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On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed
by “magnetic” superconductors Sm, which have singlet pairing and are separated from the normal n wire by
spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that
there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of
an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an
unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper
pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and
apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in
particular that both the “nematic” and the “magnetic” cases can be realized in these junctions. In a two-terminal
structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations
of the “magnetic” superconductors with attached additional singlet superconductor, we find a nonmonotonic
temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak
like dependence on the exchange field in the “magnetic” superconductors. Although there is no current through
the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in
the superconuctor S is shown to affect the Josephson current in a multiterminal structure.
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I. INTRODUCTION

During the last decade, there has been an increasing interest
in studying the Josephson effect in Josephson junctions (JJ) of
different types. Interesting effects have been observed in JJs
consisting of superconductors (S) and ferromagnetic layers
(F). The authors of Refs. [1,2] have predicted long ago that in
JJs of the S/F/S type, the critical current Ic may change sign and
the so-called π state can be realized. However, only recently
the sign reversal of Ic has been observed experimentally [3–9].
The unusual state in S/F/S JJs is caused by the action of an
exchange field h in F on spins of Cooper pairs penetrating
into the ferromagnet F from the singlet superconductors due
to the proximity effect. This action leads to spatial oscillations
of the wave function of Cooper pairs f and consequently to
the sign change of Ic. Combination of π - and 0-Josephson
contacts allows one to construct a so-called φ contact, that
is, the junctions with a finite arbitrary phase difference φ in
the ground state [10–12]. Such JJs have a high potential for
applications, for example, in realization of the so-called Q
bits [13].

Another interesting effect occurs in multilayered S/F JJs
if the magnetization vectors M in different F layers are not
collinear or the magnetization in the ferromagnet F is not
uniform (helical ferromagnet or ferromagnet with a domain
wall) [14–16]. In this case, triplet Cooper pairs arise in the
S/F system with the total spin S parallel to M in an F
layer, which is almost “transparent” for these pairs. Even if
this ferromagnet is strong, the penetration depth can reach
a large value of the order ξ � √

D/T (in diffusive case)
in contrast to a short penetration length ξh � √

D/h for
singlet Cooper pairs or for the triplet ones with the total
spin S perpendicular to the vectors M (only such Cooper
pairs arise in the case of uniform magnetization). The triplet

Cooper pairs with S ‖ M can be called the long-range triplet
component (LRTC). The Josephson effect caused by the LRTC
has been observed in many experiments on S/F JJs with
nonhomogeneous M in ferromagnetic layer(s) [17–26] and
extensively studied in theoretical works, see, e.g., Refs. [27–
34] and many other papers cited in reviews Refs. [15,35],
and especially in Ref. [36]. Spin nondissipative current also
arises in such JJs, and therefore these structures with the triplet
spin-polarised component may be used in superconducting
spintronics [35,36]. A special attention is paid nowadays to
the study of spin-orbit interaction in S/F structures, which is
necessary for achieving so-called Majorana states [37–39].

Many works are related with strong efforts to detect these
exotic quasiparticles—the so-called Majorana fremions—in
condensed matter with the help of Josephson junctions as the
latter represent a sensitive and convenient tool to achieve this
goal. These particles, which are identical to their antiparticles,
were predicted long ago [40], but only relatively recently it has
been shown that they can exist in condensed matter [41]. In
particular, the Josephson coupling may be realized through
the Majorana fermions leading to the so-called fractional
Josephson effect, i.e., the Josephson current IJ is related to
the phase difference ϕ as (see Refs. [42–45])

IM
J = Ic sin(ϕ/2) , (1)

in contrast to the ordinary Josephson current-phase
relation [46]

IJ = Ic sin(ϕ) . (2)

Although some indications on the existence of the Majorana
fermions have been obtained in experiments [47–51], further
work is needed to make decisive conclusions.
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In principle, the current-phase relation can be more
complicated in different types of JJs and contain many
higher harmonics, IJ ∝ ∑

n�0 In sin[(2n + 1)ϕ] [52,53].
Interesting physics and new possibilities for application occur
in multiterminal S/n or S/F structures. Additional terminals in
the JJs allow one to control and to tune the critical Josephson
current. For example, a sign-reversal of the Josephson
critical current has been observed in multiterminal S/n/S
JJs with two additional lateral normal terminals [54] when
voltage was applied to these normal terminals. Theoretically,
this nonequilibrium effect has been predicted and studied
in Refs. [55–57]. An inverse effect—a modulation of the
conductance between normal reservoirs in the presence of
the phase difference between superconductors—has been
observed earlier by Petrashov et al. [58,59].

Four-terminal JJs with all superconducting reservoirs have
been studied in Refs. [60–64]. The Josephson coupling
between different superconductors has been provided through
the n or F wires connecting the reservoirs. It has been shown
that the critical current Ic may be tuned by varying the phase
difference between lateral superconducting reservoirs. The
case of two short F wires connecting the superconductors
has been studied in Ref. [63]. The length of the F wires
has been supposed to be shorter than ξh so that the singlet
component penetrated into the F wires due to the proximity
effect. Since the magnetizations in crossed wires have been
assumed to be perpendicular to each other, not only singlet
component but also the LRTC existed in the ferromagnetic
wires. The Josephson effect arose due to a complicated
interaction between the LRTC with spin-up and spin-down
Cooper pairs and the singlet one.

