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Dynamic structure factor of liquid 4He across the normal-superfluid transition
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We have carried out a microscopic study of the dynamic structure factor of liquid 4He across the normal-
superfluid transition temperature using the path integral Monte Carlo method. The ill-posed problem of the
inverse Laplace transform, from the imaginary-time intermediate scattering function to the dynamic response,
is tackled by stochastic optimization. Our results show a quasiparticle peak and a small and broad multiphonon
contribution. In spite of the lack of strength in the collective peaks, we clearly identify the rapid dropping of the
roton peak amplitude when crossing the transition temperature Tλ. Other properties such as the static structure
factor, static response, and one-phonon contribution to the response are also calculated at different temperatures.
The changes of the phonon-roton spectrum with the temperature are also studied. An overall agreement with
available experimental data is achieved.
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I. INTRODUCTION

The most relevant information on the dynamics of a
quantum liquid is contained in the dynamic structure factor
S(q,ω), which is experimentally measured by means of
inelastic neutron scattering [1]. Probably, superfluid 4He
has been the most deeply studied system from both theory
and experiment and a great deal of information about it is
nowadays accessible [2]. For many years, liquid 4He was the
only quantum fluid showing Bose-Einstein condensation and
superfluidity until the discovery of the fully Bose-Einstein
condensate in 1995 [3,4]. Therefore, the number of measures
of S(q,ω) at different temperatures and momentum transfer
has been continuously growing, with more refined data along
the years [5–10]. The emergence of strong quasiparticle peaks
going down the normal-superfluid transition (Tλ = 2.17 K)
has been associated with the superfluidity of the system by
application of the Landau criterium. Much of the interest on
the dynamics of strongly correlated liquid 4He is then related
to the effects on the dynamics of this second-order λ transition.

In the limit of zero temperature, the richest and most
accurate microscopic description of the dynamic response
of liquid 4He has been achieved by progressively more
sophisticated correlated basis function (CBF) theory [11].
The development of this theory has been stimulated by the
continuous improvement of the experimental resolution in
inelastic neutron scattering. Recently, Campbell et al. [12]
have incorporated three-body fluctuations in an extended CBF
approach and proved a remarkable improvement of both the
excitation spectrum and full S(q,ω), with features not so
clearly seen before and that are in nice agreement with the
most recent experimental data [13]. On the other hand, the
most accurate tools to deal with ground-state properties are
the quantum Monte Carlo (QMC) methods. In the case of
bosons as 4He, these methods are able to produce essentially
exact results for its equation of state and structure properties
which are in close agreement with experimental data [14].
Importantly, QMC methods are not restricted to the limit of
zero temperature and are equally powerful to introduce the
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temperature as a variable through the sampling of the statistical
density matrix, implemented by the path integral Monte Carlo
(PIMC) method [15].

QMC methods simulate quantum systems using imaginary-
time dynamics since they are intended for achieving the lowest-
energy state. Therefore, having no access to real-time evolution
one looses the possibility of getting the dynamic structure
factor by a Fourier transform of the intermediate scattering
function F (q,t), as it happens in simulations of classical
systems using molecular dynamics. Quantum simulations are
able to sample this time-dependent function but in imaginary
time τ , F (q,τ ), and from it to get the dynamic response
through an inverse Laplace transform. But it is well known
that this inverse transform is an ill-posed problem. This means,
at the practical level, that the always finite statistical error of
QMC data makes it impossible to find a unique solution for
the dynamic structure factor.

