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Aberrated electron probes for magnetic spectroscopy with atomic resolution:
Theory and practical aspects
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It was recently proposed that electron magnetic circular dichroism can be measured in scanning transmission
electron microscopy with atomic resolution by tuning the phase distribution of an electron beam. Here, we describe
the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic
size electron probes. We present the calculated optimized astigmatic probes and discuss how to achieve them
experimentally.
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I. INTRODUCTION

Electron magnetic circular dichroism (EMCD) is a rela-
tively young experimental technique, proposed in 2003 [1]
along the lines of symmetry-selected electron energy-loss
spectroscopy (EELS) [2]. The first experimental measure-
ments were performed in 2006 in transmission electron
microscopy (TEM), using a plane wave illumination [3],
with spatial resolution of ∼100 nm. The use of TEM to
measure an EMCD signal implied that, in principle, higher
spatial resolutions—subnanometer or even atomic-resolution
level—could be achieved under the right electron optical
configurations. However, the intrinsic low EMCD signal
strength has caused a slow adoption of the technique, despite
the initial experimental successes [4–12] and theoretical
development [13–17].

The field of EMCD experienced a new wave of attention in
2010, when electron vortex beams (EVBs) were achieved in
electron microscopy [18–20] following the 2007 prediction by
Bliokh et al.[21]. Intense research followed since, however,
no EMCD measurements have been achieved with EVBs,
except for the initial report by Verbeeck et al.[20], and a
second work from the same laboratory [22]. Later, in 2013,
on the basis of theoretical calculations, it was proposed that
using EVBs for measuring EMCD on crystals is not efficient,
unless the EVBs are of atomic size [23]. The study was
soon followed by a similar work [24], which instead of a
crystal lattice focused on isolated atoms or small nanoparticles.
A detailed survey of expected EMCD strength measured
by EVBs [25] was also published, proposing optimized
measurement conditions for bcc iron. All the theoretical
studies suggest that in order to detect an EMCD signal in
EELS in the transmitted (direct) beam direction, EVBs must
have an atomic size and pass directly through—or very close
to (within less than approximately half of an Å)—an atomic
column carrying an effective magnetic moment. As of today
(early 2016), isolated atomic-size EVBs that can be used for
EMCD measurements have not been achieved experimen-
tally, although several ways of generating them have been
suggested [26–31].

Very recently, the appearance of an EMCD signal in
EELS at the transmitted beam direction was predicted under
specific diffraction interference and phase distribution of the
electron probe [32]. The theoretical prediction indicated that
the suitable conditions for observing an EMCD signal in a

conventional EELS-STEM experiment can be summarized by
the following two points: (1) The convergent electron-beam
diffraction (CBED) pattern must show overlapping disks.
In other words, the convergence angle α must be larger
than Gλ/2, where G is the length of a reciprocal-lattice
vector corresponding to the shortest allowed reflection, and
λ is the de Broglie wavelength of electrons. This is also
the necessary condition for achieving atomic resolution in
scanning transmission electron microscopy (STEM) [33]. (2)
If χk′ is the phase of an individual k′-vector component of the
convergent electron beam, and also the mirror image of k with
respect to a selected mirror symmetry plane, then the phase
differences �χk,G = χk+G − χk should change sign under the
mirror symmetry operation: �χk,G = −�χk′,G. This second
condition should be fulfilled for all k and all mirror planes [34].
EVBs fulfill the second condition regardless of the symmetry
of the sample. In this sense, a vortex is a universal beam
shape that can be used to measure EMCD on any magnetic
crystals magnetized along the beam direction, assuming that
the electron probe is sufficiently small.

The same theoretical work [32] also proposed an alternative
approach to detecting an EMCD signal in EELS, completely
avoiding the necessity to generate atomic-size vortex beams.
The alternative approach simply requires a suitable phase
distribution of the electron probe, which can be achieved
by aberration-correcting STEM. There is no necessity of
any modification of the STEM column. For example, it was
shown that for a cubic or a tetragonal crystal aligned in the
(001) orientation, a nonzero fourfold astigmatism (labeled
here as C3,4b following Krivanek’s notation [35]) will lead
to a detectable EMCD signal in atomically resolved spectrum
images in STEM experiments. Not only it is easier to set up
such aberrated probes in modern STEMs, since no hardware
modifications are needed, but in addition, the whole beam
intensity can be used when acquiring the EEL spectra—
contrary to fork [19,20,36,37] or spiral apertures [28,29], or
phase masks [18,38], which block a substantial fraction of the
beam current.

