
PHYSICAL REVIEW B 93, 104503 (2016)

Coupled k-space structure of d-wave superconducting and magnetic
orders induced by paramagnetic pair-breaking effect

Yuhki Hatakeyama and Ryusuke Ikeda
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 19 August 2015; published 2 March 2016)

We theoretically investigate k-space structures of dx2−y2 -wave superconducting (SC) and spin-density-wave
(SDW) orders in their coexistent phase induced by a paramagnetic pair-breaking (PPB) effect in relation to the
high-field and low-temperature SC phase in CeCoIn5. It is shown that, in k space, the SDW order develops near
the gap nodes where the SC order is suppressed by PPB, and the nesting condition for the SDW ordering is
satisfied. By comparing the results in the dx2−y2 -wave SC model and those in an artificial model with no sign
change of the gap function in k space with each other, it is shown that the dx2−y2 -wave SC and SDW orders are
enhanced altogether in k space due to the sign change of the dx2−y2 -wave gap function there, and that this mutual
enhancement largely stabilizes the coexistence of these orders in real space. It is also discussed that the field
dependence of a SDW moment can be affected by the k-space structure of these orders, which is dependent on
the curvature of the Fermi surface.
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I. INTRODUCTION

The high-field and low-temperature (HFLT) superconduct-
ing (SC) phase of CeCoIn5 is a novel type of state of matter,
and many experimental and theoretical studies have been
performed to obtain the genuine picture on this phase. In this
phase, the dx2−y2 -wave pairing and spin-density-wave (SDW)
orders coexist, although this SDW order is absent in the normal
phase [1] just above Hc2(T ).

Early experimental data have already indicated that this
SC material has an unusually strong paramagnetic pair-
breaking (PPB) effect. Based on theoretical analyses [2–4]
of subsequent experimental facts on the vortex lattice rigidity
[5], NMR [6], and doping effects [7], it has been argued that the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state, where a
SC order parameter � is spontaneously modulated in real
space due to a strong PPB [8], is realized in the HFLT phase.
Further, it has been clarified [9] that an interplay between the
dx2−y2 -wave pairing symmetry and the strong PPB creates a
SDW order in contrast to the widespread view that the SC
and magnetic orders are competitive with each other. This
theoretical picture on the SDW ordering based only on the
strong PPB explains the main features of the SDW order
observed through a neutron scattering experiment [1,10] and
an NMR experiment [6].

In our previous works [9,11], it has been stressed that
the PPB-induced coexistence of dx2−y2 -wave SC and the
SDW orders occurs, broadly speaking, with two origins. First,
suppression of the SDW ordering due to a SC excitation gap
is weakened due to PPB, and, second, the SDW ordering
is enhanced due to the sign change of the dx2−y2 -wave gap
function wk in k space where wk+Q0 = −wk is satisfied with
Q0 = (π,π,π ). The importance of the k-space sign change of
the gap function for the PPB-induced SDW ordering has also
been discussed elsewhere [12] in relation to a PPB-induced
shift of a resonance peak. Furthermore, it has also been shown
that the PPB-induced SDW ordering is largely enhanced by the
FFLO modulation of � parallel to the field [11]. In addition,
it has been shown [13] that the presence of such a longitudinal
FFLO spatial modulation in the HFLT phase explains the

switching of the SDW q vector via the in-plane rotation of
the applied magnetic field seen in CeCoIn5 [10].

Nevertheless, it is surprising that this SDW order in real
space tends to favor the region with a nonvanishing SC order
rather than the vicinity of the vortex cores [11]. Then, one may
wonder how the magnetic order favoring a coexistence with
a nonvanishing SC order in real space can coexist with the
SC order even in k space. This naive question has motivated
us to investigate the details of the k-space structure of this
PPB-induced SDW order in a dx2−y2 -wave SC phase.

In this paper, we present a theoretical analysis on the
k-space structure of the coexisting dx2−y2 -wave SC and SDW
orders induced by a strong PPB effect. It is found that the SDW
order develops in the k-space region near the dx2−y2 -wave
gap node, where the SC order is suppressed by PPB, and the
nesting condition of the Fermi surface (FS) is satisfied. The
effects of the sign change of the dx2−y2 -wave gap function
around each gap node on the coexistence of these orders are
discussed through a comparison with the results of an artificial
model in which the gap function with no sign change in k
space is assumed. It is shown that, due to the sign change
of the gap function, the dx2−y2 -wave SC and SDW orders are
enhanced cooperatively even in k space, and the coexistence of
these orders is largely stabilized by this mutual enhancement.
Moreover, it has been found that, in the case of a large
FS curvature, a SDW staggered moment is maximal slightly
below the SC transition field Hc2 due to the mismatch of the
nesting hot spot and the k-space region where the SC order
is suppressed by PPB. These results indicate the presence
of a profound mechanism of the PPB-induced coexistence
of dx2−y2 -wave SC and SDW orders in light of the k-space
structure of these orders.