Inverse problems in mathematical physics are a long-
standing topic in which elaborated regularization techniques
have been specifically developed [16]. Focusing on the
inversion of QMC data, to extract the dynamic response,
several methods have been proposed in recent years. Probably,
the most used approach is the maximum entropy (ME)
method which incorporates some a priori expected behavior
through an entropic term [17]. This method works quite well
if the response is smooth but it is not able to reproduce
responses with well-defined peaks. In this respect, other
methods have recently proved to be more efficient than ME.
For instance, the average spectrum method (ASM) [18], the
stochastic optimization method (SOM) [19], the method of
consistent constraints (MCC) [20], and the genetic inversion
via falsification of theories (GIFT) method [21] have been
able to recover sharp features in S(q,ω) which ME smoothed
out. All those methods are essentially stochastic optimization
methods using different strategies and constraints. It is also
possible to work out the inverse problem without stochastic
grounds [22] by using the Moore-Penrose pseudoinverse
and a Tikhonov regularization [23]. Other approaches try to
reduce the ill-conditioned character of this inverse problem by
changing the kernel from the Laplace transform to a Lorentz
one [24]. Finally, the computation of complex-time correlation
functions has been recently realized in simple problems and
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proved to be able to severely reduce the ill nature of the Laplace
transform [22].

In this paper, we use the PIMC method to estimate the
dynamic response of liquid 4He in a range of temperatures
covering the normal-superfluid transition at Tλ = 2.17 K.
The inversion method from imaginary time to energy is
carried out via the simulated annealing method, which is a
well-known stochastic multidimensional optimization method
widely used in physics and engineering [25]. Our method is
rather similar to the GIFT one [21] but changing the genetic
algorithm by simulated annealing. The GIFT method was
applied to the study of the dynamic response of liquid 4He
at zero temperature and proved to work much better than
ME, producing a rather sharp quasiparticle peak and also
some structure at large energies, corresponding to multiparticle
excitations [21]. The temperature dependence of S(q,ω) has
been much less studied. Apart from a quantum-semiclassical
estimation of the response at high q [26], the only reported
results were obtained by combining PIMC and the ME method
which worked well in the normal phase but not in the superfluid
part [27]. Therefore, the significant effect of the temperature
on the dynamics of the liquid through the λ transition was
lost. We show that the improvement on the inversion method
leads to a significantly better description of S(q,ω) in all the
temperature range studied, with reasonable agreement with
experimental data.

The rest of the paper is organized as follows. A short
description of the PIMC method and a discussion of the
inversion method used is contained in Sec. II. In Sec. III, we
report the results achieved for the dynamic response, excitation
spectrum, phonon strength, and lowest energy-weighted sum
rules across the transition. Finally, the main conclusions and a
summary of the main results are contained in Sec. IV.

II. METHOD

The thermal density matrix of a quantum system is given
by

ρ̂ = e−βĤ

Z
, (1)

where β = 1/(kBT ), kB is the Boltzmann constant, and Z =
Tr(e−βĤ ) is the partition function. The knowledge of ρ̂ allows
for the calculation of the expected value of any operator Ô,

〈Ô〉 = Tr(ρ̂ Ô), (2)

which in coordinate representation turns to

〈Ô〉 =
∫

d R ρ(R,R; β) O(R), (3)

with R = {r1, . . . ,rN } for an N -particle system. Deep in the
quantum regime, i.e., at very low temperature, the estimation
of the density matrix for a many-body system is obviously a
hard problem. However, the convolution property of ρ̂,

ρ(R1,RM+1; β) =
∫

d R2 . . . d RM

M∏
j=1

ρ(Rj ,Rj+1; τ ), (4)

with M an integer and τ = β/M , shows how to build the
density matrix at the desired temperature T from a product

of density matrices at a higher temperature MT . If the
temperature is large enough, one is able to write accurate
approximations for ρ̂ and thus the quantum density matrix can
be calculated, as stated by the Trotter formula,

e−β(K̂+V̂ ) = lim
M→∞

(e−τK̂e−τ V̂ )M. (5)

In Eq. (5), we have considered a Hamiltonian Ĥ = K̂ + V̂ ,
with K̂ and V̂ the kinetic and potential operators, respectively.
In the limit of high temperature the system approaches the
classical regime where e−β(K̂+V̂ ) = e−βK̂e−βV̂ . This factoriza-
tion, called primitive approximation, is, however, not accurate
enough to simulate a quantum liquid as 4He because the
number of required terms (beads) M is too large. To make
our PIMC simulations of superfluid 4He reliable, we use a
fourth-order time-step (τ ) approximation due to Chin [28],
following the implementation discussed in Ref. [29]. Liquid
4He is a Bose liquid and thus we need to sample not only
particle positions but permutations among them. To this end,
we use the worm algorithm [30].

