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Effective field theory for one-dimensional valence-bond-solid phases and their symmetry protection
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We investigate valence-bond-solid (VBS) phases in one-dimensional spin systems by an effective field theory
developed by Schulz [Phys. Rev. B 34, 6372 (1986)]. While the distinction among the VBS phases is often
understood in terms of different entanglement structures protected by certain symmetries, we adopt a different
but more fundamental point of view, that is, different VBS phases are separated by a gap closing under certain
symmetries. In this way, the effective field theory reproduces the known three symmetries: time reversal, bond-
centered inversion, and dihedral group of π spin rotations. It also predicts that there exists another symmetry:
site-centered inversion combined with a spin rotation by π . We demonstrate that the last symmetry gives
distinct trivial phases, which cannot be characterized by their entanglement structure, in terms of a simple
perturbative analysis in a spin chain. We also discuss several applications of the effective field theory to the phase
transitions among VBS phases in microscopic models and an extension of the Lieb-Schultz-Mattis theorem to
non-translational-invariant systems.
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I. INTRODUCTION

Disordered ground states, which do not break any symmetry
of the corresponding Hamiltonian, are classified into a single
phase in the standard framework of the Landau-Ginzburg-
Wilson (LGW) symmetry-breaking theory. However, it is now
widely recognized that phase transitions can occur among
those disordered states in quantum many-body systems. This
suggests that there exist a variety of disordered quantum
phases. Systematic understanding of these phases, usually
referred to as topological phases, requires new concepts
beyond the LGW theory.

While the standard characterization in terms of local order
parameter fails for the topological phases, a more general way
to classify the gapped quantum phases, based on the local
unitary transformation (LUT), has been proposed in Ref. [1].
In this scheme, two gapped ground states of local Hamiltonians
belong to the same phase if and only if the one is connected
to the other by some LUT. If the two ground states belong to
different phases, a gap closing (i.e., quantum phase transition)
is necessary under any path that continuously connects the two
Hamiltonians in the parameter space. In one dimension (1D),
all the gapped ground states fall into a single phase unless some
symmetry is imposed to the Hamiltonian and the LUT [2].
Once some symmetry is imposed, there exist two classes of
the quantum phases in 1D: conventional symmetry-breaking
phase and symmetry-protected topological (SPT) phase [1,3].
The latter phase does not break the imposed symmetry and
thus cannot be characterized by local order parameters.

A notable example of SPT phases is the Haldane phase
in a spin-1 chain [4,5]. Its properties are well understood in
terms of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [6,7].
Although there is no local order parameter due to the absence
of symmetry breaking, the spin-1 Haldane phase typically has
a nonlocal (string) order parameter [8,9] and spin- 1

2 gapless
excitations at the ends of an open chain [10]. While these
features do not always exist once the AKLT Hamiltonian is
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perturbed, they can be traced back to a locally entangled nature
of the state. In fact, this local entanglement can be directly
observed as the twofold degeneracy in the entanglement
spectrum [11]. Furthermore, this entanglement cannot be
removed as long as we keep one of three symmetries: time
reversal, bond-centered inversion, and π rotations around two
orthogonal spin axes [11,12]. Thus, in the presence of these
symmetries, the Haldane phase cannot be smoothly connected
to unentangled states, that is, direct-product states. Therefore,
the spin-1 Haldane phase is understood as an SPT phase.

The entangled nature of the Haldane phase is most
conveniently described in terms of matrix-product state (MPS)
[13–15]. In the spin-1 Haldane phase, the aforementioned three
symmetries act on the matrices with a nontrivial projective
representation [11], which enforces the degeneracy of the
entanglement spectrum. In general, different SPT phases
in 1D are labeled by different projective representations
of a symmetry group G [2,16,17]. Since the projective
representation of G corresponds to an element of a discrete
group, the second-cohomology group H 2(G,U(1)), different
SPT phases cannot be smoothly connected to each other; the
projective representation serves as a topological invariant. In
the language of MPS, an MPS must violate the injectivity to
change this topological invariant [2,12,16,17]; this implies the
existence of gap closing between different SPT phases. Since
a topologically trivial state that can be smoothly connected to
a direct-product state is characterized by the trivial projective
representation (i.e., linear representation), it must be separated
from the spin-1 Haldane phase by a gap closing.

A similar argument can be extended to valence-bond-solid
(VBS) phases, which are constructed in a manner proposed
by AKLT [7]: On a lattice with spin-S, we first decompose
a spin-S into 2S spin- 1

2 ’s on each site and then form spin
singlets between nearest-neighboring sites. After distributing
the singlet bonds over the whole lattice with keeping the lattice
symmetry, we project the 2S spin- 1

2 ’s onto a spin-S on each
site. A state constructed in this way is called the VBS state and
a phase that is adiabatically connected to a VBS state is called
the VBS phase. VBS phases are realized as disordered ground
states of various quasi-one-dimensional spin Hamiltonians: for
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examples, spin chains with single-site anisotropy [8,18–24],
dimerized chains [7,25–27], and spin ladders [28–37]. A phase
transition between two VBS phases is observed when the parity
of the number of singlets in one phase differs from that of the
other under a certain spatial cut [38]. As in the case of the
spin-1 Haldane phase, it is expected that this phase transition
is due to the change of the topological invariant protected by
one of the above three symmetries [12].

Although the symmetry-protected nature of the VBS phases
is well understood as the nontrivial projective representation on
the MPS, if one goes back to the original concept of the LUT,
their nature can in principle be characterized by the presence or
absence of gap closing between the two phases under a certain
symmetry. The latter approach is particularly suitable for 1D
systems, for which conformal field theory (CFT) provides a
faithful description of gapless ground states, in contrast to that
the MPS provides an efficient description of gapped ground
states. We can also study the gapped ground states (with or
without symmetry breaking) by perturbing the CFT in a quite
controllable way by using the renormalization group. Thus,
we can directly examine the presence of gap closing from
one phase to another by the field-theoretical approach. In this
respect, the well-known Z8 classification of 1D interacting
Majorana fermions with time-reversal symmetry has been
shown within both the MPS and field theory [39,40]. It is
then natural to expect a similar field-theoretical approach for
the VBS phases. In fact, Berg et al. [41] have suggested
the importance of an inversion symmetry for the stability
of the spin-1 Haldane phase by a bosonization approach.
However, their study did not yield the full identification of
the symmetries later known by the MPS approach.

In this paper, we accomplish the field-theoretical approach
to identify the full symmetries protecting the VBS phases in
1D spin systems. To this end, we adopt an effective low-energy
theory proposed by Schulz [18], which is a simple sine-Gordon
theory obtained by Abelian bosonization. Surprisingly, this
rather old theory actually captures essential properties of
the VBS phases such as their symmetry protection. We first
apply his theory to several spin systems, such as the spin
chain, spin ladder, and those with a dimerization. We then
show that, once different VBS phases are identified as gapped
phases with different signs of the sine-Gordon coupling, his
theory faithfully explains what symmetry preserves the gap
closing between them. Those symmetries include the known
three symmetries [11]: time reversal, bond-centered inversion,
and dihedral group of π spin rotations. Furthermore, there
is another symmetry: site-centered inversion combined with
a spin rotation by π . Since this symmetry is not associated
with the nontrivial projective representation [42], phases
protected only by this symmetry are not distinguished by
their entanglement structure. However, if we adopt the first-
principles definition of gapped phases, which states that they
are distinguished by a gap closing, different VBS phases are
still distinct even under the last symmetry. The effective theory
also suggests that site-centered inversion symmetry forbids the
unique gapped ground state for half-odd-integer spin chains.
This is a nontrivial extension of the Lieb-Schultz-Mattis
theorem [43] to non-translational-invariant systems.