The mechanism of the PPB-induced SDW ordering has
also been discussed by another research group [14], in which
the importance of the nesting between quasiparticle pockets
appearing in k space due to strong PPB, on which the lower
excitation energy in a pure SC phase is equal to zero, has been
stressed. The theoretical works of Refs. [9,11,12,14] are based
on essentially the same model, and thus, if the quasiparticle
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pockets’ contribution is dominant, their contribution might
also be reflected in k-space results in the framework of
our previous works [9,11]. In the sense of clarifying a
genuine picture on the coexistence of the two orders, the
present comprehensive study on the k-space structure of these
coexisting orders is believed to be valuable.

This paper is organized as follows. In Sec. II, we explain the
formulation of our theoretical model. In Sec. III, the structure
of dx2−y2 -wave SC and SDW orders in k space is presented. In
Sec. IV, the influences of the sign change of the gap function
on the k-space structure of these orders are discussed, by
comparing the results in the dx2−y2 -wave SC model and in the
artificial model with one another. In Sec. VI, the effects of the
FS curvature on the k-space structure of these orders and their
consequences in the field dependence of a SDW staggered
moment are discussed. In Sec. VII, we present a summary
and discussions of the results. Throughout the present paper,
expressions are written in units of � = kB = c = 1.

II. MODEL

Our starting Hamiltonian including the mean-field inter-
action channels of SC and SDW orders is expressed as
H = Hkin + HSC + HSDW, where

Hkin =
∑
k,σ

(ξk − hσ )c†k,σ ck,σ , (1)

HSC = |�|2
λ

−
[
�

∑
k

wkc
†
k,↑c

†
−k,↓ + H.c.

]
, (2)

HSDW = m2

U
−

[
m

∑
k,σ

c
†
k,−σ ck+Q,σ + H.c.

]
. (3)

Here, ck,σ is the annihilation operator of the quasiparticle state
labeled by its wave vector k and spin projection σ (= ±1),
h = gμBH is the Zeeman energy (g is the g factor, μB is
the Bohr magneton, and H is the strength of the magnetic
field directed perpendicularly to the c axis), � is the SC order
parameter, λ is the strength of the SC pairing interaction, wk
is the gap function, m is the SDW staggered moment, U is
the strength of the exchange interaction, and Q is the SDW
modulation wave vector. The dispersion relation ξk is that of
the two-dimensional lattice system and is given by

ξk = −2t1[cos(kx) + cos(ky)] − 4t2 cos(kx) cos(ky) − μ,

(4)

where t1 and t2 are the nearest- and next-nearest-neighbor
hoppings, respectively, and μ is the chemical potential, which
is adjusted so that the FS nesting condition ξk+Q = −ξk is
precisely satisfied at the dx2−y2 -wave gap nodes on the line
kx = ky if Q = (π,π ) (see, however, below). Our calculation
is performed in the Pauli limit, i.e., the PPB effect is assumed to
be so strong that the orbital pair-breaking effect is negligible.
In accord with a neutron scattering experiment in the HFLT
phase of CeCoIn5 [1], it is assumed that the SDW staggered
moment is parallel to the c axis, and that a single-Q SDW
order is always realized [13].

To stress that the PPB-induced SDW ordering in the d-wave
SC phase does not stem from a specific Fermi surface but is

a general phenomenon insensitive to the details of the Fermi
surface, the simplest Fermi surface of the two-dimensional
(2D) tight-binding model will be used. Further, a FFLO spatial
modulation of the SC order parameter, believed to be present
in the high-field phase of CeCoIn5, will not be considered, and
the SDW ordering in this work will be examined by assuming
a spatially homogeneous SC order parameter because a SDW
or antiferromagnetic ordering enhanced in higher fields is
not believed to be peculiar to CeCoIn5: As argued elsewhere
[9,11], the tendency of the SDW ordering at the high-field end
of the SC phase is also seen in heavy fermion superconductors
other than CeCoIn5.