In our recent works [65,66], we studied the Josephson
effect in two- and three-terminal Sm/Im/n Josephson contacts
in which superconducting reservoirs Sm represent “magnetic”
superconductors separated from the normal n wire by a spin
filter Im. (In experiment, the spin filter may be realized by
a magnetic insulator or half-metal which lets to pass triplet
Cooper pairs with only a certain orientation of the total
spin S.) Investigating the Josephson junction of the types
Sm/Im/n/Im/Sm and Sm/F/n/F/Sm (where F represents a strong
ferromagnet), we showed that there is a great difference
between them [65]. The second type of JJs can be called
nematic as the strong ferromagnet F passes the triplet Cooper
pairs with spin-up and spin-down orientation (the filter axes
are oriented along the z axis), while the first one is denoted
as “magnetic” type since the direction of the vector S is
determined by the orientation of the filter axes h. In particular,
if the h vectors are antiparallel to each other, there is no
Josephson coupling between the right and left superconductors
Sm and the Josephson current is zero, IJ = 0. If an additional
terminal in the form of a singlet superconductor is attached to
the n wire in the Sm/Im/n/Im/Sm contact, the Josephson current
can flow between the S and the Sm reservoirs, while in the
absence of any of the three terminals there is no Josephson
current. In this case, the phase relation of the Josephson current
is rather unusual [66],

IJ = Ic sin(2ϕ) , (3)

where ϕ = (χR + χL)/2 − χS, and χR(L), χS are the phases of
the right (left) “triplet” Sm superconductors and the singlet
superconductor, respectively.

FIG. 1. Schematic representation of the system under consider-
ation. The rectangles mean the superconductors Sm or S constitut-
ing the junction with corresponding phases and currents flowing.
(a) Generic multiterminal Josephson junction consisting of only Sm

superconductors and (b) generic multiterminal Josephson junction
consisting of Sm superconductors plus a singlet superconductor S.

One visualizes the case of the Josephson coupling via
Majorana fermions as “fusion” of a pair of Majorana fermions.
In case of two Sm superconductors and one singlet super-
conductor, we have a transformation of two singlet Cooper
pairs into two triplet Cooper pairs with antiparallel total
spins S (a supersinglet), which are transferred to the right
(left) superconductor Sm. Thus different number of Cooper
pairs participate in the Josephson coupling—one half in the
Majorana case, Eq. (1), one Cooper pair in the conventional
Josephson effect, Eq. (2), or two Cooper pairs in the case
considered in Ref. [66] with the current-phase relation Eq. (3).

The Josephson effect in the latter case can be seen as
an extension of the family of n-fermion condensate caused
Josephson effect with according adaptation of the phase depen-
dence with the sequence given by Eqs. (1), (2), and (3), i.e., the
phase dependence is represented by sin(nϕ/2), respectively.

In this paper, we consider generic multiterminal Joseph-
son junctions consisting of only Sm superconductors [see
Fig. 1(a)], or of Sm superconductors plus a singlet supercon-
ductor [see Fig. 1(b)]. The first system allows one to study
interaction of fully polarized triplet components, while in
the second one we can obtain both—the nematic case with
the conventional Josephson relation IQ(ϕ), Eq. (2), and also
the magnetic case with unusual current-phase relation IQ(ϕ),
Eq. (3). We show, in particular, that the triplet components
with opposite spin direction created by the left and right
superconductors SmL and SmR do not interfere in SmL/n/SmR or
in SmL/F/SmR JJs at any interface transparencies.
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The plan of the paper is as follows. In Sec. II, we describe
the system under consideration and present basic equations.
In Sec. III, the simplest two-terminal system of the Sm/n/Sm

or Sm/I/Sm type will be studied, where Sm is a “magnetic”
superconductor separated from the normal wire n by a spin-
filter. The Sm/I/Sm contact is a tunnel junction with a thin
insulating layer I. A general formula for the Josephson current
IQ in a multiterminal Josephson junction in the limit of a
high Sm/n interface resistance will be presented in Sec. IV.
We use this formula in Sec. IV A to briefly describe the
Josephson effect in a four-terminal contact consisting only
of Sm superconductors (that is, only fully polarized triplet
components exist in the n wire). The more interesting case of
a four-terminal junction with one singlet superconductor and
three Sm superconductors having different orientations of the
h vectors is considered in Sec. IV B where the expression for
the current is obtained based on the derivation of the general
expressions. In Conclusions, we summarize and discuss the
obtained results.

II. MODEL AND BASIC EQUATIONS

We consider a multiterminal Josephson junction (JJ) which
consists of “magnetic” superconductors with or without one
conventional singlet BCS superconductor (see Fig. 1). All
superconductors are connected by a normal n wire or film.
The “magnetic” superconductors are formed by a conventional
superconductor covered by a thin ferromagnetic layer F with
an exchange field h. Due to the proximity effect, the singlet
component penetrates from the superconductor into the F
film, and also a triplet component arises under the action of
the exchange field h. As is well known (see, e.g., reviews
Refs. [15,16,36]), in the case of homogeneous magnetization
M (with M ‖ h), the vector of the total spin of triplet Cooper
pairs S lies in the plane perpendicular to M. Thus, in case of a
good contact between the S and F layers, the S/F bilayer can
be considered as a “magnetic” superconductor with a built-in
exchange field h that has the amplitude heff = |h|dF/(dF + dS)
and a nonzero projection onto the z axis, where dF(S) are the
thicknesses of the F and S layers, respectively [67]. The F layer
is separated from the n wire (or film) by a filter that passes
electrons only with a certain spin direction, say, parallel or
antiparallel to the z axis (filter axis). As a filter, one can use thin
layers of strongly polarized magnetic insulator, for example,
EuO [68] and DyN or GdN films [69].

The convenient tool to describe the system under considera-
tion is the method of quasiclassical Green’s functions [70–73].
This technique has been widely used for studying mesoscopic
multiterminal S/n structures [74–79]. In the considered diffu-
sive case, these functions obey the Usadel equation [80], which
in the n wire has the form

−∇(ĝ∇ĝ) + 1
2κ2

ω[X̂30 ,ĝ] = 0 , (4)

where κ2
ω = ω/D with the diffusion coefficient D, and

ω = (2n + 1)πT is the Matsubara frequency. In the considered
case of the exchange field acting on the spins of electrons,
the Green’s function ĝ is a 4 × 4 matrix in the particle-
hole and spin spaces. The matrix X̂ij = τ̂i · σ̂j is a tensor
product of the Pauli matrices τ̂i and σ̂j (i,j = 0,1,2,3), which
operate correspondingly in the particle-hole and spin space,

respectively, and the zeroth Pauli matrix is just the unity 2 × 2
matrix. Moreover, the matrix quasiclassical Green’s function
ĝ obeys the normalization condition

ĝ · ĝ = 1 . (5)