This paper is organized as follows. In Sec. II, we introduce
an N -leg spin- 1

2 ladder model as a prototype of various quasi-

1D spin Hamiltonians. In Sec. III, using Abelian bosonization
technique, we revisit the low-energy effective theory for the
ladder model, which is originally discussed by Schulz [18].
Although the original derivation was based on perturbation
theory, we further argue its consistency with symmetry.
The extension of the Lieb-Schultz-Mattis theorem is also
discussed. In Sec. IV, we illustrate how the effective theory
describes VBS phases for several well-known spin models.
For those who just wish to appreciate how the effective theory
describes different VBS phases, it will be enough to see
Sec. IV D where the edge states are argued. Section V shows
a main result of this paper: the low-energy theory faithfully
identifies the four symmetries protecting the VBS phases. We
also draw a microscopic implication of the newly discovered
symmetry. Section VI concludes this paper. Two Appendices
complement technical details of the analyses in the main text.

II. MODEL

We consider an N -leg spin- 1
2 ladder given by the Hamilto-

nian

H = H‖ + H⊥ + H ′. (1)

The first term represents N decoupled spin- 1
2 chains

H‖ = J
∑

i

N∑
j=1

(
sx
i,j s

x
i+1,j + s

y

i,j s
y

i+1,j + �sz
i,j s

z
i+1,j

)
, (2)

where �si,j is the spin- 1
2 operator with the rung (leg) index

i (j ), J is an antiferromagnetic intrachain exchange, and �

controls its uniaxial anisotropy. The second term H⊥ represents
interchain exchange couplings, which are generally written in
the form

H⊥ =
∑

i

∑
α

∑
j �=j ′

[
J

xy

⊥,(α,j,j ′)
(
sx
i,j s

x
i+α,j ′ + s

y

i,j s
y

i+α,j ′
)

+ J z
⊥,(α,j,j ′)s

z
i,j s

z
i+α,j ′

]
. (3)

Their coupling constants can be either ferromagnetic or
antiferromagnetic. α is taken to be a small integer such that
the couplings will be short ranged. A spin-ladder model
defined by H‖ + H⊥ is invariant under several symmetry
operations: one-site translation �si,j → �si+1,j , bond-centered
inversion �si,j → �s1−i,j , time reversal �si,j → −�si,j , U(1) spin
rotation around the z axis, and π rotation around the x or y

axis. The last term in Eq. (1), H ′, contains some perturbations
that (partially or fully) break the above symmetries. In the
following, we first identify the low-energy description of VBS
phases in the ladder Hamiltonian H‖ + H⊥ and then examine
the stability of gap closing between those VBS phases by
adding the symmetry-breaking perturbation H ′.

Before proceeding, we here show examples of the simple
limiting cases of our model (1). If we take α = 0 and j ′ = j +
1, we have a ladder model only with perpendicular interchain
couplings

H⊥=
∑

i

N∑
j=1

[
J

xy

⊥
(
sx
i,j s

x
i,j+1 + s

y

i,j s
y

i,j+1

) + J z
⊥sz

i,j s
z
i,j+1

]
. (4)

Depending on the boundary condition along the rung, this
model is referred to as the spin tube if �si,N+1 ≡ �si,1, while
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(a)

FIG. 1. Various spin ladders considered in this paper. (a) Four-
leg spin tube and (b) conventional (open) ladder with perpendicular
interchain couplings. (c) Regarding a spin-2 as four spin- 1

2 ’s, a spin-
2 chain can be mapped onto a four-leg spin- 1

2 ladder model with
diagonal interchain couplings.

the open spin ladder if �si,N+1 ≡ 0. Those ladder models are
depicted in Figs. 1(a) and 1(b). The N = 2 case has been
extensively studied [44–55]. There are also several systematic
studies on N -leg spin ladders and tubes [28–37].

Another example is a ladder mapping [18,56–61] of the an-
tiferromagnetic spin-S XXZ chain with a uniaxial anisotropy

HXXZ =
∑

i

[
J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

) + Dz(S
z
i )2

]
,

(5)

where �Si is the spin-S operator on the site i. If we decompose
a spin-S into 2S spin- 1

2 ’s as

�Si =
2S∑

j=1

�si,j , (6)

we can express HXXZ as a sort of spin ladders with diagonal
couplings [see Fig. 1(c)]

HXXZ = H‖ +
∑

i

∑
j �=j ′

[
J
(
sx
i,j s

x
i+1,j ′ + s

y

i,j s
y

i+1,j ′
)

+ J�sz
i,j s

z
i+1,j ′ + Dzs

z
i,j s

z
i,j ′

] + const. (7)

Here, the number of legs is N = 2S. If the composite spins
on each rung (6) are projected onto the fully symmetric sector
with total spin S, we will recover the physics of the single
XXZ chain (5). However, even without the projection and
even though we consider the model with a perturbatively small
interchain coupling, we can still recover qualitatively the same
low-energy physics as that of the XXZ chain [18,56–61]. The
second term of Eq. (7) is nothing but Eq. (3) with J

xy

⊥,(1,j,j ′) =
J , J z

⊥,(0,j,j ′) = Dz, and J z
⊥,(1,j,j ′) = J�.

III. BOSONIZATION AND EFFECTIVE HAMILTONIAN

In this section, we apply the Abelian bosonization ap-
proach [62–64] to the ladder Hamiltonian (1) with H ′ =
0. Following the discussion by Schulz [18], we revisit an
effective low-energy theory only with a single bosonic field.
We further discuss its consistency with symmetry. We also
propose an extension of the Lieb-Schultz-Mattis theorem for
non-translational-invariant systems.

A. Bosonization

For −1 < � � 1, the decoupled chain part H‖ is a
collection of N critical spin- 1

2 chains. In the continuum limit,
H‖ is described by N massless free bosons as

H‖ ≈ v

2π

∫
dx

N∑
j=1

[
K(∂xθj )2 + 1

K
(∂xφj )2

]
, (8)

where we have introduced dual fields with respect to each
chain, satisfying

[φj (x),θj ′ (x ′)] = iπ

2
δjj ′[sgn(x − x ′) + 1], (9)

v and K are the spin velocity and the Luttinger parameter,

v = πJa0

√
1 − �2

2 cos−1 �
, K = π

π − cos−1 �
, (10)

and x = ia0 with the lattice spacing a0. In Eq. (8), we have
neglected a marginally irrelevant term at � = 1 since it is
unimportant in the following discussion. Spin operators are
expressed in terms of the bosonic fields as

sz
i,j ≈ a0

π
√

2
∂xφj − (−1)ia1 sin(

√
2φj ), (11a)

s+
i,j ≈ ei

√
2θj [b0(−1)i + b1 sin(

√
2φj )], (11b)

where a1, b0, and b1 are nonuniversal constants. Substituting
these expressions into Eq. (3), we obtain

H⊥ ≈
∫

dx
∑
j �=j ′

[g0,(j,j ′)∂xφj∂xφj ′ + g1,(j,j ′) cos
√

2(φj + φj ′)

+ g2,(j,j ′) cos
√

2(φj − φj ′) + g3,(j,j ′) cos
√

2(θj − θj ′ )

+ g4,(j,j ′) cos
√

2(φj + φj ′) cos
√

2(θj − θj ′ )

+ g5,(j,j ′) cos
√

2(φj − φj ′) cos
√

2(θj − θj ′ )], (12)

where

g0,(j,j ′) = a0

2π2

∑
α

J z
⊥,(α,j,j ′), (13a)

g1,(j,j ′) = − a2
1

2a0

∑
α

(−1)αJ z
⊥,(α,j,j ′), (13b)

g2,(j,j ′) = a2
1

2a0

∑
α

(−1)αJ z
⊥,(α,j,j ′), (13c)

g3,(j,j ′) = b2
0

a0

∑
α

(−1)αJ
xy

⊥,(α,j,j ′), (13d)

g4,(j,j ′) = b2
1

2a0

∑
α

J
xy

⊥,(α,j,j ′), (13e)

g5,(j,j ′) = − b2
1

2a0

∑
α

J
xy

⊥,(α,j,j ′). (13f)

For brevity, we will collectively denote gi,(j,j ′) as gi . For
instance, when we say that gi is relevant under renormalization
group, all gi,(j,j ′)’s are relevant. If we denote the scaling
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dimensions of gi as xi , they are given by x0 = 2, x1 =
x2 = K , x3 = 1/K , and x4 = x5 = K + 1/K . In general, the
expression (12) is valid only for perturbatively small J⊥’s.
However, as long as there is a continuity between the weak-
and strong-coupling limits, we can use the above expression
to investigate qualitative properties of the system for arbitrary
strengths of J⊥’s.