Regarding the form of the pairing function wk, the following
two forms will be considered in the present paper: The first one
is the usual dx2−y2 -wave one wk = cos(kx) − cos(ky), which
changes its sign in k space such that wk+Q0

= −wk with Q0 =
(π,π ), and the second one is of an extended s-wave type wk =
| cos(kx) − cos(ky)|, which does not change its sign in k space.
The implication of the use of the second functional form will
be explained later in Sec. IV.

In our calculation, it is assumed that the SDW order is
incommensurate so that the modulation vector Q is equal to
π (1 + 1/N,1 + 1/N ), where N is an integer. Note that, due
to the fourfold rotational symmetry of ξk and |wk|, the π/2
rotation of k transformsH with Q = π (1 + 1/N, − 1 − 1/N)
to H with Q = π (1 + 1/N,1 + 1/N). Therefore, it is justified
to restrict ourselves to the case with Q = π (1 + 1/N,1 +
1/N). With this value of Q, 4N quasiparticle states are coupled
with one another in HSC and HSDW, and thus the action S
corresponding to the Hamiltonian H is written as a bilinear
form of 4N dimension,

S = T

2N

∑
k

�̂
†
kĜ

−1
k �̂k + 1

T

( |�|2
λ

+ m2

U

)
, (5)

where

�̂k = (c†k,↑,c−k,↓,c
†
k+Q,↓,c−k−Q,↑,

c
†
k+2Q,↑,c−k−2Q,↓, . . . ,c−k−(2N−1)Q,↑), (6)

Ĝ−1
k =

⎛
⎜⎜⎜⎜⎜⎝

D̂k,↑ M̂ 0 . . . M̂

M̂ D̂k+Q,↓ M̂ . . . 0
0 M̂ D̂k+2Q,↑ . . . 0
...

...
...

. . .
...

M̂ 0 0 . . . D̂k+(2N−1)Q,↓

⎞
⎟⎟⎟⎟⎟⎠,

(7)

with k = (iωn,k) [ωn = (2n + 1)πT is the fermion Matsub-
ara frequency], D̂k,σ = (iωn + hσ )Î − ξkσ̂z + �wkσ σ̂x , and
M̂ = mσ̂z [Î is the 2 × 2 identity matrix, and σ̂i (i = x,y,z)
is the Pauli matrix]. Then, the free energy density F can be
calculated straightforwardly based on S, as

F(�,m) = |�|2
λ

+ m2

U
− T

2N

∑
k

ln
∣∣Ĝ−1

k

∣∣. (8)

In the numerical calculation, we used N = 10, i.e., Q =
2π (0.55,0.55), in accord with the observed SDW modulation
vector in CeCoIn5 [1], and the values of � and m are obtained
by numerically minimizing F(�,m).
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Structures of coexisting SC and SDW orders in k space can
be investigated in terms of the following correlation functions
associated with the quasiparticle states with wave vector k:

H (k) = −
∑

σ

[〈ck,−σ c
†
k+Q,σ 〉 + 〈ck,−σ c

†
k−Q,σ 〉]

= T
∑
ωn

([Ĝk + Ĝ∗
k−Q]3,1 − [Ĝ−k + Ĝ∗

−k+Q]4,2), (9)

F (k) = −〈c−k,↓ck,↑〉 = T
∑
ωn

[Ĝk]2,1, (10)

where Ĝk is the inverse matrix of Ĝ−1
k . In a normal phase with

no SC and SDW orders, H (k) and F (k) are always zero. In an
ordered phase, on the other hand, these correlation functions
can be finite in the presence of the mean-field couplings [see
Eqs. (2) and (3)], and the strength of the ordering in k space
can be measured by these correlation functions. In fact, the
gap equations for SC and SDW orders are expressed in terms
of H (k) and F (k) as

m(r = 0)

U
=

∑
k

H (k), (11)

�

λ
=

∑
k

wkF (k). (12)

Equation (11) shows that the SDW staggered moment m is
proportional to the sum of H (k) over k space, indicating that
H (k) measures the contribution of the quasiparticle states with
wave vector k to the SDW ordering. In our calculation, we
verified that SDW correlation functions with higher harmonics
(e.g., 〈ck,−σ c

†
k+3Q,σ 〉) are negligibly small, and thus we focused

only on H (k) to study SDW ordering in k space. Similarly,
Eq. (12) shows that the SC order parameter � is proportional
to the weighted sum of F (k) with the gap function wk over
k space, indicating that F (k) measures the contribution of the
quasiparticle states with wave vector k to the Cooper pairing.

