagonalize the matrix G~!. The diagonalization does
not reduce to straightforward determination of the eigenvalues
because of opposite signs in front of ifw; in the diagonal
elements of the matrix (50). An option is to consider the gen-
eralized eigenvalue problem G~'& = (hw — i hwy) W&, where
W = diag(1,1,—1,—1) (see, for example, [71]). However,
we suggest a different approach: to multiply the two lower
rows of G™! by —1 and thus obtain the standard eigenvalue
problem G~'¢ = (hw — ihwy) €, where G™' = WG™! is a
non-Hermitian operator with respect to the scalar product
(a,b) =), duby. Let us define the new scalar product as

((a,b)) = (a,Wb). (AD)
The Hermitian conjugation with respect to the old and new
scalar products is given by the formulas
(Oa,b) = (a,07b), ((Oa,b)) = ((a,09p)). (A2)
One can obtain the following relationship between the opera-
tors O and O*:
0% =wo'w. (A3)
The new scalar product is chosen in such a way that the
equation (G=")® = G~! holds. Therefore, the operator G~
is Hermitian with respect to the scalar product (Al) and its
eigenvalues are real: G"é‘ = AE,A = A, if the norm of the
vector £ is nonzero: ((¢,£)) # 0.

The diagonalization of a Hermitian matrix implies the use of
a unitary matrix, which columns are normalized eigenvectors
of the Hermitian matrix. Let us assume that the columns of
the matrix B are the normalized eigenvectors of the operator
G1, i.e., we have

G 'BT =B"G,', (A4)
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where
Gy' = diag (ho{” — ihw. ho” — ihoy, — hol — iho, — hol” — ihoy) . (A5)
The columns of the matrix B are normalized with respect to the scalar product ((e)), i.e., their components satisfy the equation

O = O = P =1 "o

e + Iy A

The components of the eigenvectors can be found from the equations G~'& = (hw — ihwy) &. We obtain the following
relationships between the coefficients of the transformation:

wuoy _ __ h8/2 L0
Yp Egh . hng,U) Xp
ph (L.U)

VLU — Ep + hap Vonae—2i¢ pL.U)

X 202 (L.U)\ ( 2P0 (L,0)y oo My

n2Q2 /4 — (ESX + hop ) (ER + oy ™)
hQ /2 .
(L,U) __ —2i¢ . (L,U)
=— Vonge ™ ='¢ 'Y, (A7)
v W22 /4 — (ES + hol-?) (ED + hoi-?) &

Using (A6) and (A7) we can find ng(Lp’U),n;,Lp’U),v;i’U), and v‘(/,i’U).
We present another method for the calculation of the transformation’s coefficients. From Eq. (A4) we obtain

G = B+GEI(B+)_1 — B+GEI(B+)® — B+GEIWBW. (A8)

If the matrix G~™' = WG~ corresponded to the diagonal matrix Ga~' = WG, we would write

G'=B7'Gq'WBW. (A9)
From this equation it follows that
G =B'G4B, (A10)
where
Gd:diag< ! , ! s ! , ! ) (A11)
—ihawy + hoy” —ihay + hoy iho, + hoy” iho, + hoy

Multiplying the matrices Gq,B, and Bt according to (A10), we express the components of the matrix G through the components
of B. Thus, for example,

(w2 w2 )2 )2
0] vy 3| v}
Gu(p,k) = . 2 . . , (A12)
—ihwy + hwf,L) ihowy + hw:,L) —ihwy, + hwi,U) ihwg + hng)
w2 (L2 )2 )2
n v n v
Gnlp k) — |y, vy, | [y, | vy, | A1)

—ihoy + hoy? ik + By —ihop + hoy  iliog + oy

On the other hand, we can find the matrix G directly by inverting the matrix G~! from Eq. (50). Thus, for G1; and G, we have

h hQ)? hQ)?
Guh =-5 [E;Xhzw,f + (E;;hz + rop + 82 ) ihay + ESERY — Egh%] : (A14)
h hQ)? hQ)?
Guph) = -5 [Eghhzwg + (E;"2 + PPwp + % - vgn(%) ihoy + EXCER — ng( 4) - EghV02n3i| . (A15)
where
D= (ihwk — hws)(ihwk - ha)g)(iha)k + hwﬁ)(ihwk + ha)g). (A16)

Bringing these equations to the form similar to that of Eqs. (A12) and (A13), we obtain the coefficients n&i’u),ni,fp’w ,v%’u), and
(L,U)
v,

vp
Both methods lead to the expressions for the coefficients of the transformation presented in (68).
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