B. Effective Hamiltonian

Since our model involves N bosons and they are not
decoupled in general, the analysis of the Hamiltonian H‖ + H⊥
is a formidable task. However, on the purpose to describe
gapped disordered phases such as VBS phases, it is enough
to see an effective Hamiltonian only with a single boson. To
this end, let us introduce a center-of-mass field 	0 and N − 1
relative fields 	ν with ν = 1, . . . ,N − 1,

	0 = 1√
N

N∑
j=1

φj , 	ν =
N∑

j=1

u
(ν)
j φj . (14)

If we add one extra dimension to u
(ν)
j and set u

(N)
j = 1/

√
N ,

u
(μ)
j with μ = 1, . . . ,N forms an N -dimensional orthogonal

matrix satisfying

N∑
j=1

u
(μ)
j u

(μ′)
j = δμμ′,

N∑
μ=1

u
(μ)
j u

(μ)
j ′ = δjj ′ . (15)

Their duals �0 and �ν are similarly defined as

�0 = 1√
N

N∑
j=1

θj , �ν =
N∑

j=1

u
(ν)
j θj . (16)

The original chain fields are now represented as

φj = 1√
N

	0 +
N−1∑
ν=1

u
(ν)
j 	ν,

θj = 1√
N

�0 +
N−1∑
ν=1

u
(ν)
j �ν.

(17)

In terms of these new fields, H‖ is rewritten as

H‖ ≈ v

2π

∫
dx

[
K(∂x�0)2 + 1

K
(∂x	0)2

]

+ v

2π

∫
dx

N−1∑
ν=1

[
K(∂x�ν)2 + 1

K
(∂x	ν)2

]
. (18)

We note that such a set of linear combinations of the fields
is usually taken to diagonalize the marginal interactions
∂xφj∂xφj ′ , and therefore not restrictive in the form of Eq. (14).
However, in order to derive the effective Hamiltonian only with
a single bosonic field, it is essential to take the above choice.
For general Hamiltonians, this choice of linear combinations
leaves some marginal interactions. Those interactions actually
renormalize the original velocity and Luttinger parameter, but
we assume that they do not affect the relevance of the coupling
constants in Eq. (12). In the following, we thus neglect the
effect of the marginal coupling g0.

As seen from Eqs. (12) and (17), both the terms with g2 and
g3 never involve the center-of-mass field {	0,�0} but may
contain all the relative fields {	ν,�ν}. Our central assumption
is to consider that g3 is the most relevant coupling constant and
reaches the strong-coupling limit faster than the other gi’s. This
is natural to favor gapped disordered phases in the sense that
we must suppress any Ising antiferromagnetic order driven
by g1 and g2. If the model is SU(2) symmetric or easy-plane
anisotropic, this assumption is readily justified since g3 has the
smallest scaling dimension and the largest initial value. Once
g3 goes the strong-coupling limit, the relative fields �ν are
pinned and acquire masses. Correspondingly, their duals 	ν

strongly fluctuate. Thus, we can integrate out {	ν , �ν} and
obtain an effective Hamiltonian only with {	0, �0}. As first
shown by Schulz [18], the effective Hamiltonian is obtained
as

Heff =
∫

dx

[
v0

2π

(
K0(∂x�0)2 + 1

K0
(∂x	0)2

)

+ geff cos

(
	0

RN

)]
(19)

for even N , while

Heff =
∫

dx

[
v0

2π

(
K0(∂x�0)2 + 1

K0
(∂x	0)2

)

+ g′
eff cos

(
2	0

RN

)]
(20)

for odd N , where v0 and K0 are the renormalized velocity
and Luttinger parameter, respectively, and RN = 1/

√
2N is

the compactification radius of 	0, which is explained below.
The vertex operator of 	0 is generated by the (N/2)th
(N th) order perturbation in g1 for even (odd) N . Even if g1

accidentally vanishes, such a vertex is also generated by the
same mechanism for g4, by replacing cos

√
2(θj − θj ′ ) with its

expectation value [60,61]. For completeness, we demonstrate
the perturbative derivation of the effective Hamiltonians
in Appendix A. Those effective Hamiltonians were also
obtained directly from the spin-N/2 Heisenberg chain using
non-Abelian bosonization through the SU(2)N ∼ U(1) × ZN

CFT [65,66].
When the coupling geff or g′

eff is relevant, the effective
Hamiltonian describes a unique gapped ground state for even
N , which turns out to be in a VBS phase, while a gapped
degenerate ground state for odd N . As we will see below,
this becomes clear by considering the periodicity condition
(compactification) of 	0. We also give a nonperturbative
argument for the validity of the effective Hamiltonian from
the point of view of the symmetry.

C. Compactifications of bosons and symmetry

In the effective Hamiltonians (19) and (20), the vertex
operators of 	0 actually have the lowest scaling dimensions
for each parity of N among those compatible with the com-
pactification conditions and the symmetry of the Hamiltonian
H⊥ + H‖. To see this, we first return to the compactification
conditions of the bosonic fields with respect to each chain:

φj ∼ φj + π
√

2, θj ∼ θj + π
√

2. (21)
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Substitution of these conditions into Eqs. (14) and (16) yields
the conditions for the new fields {	0,�0,	ν,�ν}. However, in
deriving the effective Hamiltonian, we have assumed that �ν

were pinned and hence {	ν,�ν} could be integrated out. This
modifies the compactification of �0 from that for the fields
remaining free, as demonstrated in Appendix B. As a result,
we obtain the compactification condition for (	0,�0):

	0 ∼ 	0 + 2πRN, �0 ∼ �0 + 2πR̃N, (22)

where

RN = 1/
√

2N, R̃N =
√

N/2. (23)

This compactification forces vertex operators that can be added
to the effective Hamiltonian to be of the form exp(ip	0/RN +
iq�0/R̃N ), with some integers p and q.

Clearly, the vertex operator of Eq. (19) only has a single
minimum of 	0 in the period 2πRN , while that of Eq. (20) has
two minima. The number of independent minima corresponds
to the number of ground-state degeneracy once the vertex
operator becomes relevant.

Further restrictions on the vertex operators come from the
symmetry of the Hamiltonian H‖ + H⊥. All the symmetry
operations considered in this paper are defined through an
individual operation on each spin- 1

2 operator �si,j . From
the bosonized forms of �si,j in Eq. (11), we can identify
the corresponding symmetry transformations on the bosonic
fields. In Table I, we list the symmetries of H‖ + H⊥ and their
transformations on �si,j and {	0,�0}. The symmetry operations
on the chain field {φj ,θj } can also be recovered by setting
N = 1.

We note that some symmetry transformations in Table I
form larger symmetry groups. One such group is the dihedral
group of spin rotations by π , D2 = {1,Rx,Ry,Rz}. This
can be seen by, for example, RxRy = Rz. Another is a 1D
space group formed by an odd-site translation, bond-centered
inversion, and site-centered inversion: {1,trs,Ib,Is}. This can
be understood as follows: if we impose both the site-centered
inversion symmetry with respect to the site i = 0 and the
bond-centered inversion symmetry with respect to the bond
between i = r and r + 1, those inversions automatically
enforce the system to be invariant under the (2r + 1)-site
translation, i.e., IsIb = trs (the transformations of the bosonic
fields are independent of r). Those group structures are also
reflected in the bosonic fields, up to ambiguity from their
compactifications (22).

Although only π rotations around spin axes are shown in
Table I, we have assumed the U(1) spin-rotational symmetry
around the z axis in the Hamiltonian H‖ + H⊥. In the bosonic
language, this makes the effective Hamiltonian invariant under
the shift �0 → �0 + γ R̃N with a real number γ in [0,2π ).
Thus, any vertex operator of �0 is forbidden by the U(1)
symmetry.