As in our previous works [65,66], we use a representation
for the matrix Green’s functions ĝ suggested by Ivanov and
Fominov [81]. These Green’s functions are related to those in
Refs. [14,15], ĝBVE, via the transformation ĝ = U · ĝBVE · U †

with U = (1/2)(1 + iX̂33) · (1 − iX̂03).
Equation (4) is complemented by boundary conditions

at the interfaces Sm/n and S/n. They have the form (see
Refs. [82,83], as well as Eq. (4.7) in Ref. [84])

Lνĝ∂νĝ|ν=±Lν
= ±rν[ĝ ,̂νĜν̂ν]|ν=±Lν

, (6)

where rν = Lν/
√

2σRb,ν , with the conductivity of the n wire
σ and the n-Sm interface resistance at Lν per unit area Rb,ν .
The matrix coefficient ̂ describes the electron transmission
with a spin-dependent probability T↑,↓. If the filters let to pass
only electrons with spins aligned parallel to the z axis, then
̂ = T 1̂ + UX̂33 so that the probability for an electron with
spin up (down) to penetrate into the n wire is T↑,↓ ∝ T ± U .
We assume thatU = ζT with ζ = ±1, and that the coefficients
T and U are normalized, T = |U | = √

2. The S/n interface
between the conventional superconductor and the normal
metal were is assumed to be spin independent so that ̂ = 1̂
and rS = L/σRS.

We have to find a solution of Eq. (4) taking into account
the normalization and boundary conditions Eqs. (5) and (6).
This can be easily done in the case of a short normal wire,
i.e., when the condition L 	 √

D/T holds. Then, integrating
Eq. (4) over the coordinate along the normal wire with account
for the boundary conditions yields the equation

[�̂ ,ĝ] = 0 , (7)

where the matrix �̂ = �̂n + �̂m is a sum of contributions of
the normal wire and Sm superconductors, �̂n = rωX̂30 with
rω = ωL2/D. The matrix

�̂m =
∑

ν

�̂ν (8)

is related to the Green’s functions in the ν-th “magnetic”
superconductor Ĝm via �̂ν = rν[̂ · Ĝm · ̂]ν , or in the sin-
glet superconductor via �̂S = rSĜS. The Green’s function
Ĝν ≡ [̂ · Ĝm · ̂]ν in the Sm superconductors have the
form [65,66]

Ĝν = g+X̂30 + g−X̂33 + F̂ν , (9)

where the condensate Green’s function in the “magnetic”
superconductor F̂ν with the phase χν is defined as

F̂ν = f− exp[iχνX̂30] · X̂ν , (10)

where

f± = [f (ω + ih) ± f (ω − ih)]/2 , (11)

g± = [g(ω + ih) ± g(ω − ih)]/2 , (12)
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FIG. 2. Schematic representation of a simple Sm/n/Sm Josephson
junction. The filters Fl, denoted by blue layers attached to the n wire,
can be oriented parallel (ζR = ζL) or antiparallel (ζR = −ζL).

with f (ω) = (�/ω) g(ω) = �/
√

ω2 + �2. The form of the
matrices X̂ν depends on the chirality of the triplet compo-
nent [66] and on the direction of the filter axes, i.e., on the sign
of ζ . In the case of the x or y chirality (i.e., the vector h is
directed along the x or y axis, respectively), this matrices have
the form

X̂x(ζ ) = X̂11 − ζ X̂22 , (13)

X̂y(ζ ) = X̂12 + ζ X̂21 . (14)

In the case of the x chirality, the filter lets to pass Cooper
pairs with spin up if ζ = +1 and the Sm/n interface is
transparent only for the Cooper pairs with spin down if
ζ = −1, and vice versa for the y chirality. One can show
that terms given by X̂x(+1) describe correlators of the form
∝〈ĉ↑ĉ↑(t)〉, while those given by X̂x(−1)—correlators of the
form ∝〈ĉ↓ĉ↓(t)〉; correspondingly, describe the terms given by
X̂y(−1) correlators of the form ∝〈ĉ↑ĉ↑(t)〉, while those given
by X̂y(+1)—correlators of the form ∝〈ĉ↓ĉ↓(t)〉.

Knowing the Green’s function ĝ ≡ ĝd + f̂ in the n wire
(here, ĝd and f̂ are diagonal and, respectively, off-diagonal
in the Gor’kov-Nambu space parts of ĝ), one can easily find
the Josephson charge IQ current at the interface of the ν-th
terminal, which is given by the expression

IQ|ν = iarν(2πT )
∑

ω

Tr{X̂30 · [f̂ ,F̂ν]} , (15)

where a = σ/(16eL), and σ is the conductivity of the n wire.
To begin with, we consider the simplest case of a

two-terminal Josephson junction, i.e., the Sm/n/Sm contact
schematically sketched in Fig. 2.

III. TWO-TERMINAL JOSEPHSON CONTACT

A. Josephson current in Sm/Fl/n/Fl/Sm junctions

The dc Josephson effect in this system has been considered
in our previous work [65] under assumption of a small trans-
parency of the right (left) Sm/n interfaces, rR = rL ≡ rm 	 1).
There, it has been shown that the Josephson current is zero in
case of antiparallel (ζR = −ζL) and is finite in JJs with parallel
(ζR = ζL) filter axes orientations. Here, we show that in case of
a short normal wire or a thin n film (L 	 ξT = √

D/πT ), this
statement remains valid for arbitrary transmittance coefficient
rm. In addition to the Josephson current, we calculate also the

density of states (DOS) in the n wire for parallel (ζR = ζL) and
antiparallel (ζR = −ζL) filter axes orientations.