In the present work, we are mainly interested in calculating
the intermediate scattering function F (q,τ ), defined as

F (q,τ ) = 1

N
〈ρ̂q(τ ) ρ̂†

q(0)〉, (6)

with ρ̂q(τ ) = ∑N
i=1 eiq·r i the density fluctuation operator. The

function F (q,τ ) is the Laplace transform of the dynamic
structure factor S(q,ω) which satisfies the detailed balance
condition,

S(q, − ω) = e−βωS(q,ω), (7)

relating the response for negative and positive energy transfers
ω. Taking into account Eq. (7), one gets

F (q,τ ) =
∫ ∞

0
dω S(q,ω)(e−ωτ + e−ω(β−τ )). (8)

The intermediate scattering function is periodic with τ , as it
can be immediately seen from Eq. (8): F (q,β − τ ) = F (q,τ ).
Therefore, it is necessary to sample this function only up to
β/2 (half of the polymer representing each particle in PIMC
terminology). From the PIMC simulation, one samples F (q,τ )
at the discrete points in which the action at temperature T is
decomposed [Eq. (4)].

In Fig. 1, we show the characteristic behavior of F (q,τ ) for
three different q values at T = 1.2 K. These are monotonously
decreasing functions ending at a finite value at T/2 which
approaches zero when T → 0. The initial point at τ = 0
corresponds to the zero energy-weighted sum rule of the
dynamic response, which in turn is the static structure factor
at that specific q value,

m0 = S(q) =
∫ ∞

−∞
dω S(q,ω). (9)

With the PIMC results for F (q,τ ), the next step is to find
a reasonable model for S(q,ω) having always in mind the
ill-conditioned nature of this goal. In our scheme, we assume
a step-wise function,

Sm(q,ω) =
Ns∑
i=1

ξi �(ω − ωi) �(ωi+1 − ω), (10)

104510-2



DYNAMIC STRUCTURE FACTOR OF LIQUID 4He . . . PHYSICAL REVIEW B 93, 104510 (2016)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4

F
(q

,τ
)

τ (K−1)

q = 0.43 Å−1

q = 1.24 Å−1

q = 1.91 Å−1

FIG. 1. Intermediate scattering function computed for 4He at

saturated vapor pressure (ρ = 0.021 858 Å
−3

) and T = 1.2 K, for
different values of q.

with �(x) the Heaviside step function, and ξi and Ns

parameters of the model. As our interest relies on the study of
homogeneous translationally invariant systems, the response
functions depend only on the modulus q. Introducing Sm(q,ω)
in Eq. (8), one obtains the corresponding model for the
intermediate scattering function,

Fm(q,τ ) =
Ns∑
i=1

ξi

[
1

τ
(e−τωi − e−τωi+1 )

+ 1

β − τ
(e−(β−τ )ωi − e−(β−τ )ωi+1 )

]
. (11)

Written in this way, the inverse problem is converted into
a multivariate optimization problem which tries to reproduce
the PIMC data with the proposed model, Eq. (11). To this
end, we use the simulated annealing method which relies on
a thermodynamic equilibration procedure from high to low
temperature according to a predefined template schedule [25].
The cost function to be minimized is the quadratic dispersion,

χ2(q) =
Np∑
i=1

[F (q,τi) − Fm(q,τi)]
2, (12)

with Np the number of points in which the PIMC estimation
of the intermediate scattering function is sampled. Eventually,
one can also introduce as a denominator of Eq. (12) the
statistical errors coming from the PIMC simulations. However,
we have checked that this is not affecting so much the final
result since the size of the errors is rather independent of τ .

The optimization leading to S(q,ω) is carried out over
a number Nt of independent PIMC calculations of F (q,τ ).
Typically, we work with a population Nt = 24 and for
each one we perform a number Na = 100 of independent
simulated annealing searches. The mean average of these Na

optimizations is our prediction for the dynamic response for a
given F (q,τ ). We also register the mean value of χ2 [Eq. (12)]
of the Na optimizations. As an example, the mean value of
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FIG. 2. Dynamic structure factor at T = 1.2 K, saturated vapor

pressure (SVP), and q = 0.76 Å
−1

using different averaging methods.
Inset shows same data but using a log scale in the y axis.