A symmetry constraint on the vertex operators of 	0 comes
from the symmetries under 	0 → −	0. This restricts the ver-
tex operators to even functions in 	0, namely, cos(p	0/RN ).
Another constraint arises from trs or Is . These symmetries
leave the effective Hamiltonian invariant under 	0 → 	 +
πNRN . For even N , this shift can be absorbed in Eq. (22) so
that cos(p	0/RN ) for any positive integer p is allowed. On the
other hand, these symmetries only allow cos(p	0/RN ) with
even p for odd N . The above symmetry analysis is consistent
with the effective Hamiltonians (19) and (20) derived by
lowest-order perturbation theory, which only keep the vertex
operators with the lowest scaling dimensions, i.e., the lowest
values of p.

D. An extension of the Lieb-Schultz-Mattis theorem

For half-odd-integer spin chains with one-site transla-
tional invariance and the U(1) spin-rotational symmetry, the
Lieb-Schultz-Mattis theorem [43,67] states that the ground
state either has a gapless excitation or spontaneously breaks
translational invariance in the thermodynamic limit. This
theorem can also be understood by means of the bosonization
approach [68]. We first review the idea of Ref. [68] and then
extend it to non-translational-invariant systems.

Within the effective Hamiltonian, if only one of vertex op-
erators cos(p	0/RN + α) with p � 2 and some real number α

is relevant, 	0 selects one of p independent potential minima,
resulting in a gapped degenerate ground state. On the other
hand, if all the vertex operators are irrelevant, the ground state
behaves as a free boson and thus is gapless. Therefore, if
the effective Hamiltonian only allows the vertex operators
cos(p	0/RN + α) with p � 2, the fate of the ground state
is either gapless or degenerate with a finite excitation gap.
This is indeed the case for half-odd-integer spin chains, or
equivalently odd-N spin- 1

2 ladders, with odd-site translational
invariance. The ground-state degeneracy is accompanied by
spontaneous breaking of translational invariance.

TABLE I. Symmetry transformations on the spin operators �si,j and the center-of-mass field {	0,�0}.

Symmetry operation Symbol Transformation on spins Transformation on field (	0,�0)

Odd-site translation trs �si,j → �si+q,j
a 	0 → 	0 + πNRN , �0 → �0 + πR̃N

Time reversal T �si,j → −�si,j
b 	0 → −	0, �0 → �0 + πR̃N

Bond-centered inversion Ib �si,j → �s1−i,j 	0(x) → −	0(−x), �0(x) → �0(−x) + πR̃N

Site-centered inversion Is �si,j → �s−i,j 	0(x) → −	0(−x) + πNRN , �0(x) → �0(−x)

π rotation around x axis Rx sx
i,j → sx

i,j , s
y,z

i,j → −s
y,z

i,j 	0 → −	0, �0 → −�0

π rotation around y axis Ry s
y

i,j → s
y

i,j , s
x,z
i,j → −s

x,z
i,j 	0 → −	0, �0 → −�0 + πR̃N

π rotation around z axis Rz sz
i,j → sz

i,j , s
x,y

i,j → −s
x,y

i,j 	0 → 	0, �0 → �0 + πR̃N

aq is an arbitrary odd integer.
bWith complex conjugation.
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For the effective Hamiltonian to have only the vertex
operators with multiple potential minima, the U(1) symmetry
is not necessarily required. In fact, we find that for odd-N
spin- 1

2 ladders, the ground state is either gapless or degenerate,
when the system has (i) trs and either T or D2, or (ii) Is and
either T or D2. Both of those conditions leave the effective
Hamiltonian invariant under

	0 → 	0 + πNRN,

�0 → �0 + πR̃N,
(24)

so that only the vertex operators leading to some degenerate
ground state are allowed. Thus, the condition (ii) does not
require the translational invariance. We remark that for 	0

to transform in the above form, we must ensure that there is
no magnetization. In fact, a finite magnetization in the z axis
modifies the transformation of 	0 and can lead to a unique
gapped ground state [68]. The absence of the magnetization
is ensured by T or D2. Although the present discussion based
on the effective Hamiltonian is far from mathematical rigor,
the same restriction on the ground state under the condition (i)
has been proven by the MPS formalism [2]. Actually, a slight
modification of this MPS proof also leads to the condition (ii)
[69]. Although we here only consider T orD2, the theorem can
be generalized to any symmetry transforming in the nontrivial
projective representation. A related discussion to the condition
(ii) is also given in the point of view of a Berry phase associated
with a local gauge twist [70].

IV. APPLICATION TO MICROSCOPIC MODELS

In this section, we apply the effective Hamiltonian to
several spin models. We especially focus on the integer-spin
chain, even-leg spin ladder, and dimerized spin systems. These
systems are known to exhibit VBS phases. We show that
the distinction between different VBS phases is given by
different signs of the coupling constant geff in the effective
Hamiltonian (19). We also briefly discuss how to obtain the
edge states.

A. XXZ chain with integer spin

We first consider an XXZ chain with integer spin S and
an onsite uniaxial anisotropy, whose Hamiltonian has already
been given in Eq. (5). Possible VBS phases in this model are
schematically represented in Fig. 2 for S = 1 and 2. For S = 1,
its phase diagram has been extensively studied [8,18,19,21]
and there are two gapped disordered phases. One is the Haldane
phase locating around the Heisenberg point � = 1 and Dz =
0, and the other is the large-D phase stabilized for sufficiently
large positive Dz. Both the phases do not break any symmetry
of the Hamiltonian, but they are separated by a Gaussian phase
transition with central charge c = 1. For S = 2, the phase
diagram has also been studied [18,22–24,71–74] and again
the Haldane and large-D phases were found. However, careful
numerical simulations have indicated that there is no phase
transition between these phases [22–24]. Thus, for S = 2, the
Haldane and large-D phases essentially belong to the same
phase.

Such a difference between the S = 1 and S = 2 Haldane
phases is extended to the difference between the odd-S and

FIG. 2. Schematic pictures of the VBS phases appearing in the
XXZ chain for (a) S = 1 and (b) S = 2. The black dot represents
a spin- 1

2 and the black circle means the symmetrization of enclosed
spin- 1

2 ’s. Two spin- 1
2 ’s linked by the red solid line form a singlet, while

spin- 1
2 ’s enclosed by the black rectangle are frozen to the Sz = 0 state.

even-S Haldane phases [12]. This fact can be seen at the level
of the effective Hamiltonian (19). Through the ladder mapping
in Eq. (7), the initial coupling g1 is given by

g1 = a2
1

a0
(J� − Dz). (25)

Assuming that � � 1 and thus g3 is most relevant, we obtain
the effective Hamiltonian (19) with the coupling constant [18]

geff ∼ −A(Dz − J�)S, (26)

where A is a nonuniversal constant. As demonstrated in
Appendix A, it is reasonable to take the prefactor A as some
positive value.

If the effective coupling geff is relevant, it leads to a
unique gapped ground state without any symmetry breaking.
We expect that this gapped ground state corresponds to the
Haldane phase around Dz = 0 while the large-D phase for
Dz � J�. For odd S, increasing Dz from zero, the coupling
constant geff must change its sign. Thus, the Haldane and
large-D phases are naturally identified as the geff > 0 and
geff < 0 regimes, respectively, and there manifestly exists a
Gaussian transition at geff = 0 between those phases. For
S = 1, this identification of the VBS phases by the sign of
geff is justified by nonlocal order parameters [41,52,75] and
spin- 1

2 edge states [53]. On the other hand, for even S, the
coupling constant geff never changes its sign by increasing
Dz. Thus the Haldane and large-D phases can be adiabatically
connected to each other with avoiding geff = 0. From Eq. (26),
it appears that there is a gapless point at Dz = J�, as predicted
by Schulz [18]. But, a finite geff is also generated from
the coupling g4 ∝ J and then can open a gap [60,61]. We
note that a similar argument focusing on the power of the
coupling has been done by Nonne et. al. [66] in the context
of a 1D multicomponent Hubbard model. Equation (26) may
also indicate that the gap exponentially decays to zero in the
semiclassical limit S → ∞.