We need to solve Eq. (7), where the matrix �̂ = �̂n + �̂m is
a sum of two matrices, �̂n and �̂m = �̂L + �̂R. The matrices
�̂R(L) at the right (left) Sm/n interfaces are related to the Green’s
functions Ĝm in “magnetic” superconductors as

�̂n = 2rωX̂30 , (16)

�̂R(L) = rm[̂ · Ĝm · ̂]R(L) . (17)

The Green’s function Ĝm ≡ R̂π/2,2 · Ĝm · R̂
†
π/2,2 in the

Sm superconductor is related to the Green’s function Ĝm

in a superconductor with a uniform exchange field h ori-
ented along the z axis by means of the rotation matrix
R̂π/2,2 = cos(π/4) + iX̂02 sin(π/4). The form of the rotation
matrix means that we assume for definiteness the x chirality
for the triplet component in both Sm superconductors [66].
Thus we find for �̂R(L),

�̂R(L) = rR(L)[g+(X̂30 + ζR(L)X̂03)

+ f− exp(iχR(L)X̂30) · X̂R(L)] , (18)

where X̂R(L) is one of the matrices defined in Eqs. (13) and (14),
depending on the chirality of the triplet components generated
by the right, respectively, left Sm superconductor. The final
results do not depend on the type of chiralitiy and, thus, we
assume them to be equal.

Knowing the matrix ĝ, we can find the density of states ν(ε)
in the normal wire,

ν(ε) = (Tr{X̂30ĝ}|ω=−iε
)

4
, (19)

and the Josephson current IQ in the system,

IQ = ia(1/4)(2πT )
∑
ω=0

Tr{X̂30[ĝ ,ĝR]}

= ia(1/4)(2πT )
∑
ω=0

Tr{X̂30[f̂ ,f̂R]} , (20)

where ĝR(L) = ĝ(±Lx) are the Green’s functions at the right
(left) Sm/n interface, while f̂ and f̂R are the condensate
(off-diagonal in the particle-hole space) parts of the Green’s
functions in the n wire and in the right Sm, respectively.

Equation (7) can be solved for an Sm/n/Sm Josephson
junction in a general case, but we present here simple analytical
results for some particular cases. The details of the derivation
in each case are provided in Appendix A.

a. Antiparallel filter orientation (ζR = −ζL ≡ ζ ). The den-
sity of states is calculated from Eqs. (19) and (A3),

ν(ε) = [(
1 + γ 2

a

)−1/2
|ω=−iε

]
, (21)

with γa defined in Eq. (A4). In this case of antiparallel filter
orientation, the DOS does not depend on the phase difference
ϕ = χR − χL. In Fig. 3, we plot the energy dependence of the
DOS for both the configurations of the filters.

In the considered system with antiparallel spin filter axes,
the Josephson current is zero at any transparencies of the Sm/n
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FIG. 3. Density of states in the two-terminal Josephson contact
made of Sm superconductors. The arrows indicate the filter configu-
ration, i.e., parallel [(a), (c), and (e), from Eq. (23)] and antiparallel
[(b) and (d), from Eq. (21)]. The top row displays the DOS for
different values of h = |h|, i.e., h = 0 (black dotted line); h = 0.5�0

(green long-dashed line); h = 1.0�0 (black solid line); h = 1.8�0

(blue short-dashed line). Additional parameters are cos ϕ = 1.0 and
rm = 0.25. In both the cases, the peaks are located at ε = |�0 ± h|.
The middle row shows the DOS for different values of rm, i.e.,
rm = 0.1 (red solid line); rm = 0.5 (black dashed line); rm = 1.0
(green dash-dotted line); the black dotted line indicates ν = 1. Here,
cos ϕ = 1.0 and h = 0.5�0. The bottom row shows the DOS for
different values of cos ϕ = 1.0 in the case of parallel orientation
of filters, i.e., cos ϕ = 0 (black dotted line); cos ϕ = 0.25 (black
solid line); cos ϕ = 0.5 (green dashed line); and cos ϕ = 1.0 (blue
dash-dotted line). Here, h = 0.5�0 and rm = 0.25. In the case of
antiparallel filter orientation, there is no dependence of DOS on ϕ.

interfaces,

IQ = 0 . (22)

b. Parallel filter orientation (ζR = ζL ≡ ζ ).The density of
states, Eq. (19), in this case is given by

ν(ε) = � cos α = 1
2[

1 + [
1 + 4γ 2

b (ϕ)
]−1/2
|ω=−iε

]
(23)

with γb defined in Eq. (A10). The Josephson current is

IQ = Ic(ϕ) sin ϕ , (24)

with the critical current

Ic(ϕ) = ar2
m(2πT )

∑
ω�0

f 2
−(

ω
�

+ 2rm
ETh
�

g+
)√

1 + 4γ 2
b (ϕ)

.

(25)
One can see that the phase dependence of Ic leads to

appearance of higher harmonics in the Josephson current, i.e.,
the current IQ in Eq. (24) can be written as

IQ =
∞∑

n=1

In sin[(2n + 1)ϕ] . (26)

In Fig. 3, we plot the energy dependence of the DOS for
both the configurations of the filters, i.e., parallel [panels (a),
(c), and (e)] and antiparallel [panels (b) and (d)]. The top row
displays the DOS for different values of h = |h|. Additional
parameters ϕ and rm are fixed. In both the cases the peaks
are located at ε = |�0 ± h|. The middle row shows the DOS
for different values of rm with fixed ϕ and h. The bottom
row shows the DOS for different values of ϕ in the case of
parallel orientation of filters with fixed h and rm. In the case of
antiparallel filter orientation, there is no dependence of DOS
on ϕ. Observe that the dependence ν(ε) is similar for parallel
and antiparallel filter orientations—excluding the dependence
of the amplitude of DOS on the phase, which is there for the
parallel case, but absent in the antiparallel filter configuration.

Thus, in order to experimentally distinguish the both cases,
it is safer to rely on measurements of the Josephson critical
current displayed in Fig. 4 in the left column, [panels (a)
and (c), from Eq. (25)], for parallel filter configuration.
In the case of antiparallel filter orientation, IQ = 0, see
Eq. (22). We compare the dependence of the Josephson critical
current with the case of a so-called TST-contact with T
denoting the “magnetic” superconductor with filters oriented
antiparallel and S is an additional singlet superconducting
reservoir attached to the normal wire [66]. Top panels show
the temperature dependence of Ic for different values of h

with fixed ϕ and rm. Noticeably, at h < �0, the temperature
dependence of Ic is nonmonotonic and has a maximum at some
temperature. The bottom panels display the dependence of Ic

on h at T = 0 resembling the Riedel peak [85], but in our
case, the role of the voltage V is played by the exchange field
h in the weak ferromagnet Fw responsible for creation of the
triplet component. Also, the location of the peak is given by
h = � in contrast to V = 2� as it is the case in the Riedel
singularity [85].