In this paper, we calculate optimized conditions for exper-
iments with fourfold astigmatic beams as a function of Bragg
scattering angle and acceleration voltage. Optimal values of
C3,4b, convergence, and collection angles are presented. A
phase distribution for detection of in-plane magnetization is
also presented. From an experimental perspective, the practical
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considerations for setting up the desired value of fourfold
astigmatism are described (Sec. V). A less patient reader
or an experimentalist not interested into theoretical details
may want to skip over the detailed description of the model
(Secs. II, III, and IV A) and jump to the results of optimization,
Secs. IV B–IV E, and practicalities of how to configure an
aberrated electron probe, Sec. V.

II. INELASTIC SCATTERING OF CONVERGENT
ELECTRON BEAMS

Here we describe the expressions for double-differential
scattering cross section and mixed dynamical form factor,
including the approximations used in the optimizations below.

A. Scattering cross section

A diffraction pattern with a transmitted beam with ampli-
tude T0, and a set diffracted disks, each having an amplitude
TG, is assumed. The implied k independence of TG is a good
approximation for a thin crystal. In addition, for thin samples
the TG is purely imaginary and its absolute value |TG �=0| � 1,
while T0 ≈ 1. Using this notation, the elastically scattered
wavefunction of the electron beam can be described as

ψin(r) =
∑
k,G

k⊥<α/λ

TGeiχke2πi(k+G)·r. (1)

If the convergence semi-angle α is large enough, for certain
k vectors also the k + G vector may lie within the same disk.
We note that to be consistent with the aberration function
defined below, in this paper we use a convention with wave-
vector length k = 1

λ
. Thus a plane wave is given by expression

e2πik·r. The reciprocal-lattice vectors G are defined similarly
by e2πiG·R = 1, where R are lattice vectors and, for instance,
|G(100)| = 1

a
for a cubic structure with lattice parameter a.

This is therefore different from notation used in our previous
publication, Ref. [32].

We remark here that the phase χk may well reflect also the
position of the probe over the sample in terms of a phase ramp
e2πik·�x, which is nothing else than a phase contribution from
the beam-shift “aberrations” C0,1a and C0,1b, in Krivanek’s
notation [35].

Neglecting a constant prefactor, the double-differential
scattering cross section can be expressed as [39]

∂2σ

∂E∂

=

∑
I,F

|〈ψout| ⊗ 〈F |V̂ |I 〉 ⊗ |ψin〉|2δ(EF − EI − E),

(2)

where |I 〉,|F 〉 are initial and final states of the sample, having
energies EI and EF , respectively. E is the energy loss and V̂

is the Coulomb interaction between electrons in the sample
and the beam. The initial state probe wave function ψin is
given in Eq. (1) and for the final-state wave function we will
consider a single plane wave with wave vector kf , ψout =
e2πikf ·r, hitting a chosen pixel of the spectrometer camera.
Plugging the wave functions in to Eq. (1) and following the
same steps in deriving the scattering cross-section expression,
as detailed in the Supplemental Material of Ref. [32], one

arrives at the following expression:

∂2σ

∂E∂

=

∑
k,k′,G,G′

k⊥,k′
⊥<α/λ

TGT �
G′e

i(χk−χk′ )S(q,q′,E), (3)

where

q = kf − k − G, (4)

q′ = kf − k′ − G′. (5)

and S(q,q′,E) is the mixed dynamical form factor [40]
(MDFF) describing inelastic transitions.