We finally refer to the existence of the so-called
intermediate-D phase [20], which is a realization of the spin-1
Haldane phase in spin-2 chains. This phase is separated from
both the spin-2 Haldane and the large-D phases. Recent
numerical simulations on the Hamiltonian (5) showed that
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it is absent [23] or restricted in a quite narrow region on
the parameter space [22,24]. At the level of the effective
Hamiltonian, this subtlety on its existence can be seen from the
fact that it requires higher-order perturbations to change the
sign of geff. However, once we introduce a quartic anisotropy
D4

∑
i(S

z
i )4, the intermediate-D phase is stabilized for a wide

range of D4 [23,76]. Since D4 contributes to geff at the first
order for S = 2, it is relatively easy to make the sign of
geff positive, leading to the intermediate-D phase. This also
provides a strong evidence that the sign of geff is responsible
for the distinction of VBS phases.

B. Spin tube with even N

As the second example, we consider a spin- 1
2 tube with

even N ,

H =
∑

i

N∑
j=1

[J �si,j · �si+1,j + J⊥�si,j · �si,j+1]. (27)

The ground state is in the rung-singlet phase for J⊥ > 0, which
is smoothly connected to the direct-product state of singlets
formed on each rung, while in the spin-N/2 Haldane phase
for J⊥ < 0. Qualitative properties of the both phases can be
understood in the strong-coupling limit J⊥ → ±∞.

As in the integer-S XXZ chain, we can see the difference
between the odd-N/2 and even-N/2 Haldane phases in terms
of the effective coupling constant

geff ∼ −A′(J⊥)N/2, (28)

where A′ is a positive nonuniversal constant. For N ∈ 4Z + 2,
the rung-singlet phase takes the negative sign of geff whereas
the Haldane phase takes the positive sign. This indicates
that the rung-singlet and odd-N/2 Haldane phases belong to
different phases separated by a gap closing. On the other hand,
for N ∈ 4Z, the rung-singlet and even-N/2 Haldane phases
always share the same sign of geff and thus belong to the same
phase.

In this model, to go from the J⊥ < 0 region to the J⊥ > 0
region, we have to pass through an obvious critical point at
J⊥ = 0, which corresponds to the N decoupled critical chains.
However, no matter what we take as a continuous path of
parameters, we should observe a gap closing between the odd-
N/2 Haldane and rung-singlet phases, according to the change
of the sign of geff in the effective Hamiltonian (19). In fact,
such a nontrivial phase transition has been observed for N = 2
by introducing a diagonal exchange coupling [38,77–81] or a
uniaxial anisotropy [55]. In contrast, we can find some path
that connects the even-N/2 Haldane and rung-singlet phases
without gap closing. For example, in the two-coupled spin-1
chains,

H = J
∑

i

∑
j=1,2

�Si,j · �Si+1,j + J⊥
∑

i

�Si,1 · �Si,2, (29)

the absence of gap closing between the spin-2 Haldane and
rung-singlet phases has been observed [12,41,82]. This can
be explained by the fact that, through the ladder mapping, geff

takes the form geff ∼ −A0J
2 − A1J

2
⊥ with A0,1 > 0 and hence

is always negative.

C. Dimerization

The third example of interest is the open spin ladder
with an explicit dimerization. Let us consider the N -leg spin
ladder (27) with a “columnar” dimerization,

H ′ = δ
∑

i

N∑
j=1

(−1)i�si,j · �si+1,j , (30)

which explicitly breaks both trs and Is . This extrinsic
symmetry breaking does not affect the effective Hamiltonian
for even N but does for odd N . It allows the vertex operator
cos(	0/RN ) to be added to Eq. (20). Therefore, we can here
deal with both the odd-N and even-N cases in the same
effective Hamiltonian (19).

Equation (30) is bosonized as

H ′ ≈ dδ

N∑
j=1

∫
dx cos(

√
2φj ), (31)

where d is a nonuniversal coefficient. For N = 2, the dimer-
ization contributes to the effective coupling geff as [83]

geff ∼ −J⊥ − Bδ2, (32)

where B > 0, according to a similar analysis to Appendix A.
This implies that, for J⊥ < 0, the Haldane phase with geff >

0 is driven into another phase with geff < 0 by a strong
dimerization [84–86]. If we denote a VBS phase as the
(m,n)-VBS phase that is adiabatically connected to the state
with m singlets on each odd bond and n singlets on each
even bond, the latter phase with geff < 0 is identified as the
(2,0)-VBS phase depicted in Fig. 3. On the other hand, if one
starts from the rung-singlet [(0,0)-VBS] phase for J⊥ > 0, no
phase transition is expected since the sign of geff is unchanged.

For N = 3, perturbations involving the dimerization, such
as δ3 cos(

√
2φ1) cos(

√
2φ2) cos(

√
2φ3) and J⊥δ cos

√
2(φ1 +

φ2) cos(
√

2φ3), generate the effective coupling

geff ∼ B ′
0J⊥δ + B ′

1δ
3, (33)

with B ′
0,1 > 0. For J⊥ < 0, we have a phase transition at some

finite value of δ. This is consistent with a phase transition
between the (2,1)-VBS and (3,0)-VBS phases, as found in

FIG. 3. Schematic pictures of the VBS phases appearing in the
open spin ladder with the columnar dimerization for (a) N = 2 and
(b) N = 3. The black dot and red solid line represent a spin- 1

2 and
singlet bond, respectively.
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Refs. [87–89]. Schematic pictures of those phases are drawn
in Fig. 3.

In general, the dimerization (30) gives the following leading
contributions to the effective coupling geff:

geff ∼ −
N/2∑
m=0

BmJ
N/2−m

⊥ δ2m (34)

for even N , and

geff ∼
(N−1)/2∑

m=0

B ′
mJ

(N−1)/2−m

⊥ δ2m+1 (35)

for odd N , where Bm and B ′
m are positive nonuniversal con-

stants. For J⊥ < 0, we can find at most N distinct solutions for
geff = 0, although the actual number of the solutions depends
on the nonuniversal constants. This may coincide with the
2S + 1 VBS phases separated by 2S phase transitions that have
been found in the dimerized spin-S chain [20,25,27,90–92].

D. Edge states

We can also justify the above identifications of the VBS
phases with the gapped phases of the effective Hamilto-
nian (19) by the existence of edge states. Although there exist
related discussions from the nonlinear sigma model [93] or
the Majorana-fermion description [53], we could not find any
discussion using Abelian bosonization. Therefore, we here
briefly explain how it works.

If we define the system on a finite segment i ∈ [1,L −
1], the open boundary condition corresponds to the Dirichlet
boundary conditions on φj [53]:

φj (0) = 0,

φj (La0) =
{√

2πnj for L ∈ 2Z + 1,√
2π (nj + 1/2) for L ∈ 2Z,

(36)

where nj are integers. Then, the boundary condition for 	0 is
given by

	0(0) = 0,

	0(La0) =
{

2πRNn′ for L ∈ 2Z + 1,

2πRN (n′ + N/2) for L ∈ 2Z,

(37)

where n′ is an integer. Let us first consider the even-N case.
For geff > 0, 	0 is pinned at the potential minimum πRN in
the bulk, while it is locked into 0 at the boundaries. (Recall
that 	0 is defined modulo 2πRN .) Thus, there must be kinks
near the boundaries, at which 	0 jumps by πRN . Since
these kinks break the symmetry 	0 → −	0 corresponding
to T , Rx , and Ry , each edge gives twofold ground-state
degeneracy. On the other hand, the kinks do not necessarily
break the symmetry involving Ib or Is since the coordinate x

is also transformed simultaneously. Therefore, the boundary
degeneracy is not required for VBS phases protected only by
those inversions [11,42]. For geff < 0, 	0 is pinned at 0 in the
bulk as well as the boundaries, so that it does not necessarily
have kinks. For the odd-N case, depending on the parity of L,
the locking position of 	0 differs by πRN . This indicates that
the position of the kink, i.e., the edge state, depends on where

we introduce cuts in the system. This is also consistent with
the VBS picture in Sec. IV C.