In order to facilitate the comparison of the critical currents
in the considered systems with that in a conventional Josephson
junction of the S/n/S type, we now present the DOS and the
critical current for such a junction. Again, the details of the
derivation are provided in Appendix A.

c. Usual S/n/S Josephson junction. In this case, the density
of states is given by the expression

ν(ε) = [[
1 + γ 2

c (ϕ)
]−1/2
|ω=−iε

]
, (27)
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FIG. 4. Critical current in the two-terminal Josephson contact
with parallel filter directions [(a) and (c), from Eq.(25)] and in
the three-terminal contact TST consisting of two “magnetic” Sm

superconductors and a singlet superconductor S ((b) and (d), from
Ref. [66]). In the two-terminal Josephson contact with antiparallel fil-
ter directions, IQ = 0, see Eq. (22). Top panels show the temperature
dependence of Ic for different values of h = |h|, i.e., h = 1.5�0 (blue
dash-dotted line); h = 1.0�0 (red solid line); and h = 0.5�0 (black
dashed line). Noticeably, at h < �0, the temperature dependence
of Ic is nonmonotonic and has a maximum at some temperature.
The bottom panels display the dependence of Ic on h at T = 0
resembling the Riedel peak [85]. Other parameters are cos ϕ = 1.0
and rm = 0.25.

with γc given in Eq. (A18), and the Josephson current reads

IJ = Ic sin ϕ , (28)

with

Ic = 2ar2
S(2πT )

∑
ω�0

F 2
S√

1 + γ 2
c (ϕ)

. (29)

The coefficient a is the same as in Eq. (25) and related with
the critical current Ic via Eq. (28).

As concerns the temperature and h dependence of the
critical current Ic for the parallel filter axes given by Eq. (28),
we see that the temperature dependence is not monotonous
and has a maximum at a temperature below Tc. Similar
dependencies have been obtained for a ballistic Josephson
junction with spin-active interfaces [27,36]. This maximum
has been interpreted as a contribution of the Andreev bound
states to the Josephson current. In our diffusive case there are
no Andreev bound states, so this explanation is not universal.
In our system, it is related to a singularity in the DOS and
in the Green’s functions at h = �. This singularity resembles
the Riedel singularity on the I -V characteristics if a voltage
V is applied to a junction [85]. To some extent, from the
mathematical point of view, the voltage V is analogous to the

exchange field h. The form of the I -V curve for an S/F/S
Josephson contact has been found in Ref. [86]. In order to
make the nature of the maximum in the Ic(T ) dependence
more clear, we present in the next section the critical current
for different tunnel JJs with “magnetic” superconductors with
and without spin filters.

B. Josephson current in tunnel Sm/Fl/I/Fl/Sm junctions

As has been found earlier, a singular behavior of the Green’s
functions in Sm/I/Sm junctions with antiparallel orientations of
the h vectors leads to an enhancement of the critical Josephson
current [67]. The Josephson current in Sm/I/Sm JJs is given
again by Eq. (20) with f̂ = f̂L and

f̂L(R) = exp(iχL(R)X̂30)[f+X̂10 ± f−X̂13]L(R) . (30)

Assuming the h vectors parallel to the z axis, we have

f±|L(R) = �L(R)
[ζ−1

+ ± ζ−1
− ]|L(R)

2
, (31)

with ζ±|L(R) =
√

(ω ± ih)2 + �2|L(R)
. Simple calculations yield

for the Josephson current

IJ = Ic sin ϕ , (32)

with the critical current for parallel (Ic↑↑) respectively antipar-
allel (Ic↑↓) h orientations,

Ic↑↑ ∝ (2πT )�R�L

∑
ω�0

(ζ+R)(ζ+L)/D(ω) , (33)

Ic↑↓ ∝ (2πT )�R�L

∑
ω�0

(ζ+Rζ−L)/D(ω) , (34)

where D(ω) = (ζ+Rζ−R)(ζ+Lζ−L). Both critical currents, Ic↑↑
and Ic↑↓, occur due to tunneling of singlet and triplet
components.

We present here also the expression for the critical current in
a Sm/Fl/I/Fl/Sm contact, where Sm/Fl is a “magnetic” supercon-
ductor Sm with a spin filter Fl. Then, the Josephson current us
caused only by tunneling of triplet Cooper pairs. In the case of
filters passing only triplet Cooper pairs with the total spin par-
allel to the x axis f̂L(R) = f−L(R) exp(iχL(R)X̂30) · (X̂11 − X̂22)
and the critical current is

Ic,m↑↑ ∝ −(2πT )
∑
ω�0

�(ζ+R)�(ζ+L)/D(ω) . (35)

In case of antiparallel filter axes, we again have

Ic,m↑↓ = 0 . (36)

The critical current Ic↑↑(h) has no peak as a function of h,
while at low temperatures the critical current Ic↑↓(h), Eq. (34),
has a sharp peak similar to the one shown in Fig. 4(c). Both
currents, Ic↑↑ and Ic↑↓ decay monotonously with increasing
temperature.

The critical current Ic,m↑↑ in Eq. (35) in an Sm/Fl/I/Fl/Sm

contact with parallel filter axes has a peak as a function of
h and, contrary to Ic↑↑(h) and Ic↑↓(h), has a maximum in
the temperature dependence. This behavior is similar to the
case illustrated in Figs. 4(a) and 4(c) for the critical Josephson
current Ic in an Sm/Fl/n/Fl/Sm contact, see Eq. (25).
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IV. CHARGE CURRENTS IN MULTITERMINAL SYSTEMS

In this section, we consider a multiterminal Josephson junc-
tion of a type shown in Fig. 1 and calculate the charge currents
through n different Sm/n interfaces assuming coefficients rn

as small parameters. We consider a system with many Sm

superconductors and with one singlet superconductor S, which
is coupled to the n wire via the coefficient rS. The transmittance
of the S/n interface can be arbitrary, i.e., the coefficient rS varies
from 0 (no coupling) to ∞ (perfect S/n interface). In this case,
the solution of Eq. (7) is given by

δf̂ = 1

2E [�̂m − ĝ0 · �̂m · ĝ0] , (37)

where E =
√

G̃2
S + F 2

S , ĝ0 = X̂30G̃S + exp(iχX̂30) · X̂10FS,
χ is the phase of the singlet superconductor, and the functions
G̃S and FS are defined in Eq. (A17).