χ2 in a simulation with data at T = 1.2 K and q = 1.91
Å−1 is 2.19 × 10−5, with minimum and maximum values
of 2.37 × 10−6 and 3.80 × 10−4, respectively. At this same
temperature, Np = 41 and the number of points of the model
S(q,ω) [Eq. (11)] is Ns = 150.

With the outcome for the Nt series we have tried different
alternatives to get the final prediction. We can take just the
statistical mean of the series or a weighted mean, in which the
weight of each function is the inverse of its corresponding χ2,
to give more relevance to the best-fitted models. Additionally,
we have also tried to make both of these estimations but
selecting the 20% best functions according to its χ2. In
Fig. 2, we plot the results obtained following these different
possibilities. All the results are quite similar, with minor
differences; only at large energies we can observe that the
weighted mean gives slightly more structure (see inset in
Fig. 2). Also, the effect of selecting the best χ2 models seems
to be not much relevant.

In Fig. 3, we compare the results obtained for the dynamic
structure factor at T = 1.2 K and saturated vapor pressure
(SVP) with previous results obtained using the maximum
entropy method [27]. The ME results are significantly broader,
mainly at the lowest q value, and with only smooth features.
This broadening is probably a result of the entropic prior used
in those estimations, which seems to favor smooth solutions.
In the figure, we can observe that the position of the ME
peak is coincident with ours but the ME solution lacks of
any structure beyond the quasiparticle peak (see appendix
for additional comparisons between ME and our stochastic
optimization procedure). In our estimation, we do not use
any prior information in the search of optimal reconstructions
and thus it is free from any a priori information except that
the function is positive definite for any energy. Moreover, the
simulated annealing optimization leads to dynamic responses
that fulfill the energy-weighted sum rules m0 and m1,

m1 =
∫ ∞

−∞
dω ωS(q,ω) = �

2q2

2m
, (13)
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FIG. 3. Comparison between the present results for the dynamic
structure factor and those obtained in Ref. [27] using the maximum
entropy method for q = 0.76 Å−1(a) and 1.81 Å−1 (b). Both results
are calculated at SVP and T = 1.2 K.

without imposing them as constraints in the cost function
[Eq. (12)]. Also, the m−1 sum rule, related to the static
response, is in agreement with experiment (see next section).

III. RESULTS

We have performed PIMC calculations of liquid 4He
following the SVP densities, from T = 0.8 to 4 K. The
interatomic potential is of Aziz type [31] and the number
of particles in the simulation box, under periodic boundary
conditions, is N = 64. In some cases we have used a
larger number of particles (N = 128) without observing any
significant change in F (q,τ ). The number of terms M [Eq. (4)]
is large enough to eliminate any bias coming from the path
discretization; we used τ = 0.0104 K−1.

We compare our result for the dynamic response in the
superfluid phase with experimental data from Ref. [5] in Fig. 4.
The theoretical peak is located around an energy which is very
close to the experimental one but it is still broader than in the
experiment. However, the strength (area) of this peak is in good
agreement with the experimental one, as we will comment
later. The quasiparticle peak disappears in the normal phase,
above Tλ, as we can see in Fig. 5. In this figure, we compare
our results at T = 4 K with experimental outcomes at the same
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FIG. 4. Dynamic structure factor at T = 1.2 K and q = 1.76 Å
−1

compared with experimental data (T = 1.3K , q = 1.7 Å
−1

) [5].

T . In this case, we see that both the position of the peak and
its shape is in an overall agreement with the experiment.