V. SYMMETRY PROTECTION OF VBS PHASES

In the effective Hamiltonian (19), two distinct VBS phases
are characterized by the different signs of geff and separated
by a phase transition at geff = 0. However, when some of
the symmetries listed in Table I are broken by introducing
the perturbation H ′, we can add new vertex operators to the
effective Hamiltonian (19). In order to see the role of symmetry
on the distinction of the VBS phases, we examine the stability
of the phase transition at geff = 0 in the presence of such extra
vertex operators. For odd N , we here explicitly break both
trs and Is as done in Sec. IV C, so that the resulting effective
Hamiltonian takes the form of Eq. (19) as for even N . It turns
out that one of T , Ib, D2, and Is × Rz is sufficient to maintain
the distinction between the two gapped phases with geff > 0
and geff < 0: the first three are known to protect the VBS
phases from the entanglement point of view [11], whereas the
last one is not understood in the same way and separately
discussed in Sec. V C.

In the following, we assume that H ′ is small enough so that
the effective Hamiltonian description with a single bosonic
field 	0 is still valid (i.e., g3 is most relevant and hence the
relative fields can be integrated out). Furthermore, we assume
certain uniformness of the perturbations; coupling constants
of the vertex operators do not depend on the coordinate x.
This is practically done by keeping only the q = 0 and π

components from the Fourier transform of the interaction
since the other components with incommensurate momenta
vanish in the continuum limit. We do not consider random or
pointlike interactions since they cannot produce a uniform gap
that remains finite for a sufficiently large system.

A. With U(1) symmetry

We first consider the case where the U(1) spin-rotational
symmetry around the z axis is preserved. This symmetry
forbids any vertex operator of �0 and makes the analysis
much simpler. Although this case has been discussed by Berg
et al. [41] for N = 2, we here clarify the full set of symmetries
protecting the VBS phase. From Table I, we find that the three
symmetry operations T , Ib, and Rx (or Ry) take the same
form of the transformation on 	0:

	0 → −	0. (38)

For even N , Is also takes the same form up to the shift πNRN ,
which can be absorbed into the compactification of 	0. Once
all these symmetries are explicitly broken, we can add a vertex
operator odd in 	0. Keeping only the most relevant operators,
we obtain

Heff =
∫

dx

[
v0

2π

(
K0(∂x�0)2 + 1

K0
(∂x	0)2

)

+ geff cos

(
	0

RN

)
+ g̃ sin

(
	0

RN

)]
. (39)

If geff is relevant, g̃ is also relevant since they share the same
scaling dimension. If we vary geff from −∞ to +∞ with
fixed g̃, we can continuously connect the two minima of
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± cos(	0/RN ) since we can unify the two vertex operators
into a single one, g′ cos(	0/RN − γ ) with g′ =

√
g2

eff + g̃2 and
γ = tan−1(g̃/geff). Hence, the two gapped phases with geff > 0
and geff < 0 are smoothly connected without gap closing. One
of the four symmetries, T , Ib, Is , and D2, together with the
U(1) symmetry, is therefore required to protect a Gaussian
phase transition between them and distinguishes the two
phases.

B. Without U(1) symmetry

Next, we do not assume the presence of the U(1) symmetry.
Then, vertex operators of �0 are generally allowed in the
effective Hamiltonian (19). We find that T , Ib, and D2 take
the same form of the transformation on �0,

�0 → �0 + πR̃N, (40)

as well as that on 	0, namely, 	0 → −	0. We note that
one of the elements of D2 is not enough to reproduce the
above transformation properties. In the presence of one of
these symmetries, we obtain an effective Hamiltonian

Heff =
∫

dx

[
v0

2π

(
K0(∂x�0)2 + 1

K0
(∂x	0)2

)

+ geff cos

(
	0

RN

)
+ f cos

(
2�0

R̃N

)]
. (41)

Here, we have kept only the most relevant operator among
cos(2q�0/R̃N ) with q � 1. While we can also add an
additional vertex sin(2�0/R̃N ) when D2 is broken, it can
be absorbed into the last term in Eq. (41) by an appropriate
unitary transformation. geff and f have the scaling dimensions
K0/(4R2

N ) and 1/(R̃2
NK0), respectively.

Let us assume that cos(	0/RN ) is the only relevant vertex
operator of 	0. Indeed, in order to make all the higher-order
vertices cos(p	0/RN ) with p � 2 irrelevant, we require
1/N < K0 < 4/N . In this case, both of the couplings geff

and f appearing in Eq. (41) are relevant. Hence, if we vary
geff from −∞ to +∞, we will find three phases: the first
one is dominated by geff < 0, the second one is governed
by f around geff = 0, and the third one is again dominated
by geff > 0. Along this continuous path of geff, we will
find two points where neither 	0 nor �0 can be locked
to the potential minima because of their dual property. At
such points, the low-energy property will be described by a
fixed-point theory in which the two vertex operators take the
same magnitude of the coupling constant and the same scaling
dimension 1 [obtained by solving K0/(4R2

N ) = 1/(R̃2
NK0)].

Such competitions are described by the β2 = 4π self-dual
sine-Gordon Hamiltonian [94]

Hβ2=4π =
∫

dx

[
v0

2
((∂x�0)2 + (∂x	0)2)

+ G( cos(
√

4π	0) + cos(
√

4π�0))
]
. (42)

It has been known that this Hamiltonian describes the Ising
criticality with central charge c = 1

2 . This can be seen by
refermionizing it in terms of two copies of the Majorana
fermion (see, e.g., Refs. [51,53]).

Therefore, we conclude that, in the presence of one of
the three symmetries T , Ib, and D2, the gapped phase
with geff < 0 is separated from that with geff > 0 by an
intermediate phase governed by f , whose phase boundaries
are described by the Ising transition. In other words, a Gaussian
transition that exists in the presence of the U(1) symmetry is
now split into the two Ising transitions. Even if we assume
K0 < 1/N and make cos(2	0/RN ) relevant [cos(2�0/R̃N )
is now irrelevant], a similar result will be obtained in terms
of the double-frequency sine-Gordon model [95,96]; the two
gapped phases are again separated by an intermediate phase
whose boundaries correspond to the Ising transition. In such
an intermediate phase, there must be some spontaneous Z2

symmetry breaking, which has been numerically observed in
the absence of the U(1) symmetry [3,11,55].

Finally, we consider the case in which only the symmetry
corresponding to 	0 → −	0, such as Rx , T × Rz, or Is , is
imposed, while we do not impose any symmetry constraint on
�0. In this case, possible vertex operators of �0 are solely
determined by the compactification condition (22). Keeping
only the most relevant vertex of �0, we obtain an effective
Hamiltonian

Heff =
∫

dx

[
v0

2π

(
K0(∂x�0)2 + 1

K0
(∂x	0)2

)

+ geff cos

(
	0

RN

)
+ f̃ cos

(
�0

R̃N

)]
, (43)

where f̃ has the scaling dimension 1/(4R̃2
NK0). Along the

same line argued above, the maximal competition of locking
between 	0 and �0 will be described by the β2 = 2π self-dual
sine-Gordon Hamiltonian [94]

Hβ2=2π =
∫

dx

[
v0

2

(
(∂x�0)2 + (∂x	0)2)

+ G′( cos(
√

2π	0) + cos(
√

2π�0))
]
, (44)

where both of the vertex operators have the same scaling
dimension 1

2 . Since this Hamiltonian is known to be massive,
there is no phase transition between the two regimes governed
by geff and by f̃ . As a result, the two gapped phases with
geff < 0 and geff > 0 are no longer distinguished and thus can
be adiabatically connected.

We conclude that two gapped phases with the different
signs of geff are separated by phase transitions only when the
Hamiltonian is invariant under the symmetry operation

	0 → −	0,

�0 → �0 + πR̃N .
(45)

The corresponding symmetries are time reversal T , bond-
centered inversion Ib, and dihedral group D2. These sym-
metries are fully consistent with those obtained by the MPS
approach [2,11,16]. We remark that, although Ib is always
together with translational invariance in those studies, Ib alone
is sufficient to distinguish two gapped phases by following the
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argument of Ref. [42]. Our result is directly applied to any
value of spin S or leg N . Together with the results in Sec. IV,
those three symmetries are necessary to distinguish different
VBS phases.