Using Eqs. (18) and (37), we find the correction to the
condensate Green’s function in the n wire due to the presence
of “magnetic” superconductors Sm given by the matrix �̂m,

δf̂ =
∑
n′

δf̂n′ , (38)

with

δf̂n′ = f−
2E3

rn′[[A exp(iχn′X̂30)X̂n′(ζn′)]

− B exp[i(2χ − χn′)X̂30] · X̂n′ (ζn′)] , (39)

where A = 2G̃2
S + F 2

S and B = F 2
S . The current through the

nth contact is [87]

IQ|n =
∑
n′

Inn′ , (40)

with

Inn′ = iarn(2πT )
∑
ω,n′

f−Tr{X̂30[δf̂n′ , exp(iχnX̂30)X̂n(ζn′)]}.

(41)

Using Eqs. (39)–(41) one can easily calculate the currents
IQ|n and Inn′ . The expressions for Inn′ have different forms
depending on whether the matrices X̂n and X̂n′ correspond
to different or equal chiralities [66]. We assume that the n-th
terminal corresponds to the x chirality, X̂n = X̂x [see Eq. (13)].
Then, for equal chiralities (X̂n = X̂n′ ), we obtain

I xx
nn′ = rnrn′

∑
ω

Fnn′[A(1 + ζnζn′ ) sin ϕnn′

− B(1 − ζnζn′) sin �nn′] , (42)

where Fnn′ = (2πT )afn−fn′−/E3, and �nn′ = χn +
χn′ − 2χS, ϕnn′ = χn − χn′ .

If the triplet components at the nth and n′th terminals cor-
respond to different chiralities, e.g., X̂n = X̂x and X̂n′ = X̂y

[see Eq.(14)], we find

I
xy

nn′ = rnrn′
∑

ω

Fnn′[A(ζn + ζn′) cos ϕnn′

− B(ζn − ζn′ ) cos �nn′] . (43)

With the help of Eqs. (38), (42), and (43) one can readily find
the Josephson current through the nth terminal for an arbitrary
multiterminal structure with “magnetic” superconductors at-
tached to a singlet superconductor via short normal wires.

Now, we discuss general properties of the partial currents
I xx
nn′ and I

xy

nn′ , Eqs. (42) and (43). In the absence of the singlet
superconductor S (in which case B = 0) only the first terms
in Eqs. (42) and (43) are finite. These terms turn to zero in
the case of antiparallel filter axes (ζn = −ζn′ ). If these axes are
parallel, the first term in Eq. (42) determines a usual Josephson
current while the first term in Eq. (43) describes a spontaneous
current which exists in the absence of the phase difference
and has a direction depending on the spin filter orientation
ζn = ±1.

In the presence of the superconductor S (B �= 0) the
second terms in Eqs. (42) and (43) are not zero in the case
of antiparallel filter axis. The second term in Eq. (42) is
a “Josephson”-like current [66], whereas the second term
in Eq. (43) determines a spontaneous current. The phase
dependence of the second term in Eq. (42) at ζn = −ζn′ ,
Inn′ ∝ B(1 − ζnζn′) sin �nn′ , coincides with that in Ref. [88],
where the Josephson coupling occurred due to Majorana
modes. We apply Eqs. (42) and (43) to study the behavior
of three- and four-terminal Josephson contacts.

A. Three-terminal all-triplet Sm/Fl/n/Fl/Sm junction

First, we consider a simple case of a three-terminal
Josephson junction consisting only of Sm superconductors, that
is, only triplet components exist in the n wire [cf. Fig. 1(a)]. In
the case of parallel filter axes the behavior of the system under
consideration is similar to that of an ordinary multiterminal
system consisting of singlet superconductors [60–63].

More interesting is the case when triplet Cooper pairs
coming from the L reservoir and from B and R reservoirs (L,
R, and B stand for, respectively, left, right, and bottom) have
oppositely oriented spins. One can easily calculate the current
through each interface from Eq. (42) taking into account that
the coefficient B is zero, B = 0.

We consider two cases shown in Fig. 5: (a) the left Sm

is connected with the bottom Sm superconductor so that
χL = χB; and (b) the right Sm is connected with the bottom
Sm superconductor so that χR = χB.

(a) Using Eq. (42) and setting, for the sake of simplicity,
FRL = FRB = FLB ≡ F0, i.e., all Sm superconductors are

FIG. 5. All-triplet three-terminal setup.
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identical (generalization to a more general case of different
Sm is trivial), we obtain for the setup displayed in Fig. 5(a):

IR =
⎛
⎝rRrL

∑
ω�0

F0A

⎞
⎠ sin ϕRL = −IB , (44)

IL = IR + IB = 0 . (45)

Equation (45) shows that no current flows through the left Sm

superconductor. The bias current Ibias = IR = Ic sin(χR − χB)
flows through the usual SmB/n/SmR JJ, and the critical Joseph-
son current Ic is given by the term in the square brackets. Note
that all the currents IL,R,B are the currents flowing from the n
wire into a corresponding superconductor. This means that a
negative IB is the current which flows from the superconductor
SmB into the n-wire providing the continuity of the electric
current.

(b) In this system, Fig. 5(b), the currents vanish,

IR = IB = IL = 0 . (46)

In this case, the system is an insulator for dissipationless
current because the right and bottom Sm superconductors may
be considered as a single spin-up Sm superconductor which
does not “talk” to the left spin-down superconductor SmL.