III. k-SPACE STRUCTURE OF COEXISTING SC
AND SDW ORDERS INDUCED BY PPB

In this section, we present the k-space structure of co-
existing SC and SDW orders induced by the PPB effect.
Examples of k-space distributions of F (k) and H (k) are shown
in Figs. 1(a) and 1(b), respectively, as color maps. Since the
major contributions to SC and SDW orderings come from
quasiparticle states in the vicinity of FS, the distributions
of F (k) and H (k) are concentrated near FS in Fig. 1. In
Fig. 1(a), the magnitude of F (k) is strongly suppressed in
the narrow oval regions near the dx2−y2 -wave gap nodes [k ∼
±(π/2,π/2), ± (π/2,−π/2)]. In these regions, the excitation
energy in a pure SC phase with the Zeeman energy

Ek,σ =
√

ξ 2
k + |�wk|2 − hσ (13)

become negative for σ =↑ in higher fields. Since the negative
excitation energy Ek,↑ < 0 means that the Cooper pairing
including the quasiparticle with (k, ↑) is unstable, F (k) is
strongly suppressed in these regions. However, while F (k) in a
pure SC phase is completely suppressed in these regions, F (k)

0
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0
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π-π-π

π

FIG. 1. Color-map plots of (a) F (k), (b) H (k), and (c) the
contour lines of Ek,↑ in the PPB-induced coexistent phase of
dx2−y2 -wave SC and SDW orders. In (c), the isoenergy curves for
Ek,↑/Tc = 0, 1.0, and 2.0 are shown as the solid, dashed, and
dotted curves, respectively. Inside the solid curve (gray-colored
region), Ek,↑ < 0. The parameters used are t1/Tc = 10, t2/t1 = 0.05,
μ/t1 = 0.62, U/Tc = 15.2, T/Tc = 0.1, and H/HP = 0.85, where
HP = 2.5Tc/gμB is the Pauli limiting field, and Tc is the SC transition
temperature at H = 0.

is not completely suppressed in these regions when a SDW
order is present [see Fig. 3(a) and the discussions in Sec. IV].

In Fig. 1(b), the major contributions to H (k) come from
the narrow oval regions near k ∼ ±(π/2,π/2). These regions
contributing to the SDW ordering are determined under the
following two conditions. The first one is that the FS nesting
condition (ξk+Q ∼ −ξk) is satisfied better in these regions.
In Fig. 1, in which the FS curvature is small, this condition
is satisfied in a larger area of the FS in the first and third
quadrants of the k space. In relation to this, the case with a
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large FS curvature will be discussed in Sec. VI. The second
one is that the SC order is suppressed by PPB in these regions:
As the field is increased, the k-space regions contributing to
the SDW ordering become broader, while the SC order is
suppressed by PPB there. These conditions suggest that the
SDW ordering is induced mainly by quasiparticle states in
the k-space regions where the SC order is suppressed by PPB
and the FS nesting condition is satisfied better. In nonzero
fields where PPB is not negligible, however, these conditions
do not play quantitatively main roles, and rather, as will be
discussed in the next section, the k-dependent sign change
of the dx2−y2 -wave gap function becomes an indispensable
condition for stabilizing the coexistence of SC and SDW orders
in k space.

IV. EFFECT OF k-SPACE SIGN CHANGE
OF THE GAP FUNCTION

In this section, we explain the roles of the k-dependent
sign change of the dx2−y2 -wave gap function [wk = cos(kx) −
cos(ky)] in the PPB-induced coexistence of SC and SDW
orders. For this purpose, we also analyzed a toy model in
which the gap function with no sign change in k space (wk =
| cos kx − cos ky |) is assumed. This form of wk is nonanalytic
in k and might be artificial as a theoretical expression of a gap
function of an existing real material. On the other hand, this
form qualitatively describes an extended s-wave pairing case,
and, by comparing the results from this wk form with those
from the dx2−y2 -wave pairing form, the roles of the amplitude
and phase components of wk can be separated from each other
to examine the essential roles of the sign change of wk around
a gap node in k space for the SDW ordering. In relation to
this, note that the SC quasiparticle excitation energy Ek,σ

is insensitive to the sign of wk so that Ek,σ in the artificial
pairing model mentioned above is identical to that in the usual
dx2−y2 -wave case [see Eq. (13)]. Consequently, the k-space
region where the SC order is suppressed by PPB (Ek,↑ < 0)
in the artificial model becomes completely the same as that in
the dx2−y2 -wave case. As is seen below, the SDW ordering is
not very sensitive to the k dependence of Ek,σ .