B. Mixed dynamical form factor

The summation over initial and final states from Eq. (2) is
contained in the MDFF:

S(q,q′,E) =
∑

Ĩ ,F

〈F |e
−2πiq·(r−uĨ )

q2
|Ĩ 〉〈Ĩ |e

2πiq′ ·(r−uĨ )

q ′2 |F 〉

× δ(E − EF + EĨ ), (6)

where the summation over initial states Ĩ is restricted over
initial states of atoms within a unit cell (with basis vectors
uĨ ), instead of over the whole crystal. Thus, the summation
over unit cells is already performed in Eq. (6), and results in
an important condition for constructive interference, requiring
the transversal (in-plane) component of q − q′ and therefore
also k − k′ to be a reciprocal-lattice vector. We refer the reader
to the Supplemental Information of Ref. [32] for more details.

In the numerical calculations below, there is only one atom
per unit cell, located at the origin, i.e., basis vector u = 0.
Further, the MDFF is approximated by considering only dipole
transitions [16]

S(q,q′,E) ≈ 1

q2q ′2 [q · N(E) · q′ + i(q × q′) · M(E)], (7)

where N is, in general, a symmetric rank-2 tensor describing
the distribution of charge and its anisotropy, and M is a vector
containing information about spin and orbital magnetism
and the magnetic dipole term. In general there are nine
independent dipole contributions to the diffraction pattern: the
three x,y,z components of the M(E) and six real components
(xx,yy,zz,xy,xz,yz) of the tensor N(E) [16,41]. In the
simplest case, if one assumes collinear magnetization along
the z direction and a system with cubic symmetry, then
N(E) → N (E)1 and M(E) → M(E)êz, i.e.,

S(q,q′,E) ≈ 1

q2q ′2 [N (E)q · q′ + i(qxq
′
y − qyq

′
x)M(E)].

(8)

When the energy-loss spectrum is integrated over an
energy edge (e.g., Fe L2,3 edge), small changes of qz,q

′
z

due to varying energy loss across the spectrum will be
neglected. Similarly, the even smaller changes of dynamical
Bloch coefficients across the edge interval with respect to
energy loss will also be neglected. Under these assumptions,
the dependence of edge-integrated MDFF on the electronic
structure of a particular magnetic material is, up to a
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FIG. 1. Schematic picture of nonmagnetic and magnetic compo-
nents of a mixed dynamical form-factor, N (E) and M(E), together
with definition of L3-edge integrated nonmagnetic and magnetic
quantities, N and M , discussed in the text.

common scaling factor, determined by a single parameter—
the ratio of magnetic and nonmagnetic component M/N =∫

M(E)dE/
∫

N (E)dE. Figure 1 shows a typical shape of
N (E) and M(E) for the case of 3d transition-metal L2,3

edges, and the definition of their L3-edge integrals N and
M , respectively.

In this work we set the value of M/N to be equal to 1.
This way the results presented below, such as maximal EMCD
values (relative or absolute, or signal-to-noise ratios) become
independent of a specific material. The actual absolute value
of M/N depends on the sum-rules expressions [14–16], which
connect the M/N to the details of the electronic structure of
the studied material (for example, spin and orbital moments,
number of holes in the 3d-electron shell, strength of spin-
orbital coupling, asphericity of the spin moment distribution,
etc.)

The MDFF expression, Eq. (8), can be further simplified
for the case of tetragonal or cubic symmetry, when noticing
that an in-plane component of q − q′ must be a reciprocal-
lattice vector G⊥ = 1

a
(m,n) ≡ a�(m,n) with m,n being integer

Miller indices. In such case the real part of the MDFF can be
written as

Re[MDFF] ∝ N
q.q′

q2q ′2 = N
q2 + (mqx + nqy)a�

q2q ′2 , (9)

the imaginary part of MDFF for magnetization along the z axis

Im[MDFF] ∝ (q × q′)zM
q2q ′2 = Ma� nqx − mqy

q2q ′2 . (10)

For a magnetization along the x axis one obtains a rather
compact expression

Im[MDFF] ∝ (q × q′)xM
q2q ′2 = −Ma�nqz

q2q ′2 , (11)

with its analog for y axis magnetization, where n gets replaced
by the Miller index −m. The q ′2 in the denominator can of
course be expressed as q2 + 2a�(mqx + nqy) + a�2(m2 + n2),
though that does not bring any additional insight and thus it
was not used in the expressions above in order to keep them
compact.