One of the main goals of our study has been the study of
the effect of the temperature on the dynamics of liquid 4He. In
Fig. 6, we report results of S(q,ω) in a range of temperatures
from T = 0.8 to 4 K in the phonon region of the spectrum,
with q = 0.88 Å−1. At this low q value, the behavior with T

is not much different for the superfluid and normal phases, a
feature which is also observed in neutron scattering data [2].
We observe a progressive broadening of the peak with T which
appears already below Tλ and continues above it. Even at the
highest temperature T = 4 K, we identify a collective peak
corresponding to a sound excitation [2]. The main difference
between both regimes is that the quasiparticle energy below
Tλ is nearly independent of T whereas, in the normal phase,
this energy decreases in a monotonous way.

Near the roton, the dependence of the dynamic response
with T is significantly different. In Fig. 7, we report results of
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The experimental data are from Ref. [32].

104510-4



DYNAMIC STRUCTURE FACTOR OF LIQUID 4He . . . PHYSICAL REVIEW B 93, 104510 (2016)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

−20 −10  0  10  20  30  40  50  60

S(
q,

ω
) 

(K
−

1 )

ω (K )

T=0.8 K
T=1.2 K
T=2.0 K
T=2.3 K
T=2.8 K
T=3.2 K
T=3.6 K

FIG. 6. Dynamic structure factor of liquid 4He for q = 0.88 Å
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S(q,ω) at q = 1.91 Å−1 at different temperatures across Tλ.
The most relevant feature is the drop of the quasiparticle peak
for T > Tλ. In the superfluid phase, the peak remains sharp
with a nearly constant energy. Just crossing the transition (in
our data for T � 2.3 K), the peak disappears and only a broad
response is observed, with an energy that moves slightly down.
According to the Landau criterium the existence of a roton gap
implies a critical velocity larger than zero and thus a superfluid
phase. Our PIMC data are consistent with this picture since we
observe as the resulting superfluid density, derived from the
winding number estimator, goes to zero at Tλ, in agreement
with the disappearance of the roton excitation in S(q,ω).

Our results for the temperature dependence of the roton
energy 
(T ) are shown in Fig. 8. For temperatures T <

1.5 K, 
(T ) is practically constant around a value 8.60 K,
in agreement with experiment [33]. For larger temperatures,
still in the superfluid part, this energy gap starts to decrease
with the largest change around the transition temperature.
For temperatures T > 2.5 K, the peak vanishes and 
(T )
flattens but then one really cannot continue speaking about
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FIG. 7. Dynamic structure factor of liquid 4He for q = 1.91 Å
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the roton mode. In the same figure we report experimental
results for the roton energy in the superfluid phase. At the
same temperature, our results agree well with the experimental
ones which show some erratic behavior around T � 2 K but
compatible with a decrease of the roton gap with T . Still in
the same figure, we report the fit used in Ref. [33] that is
based on the roton-roton interaction derived from Landau and
Khalatnikov theory [34]. This law seems to be right only at
the qualitative level, with significant deviation with our results
and still larger discrepancies with the experimental values.

The results obtained for S(q,ω) in the present calculation
are summarized in Fig. 9 as a color map in the momentum-
energy plane. In the superfluid phase, the phonon-roton
curve is clearly observed, with the highest strength of the
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FIG. 9. Color map of the dynamic response in the momentum-
energy plane at different temperatures, lower and upper Tλ.
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quasiparticle peak located in the roton minimum, in agreement
with experiment. The multiparticle part above the single-mode
peak is also observed but without any particular structure. At
T = 2 K the roton peak is still observed but some intensity
starts to appear below it. At T = 2.5 and 3 K, we still obtain
intensity in the roton but the peak, and in general, all the
spectrum appear much more diffuse.

The excitation energy of the collective mode is shown in
Fig. 10 at different temperatures. Our results at the lowest
temperatures, T = 0.8 and 1.2 K, are indistinguishable within
the statistical errors and are in close agreement with the
inelastic neutron scattering data at T = 1.2 K from Refs.
[35,36], except at the end of the spectrum (Pitaevskii plateau).
In fact, for q > 2.5 Å−1 the dynamic response that we obtain
from the reconstruction of the imaginary-time intermediate
scattering function is rather broad and one cannot distinguish
the double peak structure observed in experiments. Also,
notice that the energies corresponding to q � 0.5 Å−1 are not
accessible in our simulations since our minimum qmin value is
restricted to be 2π/L, with L the length of the simulation box.
At T = 2 K, very close to the superfluid transition temperature,
we observe as the energies of the maxon and roton modes
significantly decrease whereas the phonon part is less changed.
When the temperature is above the transition, we can observe
that the maximum of the peaks, now much broader, seem to
collapse again in a common curve around the maxon. Instead,
in the roton it seems that the energy could increase again at
the largest temperature. This latter feature is quite unexpected
and could be a result of our difficulty in the localization of
the maximum in a rather broad dynamic response. The overall
description on the evolution of the phonon-roton spectrum
with T is in close agreement with experimental data [2].