Figure 2 shows the field dependences of � and m in the
dx2−y2 -wave SC model [Fig. 2(a)] and in the artificial model
[Fig. 2(b)]. In order to make the conditions, other than the
gap function wk, equal between both the models, we used the
common parameter values regarding the electronic details in
these models. In spite of this, a large difference is found in
the field dependences of m between these models. In Fig. 2(a),
the SDW ordering is not realized in the high-field normal
(non-SC) state, and the coexistence phase of SC and SDW
orders is induced by PPB in the high-field region of the SC
phase. In Fig. 2(b), on the other hand, the SDW ordering
is strongly suppressed in the SC phase compared to in the
high-field normal phase, which indicates a clear competition
between SC and SDW orders in the artificial model. This
difference implies that the sign change of the gap function,
which is present in the dx2−y2 -wave SC model and not in the
artificial model, is essential to the realization of the PPB-
induced SDW ordering only in a SC phase.

In both figures of Fig. 2, the appearance of the nonvanishing
m with increasing h is continuous. This second-order transition

0.0 0.2 0.4 0.6 0.8 1.0
H/H P

0.0

2.0

4.0

6.0

Δ,
 m

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

Δ,
 m

H/H P

(a)

FIG. 2. Field dependences of � (red solid line) and m (blue
dashed line) (a) in the dx2−y2 -wave SC model and (b) in the artificial
model (see the main text). The parameters used in (a) are t1/Tc =
10, t2/t1 = 0.05, μ/t1 = 0.62, U/Tc = 15.2, and T/Tc = 0.1. The
parameters used in (b) are the same as those in (a) except for
U/Tc = 18.8.

to the SDW ordered phase might be seen as a kink of the field
dependence of �. Since the SC order is already present at
this second-order transition field where � is large, however,
the effects of m on � are much smaller contributions to the
free energy compared with those of � on m at least for the
parameter values used in obtaining Fig. 2. Hence, such a kink
is not visible on the field scale in Fig. 2.

The effect of the sign change of the gap function is also
reflected in the k-space structures of SC and SDW orders.
Figure 3 shows the distributions of |F (k)| and H (k) along
the FS in the first quadrant of k space, in the dx2−y2 -wave
SC model [Fig. 3(a)] and in the artificial model [Fig. 3(b)]
at H/HP = 0.85. In these figures, θ represents the angle of
k on the FS measured from the point (π,π ), as illustrated in
Fig. 3(c). In Fig. 3(a), H (k) is maximal not at the gap node
(at θ = π/4) but at the points away from the gap node where
F (k) is finite. Moreover, F (k) near the gap node, which is
completely suppressed by PPB when there is no SDW order,
is slightly enhanced in the presence of nonvanishing H (k).
These results imply that SC and SDW orders are enhanced
consistently with each other not only in real space but also
in k space in the dx2−y2 -wave SC model. In Fig. 3(b), on the
other hand, H (k) is maximal at the gap node, and is strongly
suppressed in the region away from the gap node where F (k)
is finite. Furthermore, F (k) near the gap node is completely
suppressed even in the presence of a SDW order. These results
suggest that, contrary to the dx2−y2 -wave SC model, SC and
SDW orders are competitive in k space in the artificial model.
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FIG. 3. Plots of |F (k)| (red solid line) and H (k) (blue dashed
line) along FS (a) in the dx2−y2 -wave SC model and (b) in the artificial
model (see the main text) when H/HP = 0.85. The definition of θ is
illustrated in (c). The parameters used in (a) and (b) are the same as
those in Figs. 2(a) and 2(b), respectively.