Equations (9)–(11) were used to express MDFF in Eq. (3)
in all optimizations presented below.

C. EMCD signal

For clarity and completeness, we include here a short
section defining the EMCD signal and its relation to the
formalism used in this paper. First, within the approximations
leading to Eqs. (3) and (8), we can write a general spectrum
as a linear combination of the nonmagnetic component N (E)
and the magnetic component M(E) of MDFF in the following
way:

∂2σ

∂E∂

=

∑
k,k′,G,G′

k⊥,k′
⊥<α/λ

TGT �
G′e

i(χk−χk′ )

× 1

q2q ′2 [N (E)q · q′ + i(qxq
′
y − qyq

′
x)M(E)]

= N (E)
∑

k,k′,G,G′

k⊥,k′
⊥<α/λ

TGT �
G′e

i(χk−χk′ ) q · q′

q2q ′2

+M(E)
∑

k,k′,G,G′

k⊥,k′
⊥<α/λ

iTGT �
G′e

i(χk−χk′ ) (q × q′)z
q2q ′2

≡ A(
,χ )N (E) + B(
,χ )M(E), (12)

where q,q′ are defined by Eqs. (4) and (5) in terms of
k, k′, G, and G′. This naturally splits the spectrum into
a nonmagnetic component A(
,χ )N (E) and a magnetic
component B(
,χ )M(E). The latter term appears due to
the magnetic dichroism and it is what we call EMCD. The
terms A,B depend on the scattering angle 
 and the phase
distribution of the incoming beam χ .

In a typical EMCD experiment we aim to acquire a pair
of spectra with the following two properties: (1) that their
nonmagnetic components are equal, i.e., A1 = A2, and (2)
that their magnetic components have opposite sign: B1 =
−B2. In a classical EMCD [3] experiment this is achieved
by changing the position of the detector entrance aperture

1 → 
2, while in the approach described here we aim
to do that by modification of the phase distribution of the
incoming convergent beam χ1 → χ2. As will be discussed
below in Secs. III A and III B, this can be achieved for example
by changing the sign of certain aberration coefficients. For
completeness, we add that in an experiment with electron
vortex beams [20], a suitable change of the phase distribution
would be achieved by a change of sign, or chirality, of the
initial orbital angular momentum of the beam.

Figure 2 shows an illustration of an EMCD experiment.
The nonmagnetic component A(
,χ )N (E) (NM) and the
magnetic (EMCD) component B(
,χ )M(E) are shown for
a pair of spectra, which can be described as NM ± EMCD.
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FIG. 2. Schematic picture of a pair of typical L2,3 spectra for a
3d transition metal acquired in EMCD experiments (NM ± EMCD).
They are separated into their nonmagnetic (NM) and magnetic
(EMCD) components, respectively. NM and EMCD correspond
to terms A(
,χ )N (E) and B(
,χ )M(E) of Eq. (12). Then the
two spectra are given by A(
,χ )N (E) ± B(
,χ )M(E) for NM ±
EMCD, respectively.

The EMCD signal is extracted from the difference of the two
spectra.

Note that the difference of the two spectra in Fig. 2 actually
leads to 2 × EMCD, following the definitions used in this
paper. This is however of little importance, because the sum
rule expression for the ratio of the orbital angular momentum
and the spin angular momentum [14,15] is independent of
the overall scale of the EMCD strength. In the literature
one can see the relative strength of EMCD signal defined
either as the difference of spectra divided by their sum, or
as the difference of spectra divided by their average. Such
percentages obviously differ by a factor of 2, nevertheless that
has no influence on the extracted physical quantities.

In Sec. IV we will optimize the ratio of B(
,χ )/A(
,χ ) as
a function of phase distribution χ , parametrized by aberration
coefficients, as discussed in Sec. III.

III. PHASE DISTRIBUTION

The symmetry of the phase distribution plays a crucial
role in detection of EMCD in spectrum imaging experiments,
because the phase factor ei(χk−χk′ ) can be tuned to maximize
the intensity of the magnetic signal. We will discuss the
symmetry requirements in the electron probe for both in-plane
and out-of-plane magnetization orientations.