C. Trivial phases protected by Iz

We still have another symmetry whose transformation
on {	0,�0} is given by Eq. (45). It is a symmetry under
the combined operation of site-centered inversion and the π

rotation around the z axis, namely, Iz ≡ Is × Rz, which gives

	0(x) → −	0(−x) + πNRN,

�0(x) → �0(−x) + πR̃N .
(46)

This is equivalent to Eq. (45) for even N . Therefore, Iz also
ensures the separation of two gapped phases with the different
signs of geff, leading to the distinction of VBS phases. One
may think that this is an artifact of our effective Hamiltonian
approach. However, this observation is also confirmed by the
MPS approach [42]. In fact, gapped phases protected by Iz

alone are not classified by the projective representation [42],
so that they are trivial phases in the sense that they can be
smoothly connected to direct-product states. This is contrasted
to the phases protected by either T , Ib, or D2; they are
distinguished by different projective representations and thus
different entanglement structures.

In order to understand this fact, we introduce an integer-S
chain

H =
∑

i

[
J �Si · �Si+1 +

S∑
n=1

Dz
2n

(
Sz

i

)2n − h(−1)iSz
i

]
, (47)

where D2n are onsite uniaxial anisotropies and h is a staggered
magnetic field. For S = 1, this model has already been inves-
tigated in several contexts [97–99]. The staggered magnetic
field breaks all the symmetries giving a nontrivial projective
representation:T ,Ib, andD2. However, it still preservesIs and
the U(1) symmetry. Then, the Haldane phase is now smoothly
connected to a direct-product state |+ − +− · · · 〉, where ±
represent the Sz = ±1 states, and thus in a trivial phase.
Nevertheless, there still exists a phase transition between this
trivial phase and the large-D phase, which is also trivial and
connected to another direct-product state |0000 . . . 〉, where 0
represents the Sz = 0 state. In Ref. [42], it has been shown
that the distinction between these trivial phases is indeed
guaranteed by Iz alone.

From the perspective of the effective Hamiltonian, through
the ladder mapping, the staggered field is bosonized as

−h
∑

i

(−1)iSz
i ≈ a1h

2S∑
j=1

∫
dx sin(

√
2φj ). (48)

For integer S, this contributes to the effective Hamiltonian (19)
as even-order perturbations and thus does not generate the
sin(	0/RN ) term. Since the staggered field plays a role similar
to the dimerization in Sec. IV C, it induces phase transitions at
which geff vanishes.

We further provide a simple perturbative argument to see the
phase transitions between trivial phases. Let us first consider

S = 1. Now, the uniaxial anisotropy is only Dz
2. In the limit

of isolated spins at J = 0 and for Dz
2 = h, the two states |+〉

and |0〉 are degenerate on each even site, while |−〉 and |0〉 are
degenerate on each odd site. If we regard these states as the
two basis states of spin- 1

2 ,

|↑〉i ≡ |+〉i , |↓〉i ≡ |0〉i for i ∈ 2Z,

|↑〉i ≡ |0〉i , |↓〉i ≡ |−〉i for i ∈ 2Z + 1,

we can write the strong-coupling Hamiltonian up to the first
order in J :

HSC =
∑

i

[
2J

(
sx
i sx

i+1 + s
y

i s
y

i+1

) + J sz
i s

z
i+1

− (
J + h − Dz

2

)
(−1)i sz

i

]
. (49)

If the last term is absent, this model is nothing but an easy-plane
XXZ chain and described by a massless free boson. Since the
last term represents a staggered field and is now relevant, a
finite field immediately opens an excitation gap. Therefore,
we have a Gaussian phase transition when J = Dz

2 − h and
Dz

2, h � J .
We can proceed similar analyses for general integer-S

chains with higher-order uniaxial anisotropies Dz
2n. Starting

from the isolated spins and appropriately tuning Dz
2n and

h, we can make the two states |S − l〉 and |S − l − 1〉
degenerate on each even site, while |−S + l〉 and |−S + l + 1〉
on each odd site, for integers l = 0, . . . ,S − 1. Applying
first-order perturbation theory in J , we can similarly obtain
an easy-plane XXZ chain with a staggered field as given in
Eq. (49). Thus, for Dz

2n,h � J , there will be a Gaussian phase
transition between two trivial phases that are smoothly con-
nected to the direct-product states |S − l, − S + l, . . . 〉 and
|S − l − 1, − S + l + 1, . . . 〉, respectively. We expect that
there is a continuity between a state |S − k, − S + k, . . . 〉 with
k = 0, . . . ,S and the spin-(S − k) Haldane (or intermediate-
D) phase [20] since T , Ib, and D2 are explicitly broken in the
present cases. Nevertheless, there are still S-phase transitions
between trivial phases protected by Iz. Their distinction

FIG. 4. An expected phase diagram for the spin-2 chain (47). The
horizontal and vertical axes correspond to the staggered magnetic field
h and some function of Dz

2n, respectively. The VBS pictures for three
Haldane phases realized at h = 0 are shown in the left, while those
for three trivial phases realized in the presence of h are shown in the
right. The arrows in the VBS pictures represent polarized spin- 1

2 ’s
along the staggered magnetic field.
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follows from that those direct-product states take two different
1D representations of Rz on each site [42]. A naively expected
phase diagram of Eq. (47) for S = 2 is shown in Fig. 4. Very
recently, the phase transitions among those trivial phases are
numerically verified for a spin-2 chain, in which three trivial
phases are distinguished by site-centered inversion combined
with two different kinds of π rotation [100].

For odd N or half-odd-integer S, the above discussion
based on the effective Hamiltonian is not applicable since
the combined symmetry Iz forbids cos(	0/RN ). However,
this instead allows sin(	0/RN ). By replacing cos(	0/RN ) by
sin(	0/RN ) in Eq. (19), it may also be possible to show the
existence of two gapped phases protected by Iz for odd N .
Those phases should be trivial and may correspond to some
antiferromagnetically polarized states.

VI. CONCLUSION

In this paper, we studied the nature of VBS phases by
means of an Abelian bosonization analysis originated by
Schulz [18]. We showed that within the effective Hamiltonian,
the distinction between two different VBS phases is given by
the difference in the sign of the effective coupling constant.
This identification of the VBS phase is consistent with the
known phase diagrams of several microscopic spin systems
and the presence of the edge states. Upon this identification,
we showed that different VBS phases are separated by a
gap closing under the four symmetries: time reversal, bond-
centered inversion, dihedral group of π spin rotations, and
site-centered inversion combined with a spin rotation. In
contrast to the first three symmetries, the last symmetry does
not give any entanglement characterization of the VBS phases;
it turns out to give distinct trivial phases. We demonstrated this
fact in a spin chain with a staggered magnetic field by using
perturbation theory.

We again emphasize that the above results obtained in this
paper are solely based on the definition that different gapped
phases are separated by a gap closing. This point of view will
be particularly important when one considers the classification
of gapped phases protected by lattice symmetries, which may
not exhibit any characteristic entanglement property. Another
interesting fact is that the two quite different approaches, a
bosonic field theory and the MPS formalism, give perfectly
consistent results not only for the symmetry protection of
the VBS phases, but also for the Lieb-Schulz-Mattis theorem
for non-translational-invariant but site-centered inversion-
symmetric systems. This may indicate some intimate con-
nection between these approaches, as it can be seen from the
continuous MPS [101].
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APPENDIX A: PERTURBATIVE DERIVATION
OF EFFECTIVE HAMILTONIAN

In this Appendix, using the perturbation theory, we provide
an evidence that a nonuniversal prefactor A in the effective
coupling constant (26) is positive. Similar discussions will be
applied to show the positivity of other nonuniversal prefactors
in the effective couplings appearing in Sec. IV. Although
the original work by Schulz [18] considered the perturbation
theory for a correlation function, we here directly work on the
partition function and derive the effective Hamiltonian.

In the bosonized expression of H‖ + H⊥ in Sec. III A, g3 is
supposed to be the most relevant coupling and thus �ν acquire
masses. We then wish to obtain the effective Hamiltonian only
with {	0, �0} by integrating out the massive relative fields
{	ν , �ν}. In the following discussion, for simplicity, we only
consider the perturbation in g1, which gives an interaction term
to the resulting effective Hamiltonian.