The difference in the field dependences of m between these
models can be understood in light of the difference in the k-
space structure of SC and SDW orders between these models.
In the dx2−y2 -wave SC model with a strong PPB effect, SC
and SDW orders are enhanced with each other in k space, and
the free energy is lowered by the overlap of these orders in k
space. As a result, even if there is no SDW ordering in a normal
phase, a SDW order is induced in higher fields by the presence
of a SC order. In the artificial model, on the other hand, SC and
SDW orders are competitive in k space; therefore, a phase with
only one kind of order tends to be more stable than a phase
where both SC and SDW orders are present and coexist in k
space. As a result, the SDW ordering in a SC phase is strongly
suppressed in contrast to that in a normal phase. As discussed
above, the difference between these models is solely originated
from the presence or absence of the k-space sign change of
the gap function. Consequently, these results indicate that the
k-space sign change of the gap function wk+Q = −wk is the
main origin of the mutual enhancement of dx2−y2 -wave SC and
SDW orders in k space and is necessary for the realization of
the SDW ordering appearing only in a SC phase.

V. COEXISTENCE OF SC AND SDW ORDERS CLOSE
TO A CONTINUOUS SDW TRANSITION LINE

In this section, the coexistence of the SC and SDW orders in
k space is investigated analytically. For this purpose, we focus
here on the case with a small enough m without treating Eq. (5)
in a general way, where m is the amplitude of the SDW order
parameter. Namely, the case in which the SDW transition in

the SC phase is continuous will be considered in this section.
For such a small enough m, Ĝ−1

k defined in Eq. (7) is simplified
to

Ĝk = ([
Ĝ

(0)
k

]−1 + M̌
)−1 ∼ Ĝ

(0)
k − Ĝ

(0)
k M̌Ĝ

(0)
k , (14)

where

[
Ĝ

(0)
k

]−1 =

⎛
⎜⎜⎜⎝

D̂k,↑ 0 . . . 0
0 D̂k+Q,↓ . . . 0
...

...
. . .

...
0 0 . . . D̂k+(N−1)Q,↓,

⎞
⎟⎟⎟⎠ (15)

and

M̌ =

⎛
⎜⎜⎜⎝

0 M̂ 0 . . . 0 M̂

M̂ 0 M̂ . . . 0 0
...

...
...

. . .
...

...
M̂ 0 0 . . . M̂ 0.

⎞
⎟⎟⎟⎠. (16)

Equation (14) can be regarded as the perturbative expansion
of Ĝk in m based on the use of the Nambu Green’s function
D̂−1

k,↑ (see below). According to Eq. (14), the components of

Ĝk associated with H (k) take the following forms,

[Ĝk]3,1 = [
D̂−1

k+Q,↓M̂D̂−1
k,↑

]
1,1

= m
(
G

(0)
k,↑G

(0)
k+Q,↓ − F

(0)
k,↑F

(0)
k+Q,↓

)
(17)

and

[Ĝk]4,2 = [
D̂−1

k+Q,↓M̂D̂−1
k,↑

]
2,2

= m
(
F

(0)
k,↑F

(0)
k+Q,↓ − G

(0)
−k,↓G

(0)
−k−Q,↑

)
, (18)

where(
G

(0)
k,σ F

(0)
k,σ

F
(0)
k,σ −G

(0)
−k,−σ

)
= D̂−1

k,σ = 1

(iωn + hσ )2 − ξ 2
k − |�wk|2

×
(
iωn + hσ + ξk −�wkσ

−�wkσ iωn + hσ − ξk

)
(19)

are the Nambu Green’s functions with m = 0. By substituting
Eqs. (17) and (18) into Eq. (9), H (k) is obtained in the form

H (k) = H (n)(k) + H (an)(k), (20)

where

H (n)(k) = T
∑
ωn,σ

mG
(0)
k,σG

(0)
k+Q,−σ + (Q ↔ −Q) (21)

and

H (an)(k) = −T
∑
ωn,σ

mF
(0)
k,σF

(0)
k+Q,−σ + (Q ↔ −Q) (22)

are contributions from the normal and anomalous Green’s
functions, respectively. Further, by substituting Eq. (20) into
Eq. (11), we obtain

1

U
= T

∑
k,σ

ω2
n − h2 + ξkξk+Q − |�|2wkwk+Q[

(iωn + hσ )2 − ξ 2
k − |�wk|

][
(iωn − hσ )2 − ξ 2

k+Q − |�wk+Q|] . (23)
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The normal part H (n)(k) is significantly enhanced in the
vicinity of the k-space regions where Ek,↑ and Ek+Q,↑ tend
to vanish. This condition is satisfied close to the nodal region
where k = ±(π/2,π/2) and is compatible with the fact shown
in Sec. III that the SDW order is induced in these k-space
regions. On the other hand, H (an)(k) expresses the effects of the
coupling between the Cooper pair condensates and the SDW
order and, according to Eqs. (22) and (19), is proportional
to −|�|2wkwk+Q. Then, in the case of dx2−y2 -wave pairing
satisfying wk+Q = −wk, the sign of this term becomes positive
so that H (k) is enhanced. This H (k) enhancement is known
to be an origin of the coexistence of the SDW order with the
dx2−y2 -wave SC order [15]. In fact, it is easily verified that
Eq. (23) with h = 0 and Q → (π,π ) coincides with the gap
equation derived in Ref. [15] in the m → 0 limit.