The static structure factor S(q) is the zero energy-weighted
sum rule of the dynamic response [Eq. (9)]. This function can
be exactly calculated using the PIMC method as it is the value

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

S(
q)

q (Å−1)

T=0.8 K
T=1.2 K
T=2.0 K
T=2.8 K
T=3.2 K
T=3.6 K
T=4.0 K

Expt T=3.6 K

FIG. 11. Static structure factor S(q) at different temperatures
across Tλ. The results have been shifted vertically a constant value
to make its reading easier. The dashed line stands for experimental
data from Ref. [37]. Short horizontal lines at q = 0 correspond to the
value [Eq. (14)] obtained from PIMC.

of the imaginary-time intermediate scattering function at τ =
0. In Fig. 11, we show results of S(q) for the range of analyzed
temperatures. The effect of the temperature on the position and
height of the main peak is quite small, in agreement with the
x-ray experimental data from Ref. [37]. We observe a small
displacement of the peak to larger q values and a simultaneous
decrease of the height when T increases. These effects can be
mainly associated with the decrease of the density along SVP
when the temperature grows. For values q � 0.5 Å−1 we do
not have available data due to the finite size of our simulation
box. Therefore, we cannot reach the zero momentum value
which is related to the isothermal compressibility χT through
the exact relation,

S(q = 0) = ρkBT χT , (14)

with kB is the Boltzmann constant and ρ is the density. The
requirement of this condition produces that S(q) starts to
develop a minimum around q � 0.5 Å−1 when T increases.
Our results also show this feature but for larger T (∼3.6 K)
than in experiments (∼3 K) due to our lack of data at low q.

From the dynamic structure factor, we can calculate the
static response function χ (q) since this is directly related to
the 1/ω sum rule through the relation,

χ (q) = −2ρ

∫ ∞

−∞
dω

S(q,ω)

ω
= −2ρm−1. (15)

The dominant contribution to the m−1 sum rule is the quasi-
particle peak and thus it is less sensitive to the multiphonon
part [38]. In Fig. 12, we report the results obtained for χ (q) at
temperatures 1.2, 2.0, and 2.5 K. We observe that at low q the
effect of T is negligible but around the peak, q � 2 Å−1,
is really large. In the superfluid regime, the height of the
peak clearly increases with T , a feature that has not been
reported previously neither from theory nor from experiment.
At T = 2.5 K, in the normal phase, the main peak decreases
again in agreement with the absence of the roton. In the figure,
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FIG. 12. Static response function at T = 1.2, 2.0, and 2.5 K. For
comparison, we also report zero-temperature QMC results [21] and
experimental data obtained at T = 1.2 K [35,36].

we plot experimental data [35,36] at T = 1.2 K which is close
to our result at low q but with less strength in the peak. Results
from QMC at zero temperature from Ref. [21] are in an overall
agreement with ours at the lowest T , but somehow ours have
a slightly higher peak.