We start from the partition function

Z =
∫
D	0D	1 . . .D	N−1e

−Sc[	0]−Sr [	ν ]−Scr [	0,	ν ], (A1)

where

Sc[	0] = v

2πK

∫
d2r

[
1

v2
(∂τ	0)2 + (∂x	0)2

]
, (A2)

Sr [	ν] = v

2πK

∫
d2r

N−1∑
ν=1

[
1

v2
(∂τ	ν)2 + (∂x	ν)2

]

+
∫

d2r
∑
j �=j ′

g3,(j,j ′) cos
√

2(θj − θj ′), (A3)

Scr [	0,	ν] =
∫

d2r
∑
j �=j ′

g1,(j,j ′) cos
√

2(φj + φj ′ ), (A4)

and �r ≡ (τ,x). The partition function is expanded in
Scr [	0,	ν] as

Z = Zr

∫
D	0e

−Sc[	0]
∞∑

n=0

1

n!

〈
(−Scr [	0,	ν])n

〉
r
, (A5)

where the expectation value 〈. . . 〉r is taken with respect to the
ground state of Sr [	ν]:

〈. . . 〉r = 1

Zr

∫
D	1 . . .D	N−1(. . . )e−Sr [	ν ], (A6)

Zr =
∫

D	1 . . .D	N−1e
−Sr [	ν ]. (A7)
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If N is even, the first nonvanishing contribution appears at the (N/2)th order in Scr [	0,	ν]. For example, we consider

IN/2 =
〈

N/2∏
n=1

(−g1,(2n−1,2n))
∫

d2rn cos
√

2(φ2n−1(�rn) + φ2n(�rn))

〉
r

. (A8)

We can write

IN/2 =
〈

N/2∏
n=1

(
−g1,(2n−1,2n)

2

) ∫
d2rn[ei

√
2(φ2n−1(�rn)+φ2n(�rn)) + e−i

√
2(φ2n−1(�rn)+φ2n(�rn))]

〉
r

≈
(

N/2∏
n=1

(
−g1,(2n−1,2n)

2

) ∫
d2rn

)〈
exp

(
i
√

2
N/2∑
m=1

(φ2m−1(�rm) + φ2m(�rm))

)
+ H.c.

〉
r

, (A9)

where we have dropped all the cross terms in the second line. Since the relative fields 	ν are disordered, the expectation values
of such terms will vanish after the integration over the coordinate. Using the canonical transformation in Eq. (14), the exponent
is rewritten as

N/2∑
m=1

[φ2m−1(�rm) + φ2m(�rm)] = 2√
N

N/2∑
m=1

	0(�rm) +
N/2∑
m=1

N−1∑
ν=1

(
u

(ν)
2m−1 + u

(ν)
2m

)
	ν(�rm)

= 2√
N

N/2∑
m=1

	0(�rm) +
N/2−1∑
m=1

N−1∑
ν=1

2m∑
k=1

u
(ν)
k [	ν(�rm) − 	ν(�rm+1)] +

N−1∑
ν=1

N∑
k=1

u
(ν)
k 	ν(�rN/2). (A10)

In the last line, the third term will vanish due to the orthogonality of u
(ν)
k in Eq. (15). For N = 2, the latter two terms do not

appear. Substituting this expression into Eq. (A9), we see that the second term gives a product of correlation functions〈
N/2−1∏
m=1

ei
√

2�m(�rm)e−i
√

2�m(�rm+1)

〉
r

, (A11)

where we defined

�m(�r) =
N−1∑
ν=1

2m∑
k=1

u
(ν)
k 	ν(�r). (A12)

Since �m are sums of the disordered fields 	ν , their correlation functions exponentially decay. If the masses of �m are sufficiently
large, the correlation functions rapidly decay and hence a leading contribution to the integral (A9) may only come from their
amplitudes at �rm ∼ �rm+1. Thus, we approximate the correlation functions as delta functions and obtain

IN/2 ≈
(

N/2∏
n=1

(
−g1,(2n−1,2n)

2

)∫
d2rn

)[
exp

(
2i

√
2

N

N/2∑
m=1

	0(�rm)

)
N/2−1∏
m=1

Cmδ(�rm − �rm+1) + H.c.

]
, (A13)

where the amplitudes Cm are nonuniversal constants and positive by definition. After integration over the N/2 − 1 coordinate
variables, we obtain a vertex operator only with 	0:

IN/2 ≈ 1

2

(
N/2−1∏
m=1

Cm

)(
N/2∏
n=1

(
−g1,(2n−1,2n)

2

)) ∫
d2r cos (

√
2N	0(�r)). (A14)

Similar contributions arise from any possible pairing of φj . Putting them back onto the action in Eq. (A5), we obtain the effective
action Seff[	0] defined through Z ≈ ∫

D	0e
−Seff[	0]. If the couplings between chains do not depend on j , namely, g1,(j,j ′) ≡ g1,

we can write the effective action as

Seff[	0] ≈ v

2πK

∫
d2r

[
1

v2
(∂τ	0)2 + (∂x	0)2

]
− A′(−g1)N/2

∫
d2r cos(

√
2N	0), (A15)

where the nonuniversal coefficient A′ is positive since it is solely proportional to a sum of products of the positive amplitudes
C1C2 . . . CN/2−1. For N = 2, this is simply read off as A′ = 1. Equation (A15) corresponds to the effective Hamiltonian for even
N in Eq. (19). For odd N , the above procedure is repeated for the N th order perturbation in g1, yielding Eq. (20).
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APPENDIX B: COMPACTIFICATIONS
OF BOSONIC FIELDS

In this Appendix, we derive the compactification condition
for the center-of-mass field (22). Each chain bosonic field is
compactified as

φj ∼ φj + 2πnj r, θj ∼ θj + 2πmj r̃, (B1)

where nj and mj are arbitrary integers, and r and r̃ are
compactification radii satisfying rr̃ = 1

2 . In this paper, we
choose

r = r̃ = 1√
2
. (B2)

After the canonical transformation in Eqs. (14) and (16), we
have the compactification conditions

	0 ∼ 	0 + 2πr√
N

N∑
j=1

nj , (B3)

�0 ∼ �0 + 2πr̃√
N

N∑
j=1

mj, (B4)

	ν ∼ 	ν + 2πr

N∑
j=1

u
(ν)
j nj , (B5)

�ν ∼ �ν + 2πr̃

N∑
j=1

u
(ν)
j mj . (B6)

These conditions are true when all the fields remain free.
However, when the relative fields �ν are pinned at the values
in potential minima as in Sec. III B, the condition for �0

is modified. In this case, the fluctuations of �ν are strongly
suppressed and this gives a set of constraints on mj :∑

j

u
(ν)
j mj = 0. (B7)

Recalling the orthogonality of u
(ν)
j , the solution of these linear

equations is easily found as

mj = M0, (B8)

where M0 is an arbitrary integer. On the other hand, nj have
no constraint and we set

∑
j nj = N0 with a single arbitrary

integer N0. Hence, we obtain the compactification condition
for {	0,�0}:

	0 ∼ 	0 + 2πRNN0, �0 ∼ �0 + 2πR̃NM0, (B9)

where we have set

RN = 1√
2N

, R̃N =
√

N

2
. (B10)

These compactification radii still satisfy RNR̃N = 1
2 .
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[38] E. H. Kim, G. Fáth, J. Sólyom, and D. J. Scalapino, Phys. Rev.

B 62, 14965 (2000).
[39] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
[40] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
[41] E. Berg, E. G. Dalla Torre, T. Giamarchi, and E. Altman,

Phys. Rev. B 77, 245119 (2008).
[42] Y. Fuji, F. Pollmann, and M. Oshikawa, Phys. Rev. Lett. 114,

177204 (2015).
[43] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16, 407

(1961).
[44] A. M. Tsvelik, Mod. Phys. Lett. B 05, 1973 (1991).
[45] S. P. Strong and A. J. Millis, Phys. Rev. Lett. 69, 2419 (1992).
[46] T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev.

B 47, 3196 (1993).
[47] S. Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev. B 49, 8901

(1994).
[48] Y. Nishiyama, N. Hatano, and M. Suzuki, J. Phys. Soc. Jpn.

64, 1967 (1995).
[49] S. P. Strong and A. J. Millis, Phys. Rev. B 50, 9911 (1994).
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