Generally, the phase distribution in the probe can be
described by the so-called aberration function

χk = 2π

λ

∑
n,m

(k⊥λ)n+1

n + 1
(Cn,ma cos mθ + Cn,mb sin mθ ), (13)

where the Cn,ma,Cn,mb are the aberration coefficients in
Krivanek’s notation [35]. The index n runs from zero to infinity
and m is a non-negative integer, which runs from n + 1 down
in steps of 2. n denotes the order of the aberration and m its
angular symmetry.

The angle θ is defined as arctan ky

kx
, k⊥ =

√
k2
x + k2

y and λ =
hc√

2m0c2eVacc+(eVacc)2
is the relativistically corrected de Broglie

wavelength of incident electrons with m0,e,c,h being electron
mass and charge, speed of light and Planck’s constant,
respectively.

We note that the aberrations can also be expressed following
Haider’s notation, implemented in the CEOS aberration
correctors [42]—i.e., second-order coma as B2, threefold
astigmatism as A2, fourfold astigmatism as A3, etc. In this
work we follow Krivanek’s notation because a casual reader,
with a simple inspection of the aberration indexes (n,m), can
understand the order and symmetry of the aberrations in the
electron probe. It also simplifies the mathematical notation.

Today’s (early 2016) state-of-the-art aberration correctors
can manipulate aberrations up to the fifth order, n = 5, and
use them to partially compensate aberrations up to the seventh
order [43].

Returning to Eq. (3), for each term with momentum transfer
vectors q,q′ there will be a term with a complex-conjugated
prefactor having the pair of momentum transfer vectors
swapped: q′,q. Since the magnetic signal is carried by the
imaginary part of the MDFF, Eqs. (10) and (11), the prefactors
of MDFF in Eq. (3) need to have sizable imaginary parts.
Considering that for very thin specimens |TG �=0| � 1 and T0 ≈
1, the imaginary part can only originate from the phase factor.
Denoting the phase difference �χk,k′ = χk − χk′ , the summed
contribution of the terms with q,q′ and q′,q, respectively, will
be proportional to

i(q × q′) · Mei�χk,k′ + i(q′ × q) · Me−i�χk,k′

= −2(q × q′) · M sin �χk,k′ (14)

because �χk,k′ = −�χk′,k. This is the key expression, from
which one can derive suitable symmetry properties of phase
distribution for detection of an EMCD signal in an EELS-
STEM experiment.

A. In-plane magnetization

We start with the simpler case of in-plane magnetization.
With magnetization along the x direction the scalar triple
product is (q × q′) · M = −Ma�nqz ≡ −MGyqz, according
to Eq. (11). The qz is mostly determined by energy loss, and
the magnetization M is a material property that is not affected
by electron diffraction. Thus the only variable in Eq. (11) is
Gy = na�.

A cubic material is a good and simple illustrative case
of what kind of aberrations are required to measure in-plane
magnetization. In this case, a horizontal mirror axis (x axis)
associates every term of the form given by Eq. (14) with its
mirror image. The triple product changes sign, because Gy →
−Gy under mirroring with respect to the x axis.

The main goal now is to tune the change of the phase factor,
sin �χk,k′ , in such a way that it maximizes the magnetic signal.

104420-4



ABERRATED ELECTRON PROBES FOR MAGNETIC . . . PHYSICAL REVIEW B 93, 104420 (2016)

If the phase factor would be symmetric with respect to the
x-mirror axis, then the magnetic signal would vanish thanks
to the antisymmetry of the triple product. However, if one
arranges the phase factor to be also antisymmetric with respect
to the x axis, the magnetic signals add up instead of canceling
each other out. Thus one concludes that the phase distribution
should be such that �χk,k′ is antisymmetric with respect to the
x axis.

A similar analysis can also be done with the vertical mirror
axis (y axis). In this case, the sign of the triple product does
not change, because under the mirror y axis the Gy stays
invariant. Following the same line of argumentation as above,
one concludes that the phase difference �χk,k′ has to be
symmetric with respect to the y axis, such that the magnetic
signals at each k,k′ add up.