The dynamic response of liquid 4He is usually written as
the sum of two terms,

S(q,ω) = S1(q,ω) + Sm(q,ω), (16)

where S1(q,ω) stands for the sharp quasiparticle peak and
Sm(q,ω) includes the contributions from scattering of more
than one phonon (multiphonon part). The intensity (area)
below the sharp peak is the function Z(q) which we report
in Fig. 13. Our results are compared with experimental
data at T = 1.2 K from Refs. [35,36]. As we commented
previously, our quasiparticle peaks are less sharp than the
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FIG. 13. One-phonon contribution to the dynamic response Z(q)
at different temperatures. Experimental results at T = 1.2 K from
Refs. [35,36].

experimental ones due to the uncertainties in the inversion
problem from imaginary time to energy. However, the area
below the peak is not so far from the experimental outcomes.
Up to the maximum of the peak, our results are compatible
with the experimental function. However, our data lead to a
peak with less strength and after that, for larger momenta,
our results scatter significantly due to the difficulties in the
determination of the area below the peak. The uncertainties
in the area estimation do not allow for the observation of
an enhancement of the peak’s height when T increases, as
reported in experiments [38].

IV. CONCLUSIONS

We have carried out PIMC calculations of liquid 4He in
a wide range of temperatures across the normal-superfluid
transition Tλ to calculate the imaginary-time intermediate
scattering function F (q,τ ). From these functions one can
in principle access the dynamic response S(q,ω) through
an inverse Laplace transform. But this is an ill-conditioned
problem that cannot be solved to deal with a unique solution. In
recent works [21], it has been shown that the use of stochastic
optimization tools can produce results with a richer structure
than previous attempts relying on the maximum entropy
method [17]. We have adopted here the well-known simulated
annealing technique to extract the dynamic response, without
any a priori bias in the search in order to get a result as
unbiased as possible. In spite of the lack of any constraint
in the cost function, we have verified that the three lowest
energy-weighted sum rules are satisfactorily satisfied giving
us some confidence in the reliability of our algorithm.

The results of the dynamic response are still not enough
sharp in the quasiparticle peaks of the superfluid phase but
the position of the peaks and the area below them are in nice
agreement with experimental data. Interestingly, our results
show clearly the signature of the transition in the roton peak,
whose amplitude drops rapidly for T > Tλ. The effect of the
temperature on the phonon-roton spectrum, static structure
factor, and static response also has been studied.

The difficulties of extending correlated perturbative ap-
proaches to finite T have led to a really unexplored dynamics
of superfluid liquid 4He, at least from a microscopic approach.
With the present work, which can be considered an extension
and improvement of a previous work based on the maximum
entropy method [27], we have shown that the combination
of PIMC and stochastic reconstruction is able to produce
a satisfactory description of the quantum dynamics at finite
temperature. We are also convinced that in the near future we
can improve even more the present results. In this respect,
one of the more promising avenues could be the estimation
of complex-time correlation functions, instead of the merely
imaginary ones, which can reduce the ill-posed character of
the inversion problem due to its nonmonotonic structure [22].
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APPENDIX

In Fig. 3, we have compared results for S(q,ω) derived
from our stochastic optimization method and results reported
in Ref. [27] using ME. As the intermediate scattering function
F (q,τ ) used in both estimations is different and used by
different authors it could happen that the differences observed
in Fig. 3 were due more to the differences between the
calculated imaginary-time response than to the inversion
method itself. To clarify this point, we report in this appendix
results of two additional comparisons.

In Fig. 14, we report results for S(q,ω) at q = 0.62 Å−1

using our imaginary-time data and stochastic optimization. In
the figure, we also show the dynamic response that we have
obtained by applying our inversion method to the imaginary-
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FIG. 15. Comparison between the dynamic response obtained
with ME and our stochastic optimization method using our inter-
mediate scattering data.

time data reported in Ref. [27]. Finally, the figure also shows
the ME results reported in Ref. [27] but for a slightly different
q value since results for q = 0.62 Å−1 are not given in that
paper. As one can see, starting from their published data and
applying our method the results compare favorably with our
response S(q,ω). Therefore, the different quality of the input
data is so small that no effect is observed.

In order to make a more clear comparison between both
inversion methods we show in Fig. 15 results for the dynamic
response using our data for F (q,τ ). At the same q value
than in Fig. 14, we report results obtained with stochastic
optimization and using the ME method. The results are similar
to the ones shown in Fig. 14 and lead to the same conclusion,
that is, the ME method generates smoother functions than our
method. This conclusion is in agreement with a similar analysis
reported by Vitali et al. [21].
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