B. Four-terminal Sm/Fl/n/Fl/Sm junctions with
a singlet superconductor

Next, consider the four-terminal JJ shown in Fig. 6.
It consists of a singlet superconductor S and three Sm

superconductors [right (R), left (L), and bottom (B)] creating
triplet components with equal chiralities (also, we assume
ζR = ζB = −ζL = 1) and connected by an n wire. We consider
again two cases: (a) the phases of the left and bottom Sm

superconductors are equal, χL = χB (if in the loop
shown in Fig. 6, there is a magnetic flux �H , then
χL = χB + 2π�H/�0, where �0 is the magnetic flux quan-
tum); and (b) the phases of the right and bottom Sm supercon-
ductors are equal, χR = χB.

FIG. 6. Cross-geometry setup with a singlet superconductor
when (a) bottom and left superconductors are connected (thus,
χL = χB) and (b) bottom and right superconductors are connected
(thus, χR = χB). The blue arrows indicate the direction of filters
which let to pass triplet Cooper pairs with spins directed parallel to
the particular filter axis.

FIG. 7. Same cross-geometry setup with a singlet superconductor
as in Fig. 6 but in addition, in each case the superconductor S is
connected to the left, respectively, right superconductor Sm, thus four
cases are considered (see main text): SLB, SR [in (a)], SL, SRB [in
(b)].

Using Eqs. (41)–(43), we obtain for the Josephson currents
through the right, bottom, and left Sm/n interfaces:

IL = −2rL

∑
ω�0

F0B(rR sin �LR + rB sin �LB) , (47)

IR = rR

∑
ω�0

F0(ArB sin ϕRB − rLB sin �RL) , (48)

IB = rB

∑
ω�0

F0(ArR sin ϕBR − rLB sin �BL) , (49)

where ϕBR = −ϕRB = χB − χR, �LR = �RL =
χR + χL − 2χS, �LB = �BL = χR + χL − 2χS, and we
assume again that FXY = F0 = (2πT )afX−fY−E−3. One
can see that IL = IR + IB, i.e., in the applied approximation
of a small Sm/n interface transmittance, no current flows
through the singlet S superconductor although the phase of
superconductor S affects the currents IR,L,B.

Consider furthermore the two different cases for an addi-
tional connection of the S superconductor to the superconduc-
tors Sm (see Fig. 7), that is, for different relations between
phases χS and χR,L,B.

[(a) SLB] In the case SLB, when there is an additional
connection between the S superconductor and the left Sm

superconductor [see Fig. 7(a) with dashed line connecting S
and the left Sm only], one has χS = χL = χB. Then, we obtain
Ibias = IR and

IR = 2rR

∑
ω�0

F0[ArB − rLB] sin ϕRL ≡ I
(a)
c,SLB sin ϕRL . (50)

[(a) SR] In the case SR, when there is an additional
connection between the S superconductor and the right Sm

superconductor [see Fig. 7(a) with dashed line connecting S
and the right Sm only], one has χS = χR, while χL = χB. Then,
the current IR is

IR = 2rR

∑
ω�0

F0(ArB + rLB) sin ϕRL ≡ I
(a)
c,SR sin ϕRL . (51)

Comparison of Eqs. (50) and (51) shows that although the
singlet superconductor S is electrically disconnected from
the circuit (no current flows through the S/n interface due
to different symmetry of singlet and triplet components), it
strongly affects the critical current of the system.

[(b) SL] In the case SL, when there is an additional
connection between the S superconductor and the left Sm
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superconductor [see Fig. 7(b) with dashed line connecting S
and the left Sm only], one has χS = χL, while χR = χB. Then,
we obtain Ibias = IL and

IL = −2rR

∑
ω�0

F0B[rB + rR] sin ϕRL ≡ −I (b)
c sin ϕRL . (52)

[(b) SRB] In the case SRB, when there is an additional
connection between the S superconductor and the right Sm

superconductor [see Fig. 7(b) with dashed line connecting S
and the right Sm only], one has χS = χR = χB. Then, the
current IR is

IL = 2rR

∑
ω�0

F0B[rB + rR] sin ϕRL ≡ I (b)
c sin ϕRL . (53)

We see that the critical current has different sign in these two
cases.

Note that the system in Fig. 6(b) corresponds to the
“magnetic” case considered in Ref. [65] and the Josephson
current is similar to that obtained in Ref. [66] for a three-
terminal Josephson junction. The case (a) corresponds to
“nematic” case since the spins of the triplet Cooper pairs
coming from the SL and SB superconductors have opposite
directions. The case of different chiralities can be studied
analogously.

V. CONCLUSION

We have considered the dc Josephson effect in a diffusive
multiterminal Josephson junction which consists of some
“magnetic” superconductors and one singlet superconductor
connected via a normal wire n. The “magnetic” superconduc-
tors are separated from the n wire by spin filters so that only
fully polarized triplet Cooper pairs can penetrate into the n
wire from these superconductors. We have shown that if the
spin filters in the two-terminal Sm/n/Sm Josephson junctions
are antiparallel, there is no current at arbitrary Sm/n interface
transparency. The presence of an additional s-wave singlet
superconductor terminal S results in a finite Josephson current
flowing from the S superconductor to the Sm superconductors;
one can speak of conversion of two singlet Cooper pairs into
two triplet pairs with antiparallel total spins. The obtained
unusual current-phase relation is compared with those which
take place in other types of Josephson contacts, for example,
in JJs with the coupling due to Majorana modes [88]. Also,
we have calculated the density of states in the normal wire for
different types of two-terminal JJs and compared the DOS for
nematic and magnetic cases.

A general formula for the Josephson current is derived for
the case of multiterminal JJs under assumption that the Sm/n
interface transparencies are small. We applied this formula
for analysis of four-terminal JJs of different types. Both,
nematic and magnetic cases [65], can be realized with the
aid of the considered four-terminal JJs. In a two-terminal
structure with parallel filter orientations and in a three-terminal
structure with antiparallel filter orientations of the “magnetic”
superconductors with attached additional singlet superconduc-
tor, we find a nonmonotonic temperature dependence of the
critical current. Also, in these structures, the critical current
shows a dependence on the exchange field in the “magnetic”
superconductors with a Riedel-like peak. We analyzed also

Sm/n JJs when only fully polarized triplet component exist in
the n wire.