In the zero field (h = 0) studied previously [15], however,
this SDW enhancement close to the gap nodes is much weaker
than the SDW suppression due to the finite energy gap far
from the gap nodes, and thus the SDW ordering only in the SC
phase seen in CeCoIn5 is rarely realized. On the other hand, in
high fields of the order of the Pauli-limiting field HP, the SDW
enhancement close to the gap nodes becomes more dominant,
and the SDW order only in the SC phase can occur.

By contrast, in the pairing model wk = |cos(kx) − cos(ky)|
simulating an extended s-wave pairing function, even the
contributions from the vicinity of the gap nodes also suppress
the SDW ordering, and the SC and SDW orders become
competitive in any region of the real and k spaces. The
remarkable differences in the field dependence of m between
Figs. 2(a) and 2(b) [see also Fig. 4(b)] are explained based on
the coupling between the two orders dependent on the pairing
symmetry and on its dependence on the electron correlation
strength U : For the relatively small U values used in Fig. 2(a),
the SDW ordering does not occur in the normal phase, although
the SDW order occurs at the high-field end of the SC phase
due to the SDW enhancement of the dx2−y2 -wave pairing
mentioned above.

VI. INFLUENCE OF A FS CURVATURE
ON SDW ORDERING

In this section, we discuss an influence of a FS curvature
on the k-space structure of dx2−y2 -wave SC and SDW orders.
Since the SC and SDW orders in k space are induced by
quasiparticle states near FS (see Fig. 1), it is expected that
the k-space structure of these orders is affected by the shape
of FS. In the model described in Sec. II, the shape of FS
is parametrized by t2/t1, because μ is determined under the
condition that the FS nesting is realized at the gap nodes on
the line kx = ky . The inset of Fig. 4(a) plots the shapes of FSs
for t2/t1 = −0.05 (blue dashed line) and t2/t1 = 0.05 (purple
dotted line), showing that the FS curvature for t2/t1 = −0.05
is larger than that for t2/t1 = 0.05.

Figure 4(a) shows |F (k)| and H (k) along the FS in the case
of the large FS curvature (t2/t1 = −0.05) when H/HP = 1.0.
As discussed in Sec. III, in the case of a small FS curvature,
the FS nesting condition (ξk+Q ∼ −ξk) is satisfied in a large
part of the FS in the first and third quadrants of the k space. In
the case of a large FS curvature, on the other hand, the hot spot
for the nesting is confined to the vicinity of the gap nodes at

H/HP

Δ,
 m

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

0
θ

0.000

0.004

0.008

0.012

π/2π/4

|F
(k

)|,
 H

(k
)

(a)

(b)

0 π

π

kx

k y

FIG. 4. (a) Plots of |F (k)| (red solid line) and H (k) (blue dashed
line) along the FS when t2/t1 = −0.05, H/HP = 1.0, and T/Tc =
0.1. The definition of θ is the same as in Fig. 3. Inset: Shapes of FSs
in the first quadrant of the k space for t2/t1 = −0.05 (blue dashed
line) and t2/t1 = 0.05 (purple dotted line). (b) Field dependence of
the SC order parameter � (red solid line) and the SDW staggered
moment m (blue dashed line) when t2/t1 = −0.05 and T/Tc = 0.1.
The parameters used are t1/Tc = 10, μ/t1 = 0.63, and U/Tc = 21.1
in both (a) and (b).

k ∼ ±(π/2,π/2). As a result, in high fields where the nesting
hot spot is smaller than the k-space region where a SC order
is suppressed by PPB, the overlap of SC and SDW orders in k
space become significantly small, as shown in Fig. 4(a).

This difference in the k-space structure of the SC and SDW
orders due to a FS curvature affects the field dependence of
the SDW ordering. The field dependence of m in the case of
the small FS curvature (t2/t1 = 0.05) is shown in Fig. 2(a),
indicating that m is maximal at Hc2, at which the PPB effect is
the most effective. In this case, the k-space regions contributing
to the SDW ordering become wider than the k-space regions
in which the SC order is suppressed by PPB, leading to the
monotonous increase of m with the field in the SC phase. In the
case of the large FS curvature (t2/t1 = −0.05), on the other
hand, the field dependence of m is plotted in Fig. 4(b), showing
that m is maximal not at Hc2, but at the field slightly below
Hc2. Because the overlap of SC and SDW orders in k space
becomes significantly small at a high field, the SDW ordering
due to the mutual enhancement of these orders in k space is
destabilized in high fields. This results in the steep decrease
of m in high fields and thus the peak of m at the field slightly
below Hc2.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have theoretically analyzed k-space
structures of coexisting dx2−y2 -wave SC and SDW orders
induced by PPB, and discussed the details of the mechanism
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of the PPB-induced SDW ordering. It has been shown that
the SC order is suppressed in the k-space regions near the
gap nodes, where the excitation energy Ek,σ in a pure SC
phase is negative for σ =↑ due to the Zeeman energy, and that
the major contributions to the SDW ordering come from the
k-space regions, where the SC order is suppressed by PPB, and
the nesting condition of FS (ξk+Q ∼ −ξk) is satisfied (Fig. 1).
These results reflect the contributions of quasiparticle pockets
[14], in which Ek,σ < 0, because SDW ordering is mainly
induced by quasiparticle states near the quasiparticle pockets
connected by the nesting vector Q.

However, it has been shown that the sign change of the gap
function in k space (wk+Q = −wk) is more essential to the
realization of the PPB-induced SDW ordering only in a SC
phase. Figure 2 shows that the coexistence of SC and SDW
orders is stabilized in the high-field region of a dx2−y2 -wave
SC phase with the k-space sign change of the gap function
wk, while these orders are always competitive in the artificial
model in which there is no sign change of wk in k space.
In relation to this, it has also been shown in Ref. [11] that a
dxy-wave SC order, which does not satisfy wk+Q = −wk with
Q = (π,π ), is always competitive to a SDW order with the
modulation vector Q. This fact also indicates that the k-space
sign change of the gap function (wk+Q = −wk) is a crucial
factor for the PPB-induced coexistence of SC and SDW orders.

The importance of the k-space sign change of the gap
function can be explained based on the k-space structure of SC
and SDW orders. It has been shown that, in the dx2−y2 -wave
SC model, SC and SDW orders are enhanced with each other
even in k space, while in the artificial model, these orders
are competitive in k space (Fig. 3). This result indicates
that this mutual enhancement of dx2−y2 -wave SC and SDW
orders originates from the sign change of wk and stabilizes the
overlapped structure of these orders in k space. As a result,
the PPB-induced coexistent phase of SC and SDW orders

is largely stabilized by this mutual enhancement. We stress
that this mutual enhancement of SC and SDW orders in k
space resulting from the sign change of the gap function is the
dominant mechanism for the PPB-induced SDW ordering.

In the case of a large FS curvature, the hot spot for the
nesting becomes smaller than the k-space region where a SC
order is suppressed by PPB as the field is increased, leading to a
decrease of the overlap of these orders in k space [Fig. 4(a)] and
a suppression of SDW ordering in the high-field region of the
SC phase. As a result, the field dependence of a SDW moment
m(H ) has a peak at a field slightly below Hc2 [Fig. 4(b)].
A peak of SDW ordering at a field slightly below Hc2 has
also been predicted in the case of a moderate strength of PPB
with a second-order SC transition at a high field [11] and in
the case of a strong-coupling SC phase [16]. However, the
peak of SDW ordering in these cases results from the large
decrease of a SC order parameter � in higher fields, and the
peak of m(H ) in the case of a large FS curvature, where � is
almost independent of the field [see Fig. 4(b)], is caused by the
different mechanism from them. That is, the k-space structure
of coexisting SC and SDW orders affects the PPB-induced
SDW ordering in the present case. Finally, we note that, as
discussed in Refs. [9,11], the enhancement of SDW ordering
at a field below Hc2 should be ultimately related to the field-
induced antiferromagnetic quantum critical phenomena near
Hc2 observed in several heavy fermion superconductors with
a strong PPB effect, such as CeCoIn5 [17–19], CeRhIn5 [20],
Ce2PdIn8 [21,22], and NpPd5Al2 [23].
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