We showed also that, in the applied first approximation
in the transmission coefficient for Sm/n interfaces, no current
flows through the singlet superconductor S due to orthogo-
nality of the triplet and singlet components, i.e., one can say
that the superconductor S is electrically disconnected from the
circuit. Nevertheless, the phase χS in the superconductor S
affects the Josephson current in the system.

All effects discussed above can be observed on systems that
have been already studied experimentally [17–26,89–92]. As
spin filters, one can use either magnetic insulating layers or
conducting magnetic half-metals [17,18,89]. Some properties
of ferromagnet/superconductor structures with a half-metallic
layers have been analyzed in a recent publication [93]. In
particular, the authors of Ref. [93] calculated the critical
temperature Tc of S/F/HM structures (where HM denotes
a half-metal), which have been studied experimentally on
MoGe/Cu/Ni/CrO2 hybrids [94], and analyzed the Josephson
effect in S/F/HM/F/S junctions. They have shown that a
spontaneous phase difference (ϕ-junction) arises in these
junctions (a similar effect has been predicted in Refs. [27]
and [65]). Multiterminal JJs considered in the current paper
open new routs to vary the types of the current-phase relations
for the Josephson current and to control the spin current.
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APPENDIX A: TECHNICAL DETAILS ON THE
DERIVATION OF DENSITY OF STATES AND

OF THE CURRENT

a. Antiparallel filter orientation (ζR = −ζL ≡ ζ ). In this
case, the matrix �̂ has the form �̂ = �̂n + �̂m with

�̂n = 2rωX̂30 , (A1)

�̂m = 2rm[g+X̂30 + f−[cos(ϕ/2)X̂11 − ζ sin(ϕ/2)X̂12]] .

(A2)

The solution of Eq. (7) has the form

ĝ = λa�̂ (A3)

with the constant λa, which is found from the normalization
condition, Eq. (5), as λ−1

a = ga

√
1 + γ 2

a , where

γa = rmf−g−1
a , (A4)

ga = rω + rmg+, rω = ω/ETh, and ETh = D/L2 is the Thou-
less energy; the functions f− and g+ are defined in Eqs. (11)
and (12).

The density of states is then calculated from Eqs. (19)
and (A3),

ν(ε) = [(
1 + γ 2

a

)−1/2
|ω=−iε

]
. (A5)
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The DOS does not depend on the phase difference
ϕ = χR − χL.

In order to find the Josephson current IQ, we use Eqs. (A3)
and (15) with f̂R = [cos(ϕ/2) + i sin(ϕ/2)X̂30][X̂11 − ζ X̂22].
Simple calculations yield zero Josephson current

IQ = 0 , (A6)

that is, in the considered system with antiparallel spin filter
axes the Josephson current is zero at any transparencies of the
Sm/n interfaces.

b. Parallel filter orientation (ζR = ζL ≡ ζ ). In this case, we
have for the matrix �̂m

�̂m = rm[g+(X̂30 + ζ X̂03) + f− cos(ϕ/2)X̂R(L)] , (A7)

where X̂R(L) is again one of the matrices defined in Eqs. (13)
and (14), and ϕ = χR − χL is the phase difference. We look
for a solution in the form

ĝ = a30X̂30 + ζa03X̂03 + a11X̂R(L) , (A8)

and write the matrix �̂ as

�̂ = G30X̂30 + ζG03X̂03 + FmX̂m , (A9)

where G30 = g̃a, G03 = rmg+, and Fm = rmf− cos(ϕ/2).
From Eq. (7), we find a11 = γb(a30 + a03) with

γb(ϕ) = Fm cos(ϕ/2)g−1
b , (A10)

where gb = (rω + 2rmg+).
Next, the normalization condition yields a2

30 + a2
03 +

2b2 = 1 and −a30a03 = ζb2. Introducing a2
30 + a2

03 = �2,

a30 = � cos α, and a30 = � sin α, we obtain

sin(2α) = − 2γ 2
b

1 + 2γ 2
b

, (A11)

�2 = 1 + 2γ 2
b

1 + 4γ 2
b

. (A12)

Thus, for the density of states, Eq. (19), we find

ν(ε) = � cos α

= 1

2
[

1 + [
1 + 4γ 2

b (ϕ)
]−1/2
|ω=−iε

]
(A13)

with γb defined in Eq. (A10). The corresponding Josephson
current is

IQ = Ic(ϕ) sin ϕ , (A14)

with the critical current

Ic(ϕ) = ar2
m(2πT )

∑
ω�0

f 2
−(

ω
�

+ 2rm
ETh
�

g+
)√

1 + 4γ 2
b (ϕ)

.

(A15)
One can see that the phase dependence of Ic leads to

appearance of higher harmonics in the Josephson current, i.e.,
the current IQ in Eq. (A14) can be written as

IQ =
∞∑

n=1

In sin[(2n + 1)ϕ] . (A16)

c. Usual S/n/S Josephson junction. In this case, the matrix
�̂ reads

�̂ = rωX̂30 + rS[GSX̂03 + FS cos(ϕ/2)X̂10] , (A17)

where FS = �/
√

ω2 + �2. We choose χR = −χL = ϕ/2.
The solution has a form similar to that for the case of antiparal-
lel filter orientation, i.e., ĝ = λc�̂, where λ−1

c = G̃S

√
1 + γ 2

c
and

γc = FS cos(ϕ/2)G̃−1
S (A18)

with G̃S = rω + rSGS.
The density of states is calculated as

ν(ε) = [[
1 + γ 2

c (ϕ)
]−1/2
|ω=−iε

]
, (A19)

and the Josephson current reads

IJ = Ic sin ϕ , (A20)

with

Ic = 2ar2
S(2πT )

∑
ω�0

F 2
S√

1 + γ 2
c (ϕ)

. (A21)

The coefficient a is the same as in Eq. (A15) and related with
the critical current Ic via Eq. (A20).
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