In summary, for a magnetization along the x axis, the
optimal phase distribution should be such that the phase
differences �k,k′ are antisymmetric with respect to the x axis
and symmetric with respect to the y axis. While there are
infinitely many phase distributions fulfilling these conditions,
there is also a particularly simple one among all of them: the
lowest-order aberration C0,1b—a simple beam shift:

χk = 2π

λ

(k⊥λ)

1
C0,1b sin(θ ) = 2πk⊥C0,1b sin(θ ). (15)

Displacing the beam from an atomic column in the y direction
up or down introduces a phase ramp in the k-space disk of the
beam wave function, which has the desired symmetry property;
see Figs. 3(a) and 3(b).

Although here we have used the term “aberration,” in
practice one simply needs to acquire a standard STEM
spectrum image with an aberration-corrected probe. The
magnetic signal will be present in the spectrum image in pixels
“above” and “under” the center of the atomic columns. This
point is important because it implies that there already might
be many experimental spectrum images published, where an
atomically resolved magnetic signal is present but it has passed
unnoticed. However, we advise the experimentalist to perform
full dynamic electron-scattering calculations before claiming
atomically resolved magnetic measurements from previous
published data and in future experiments.

In the section below we optimize the probe displacements
(C0,1b) to find the distance at which the magnetic signal is the
strongest; see Sec. IV D.

B. Out-of-plane magnetization

In the case of magnetization along the z axis, the triple
product changes sign under all mirror axes: horizontal, vertical,
and both diagonal ones (considering again a cubic crystal).
That means that an optimal phase distribution should be such
that the phase differences �χk,k′ should be antisymmetric
with respect to all of the mirror axes. Searching for a
suitable solution among the aberrations Cn,m gives fourfold
astigmatism [32] C3,4b as the lowest-order aberration that
satisfies the symmetry requirements. The resulting phase
distribution is described by

χk = 2π

λ

(k⊥λ)4

4
C3,4b sin(4θ ); (16)

FIG. 3. Images of electron probes suitable for detection of in-
plane and out-of-plane magnetization. Left column shows the k-space
wave function of the probe corresponding to convergence angle of
α = 30 mrad. The color represents phase according to the color
wheel in the inset of the third column. The middle column shows
the electron probe in real space in scale with the superposed atom
positions of a bcc-iron structure. Hue represents phase and color
brightness represents logarithm of probe intensity, the scale bar
corresponds to 2 Å. The right column shows a radial profile (angular
average) of the probe intensity. (a) Electron probe with all aberrations
corrected, positioned on an Fe atomic column, (b) an identical
aberration-corrected probe shifted by 1 Å along y direction, (c)
probe with all aberrations corrected except for a fourfold astigmatism
C3,4b = 15 μm, centered on an Fe atomic column.

see also Fig. 3(c). Optimization of the conditions for measuring
strong magnetic signals is the subject of the following Sec. IV.

We should note that the conditions derived above for
the optimal symmetries of phase distribution are valid for a
single term, like the one in Eq. (14). However, the inelastic
scattering cross section is a sum over many such terms
with a complicated interdependence. Thus, it is well possible
that a phase distribution, which is globally optimal in terms
of resulting magnetic signal strength, will not be perfectly
symmetric or antisymmetric with respect to given mirror axes.
This goes beyond the scope of this paper and is left for further
investigation.

IV. OPTIMIZATION OF PHASES

In this section we describe our approach and results of
optimization of the phase distribution. For a model diffraction
pattern with fixed acceleration voltage and convergence angle,
first the fourfold astigmatism is optimized as a function of
lattice parameter. Next, the robustness of the magnetic signal
with respect to residual aberrations is analyzed. The efficiency
of beam shift is also studied in the detection of in-plane
magnetization. Finally, for selected values of acceleration
voltages the C3,4b, convergence, and collection angles are
optimized for maximal signal-to-noise ratio (SNR) in the
experiments.

104420-5



JÁN RUSZ AND JUAN CARLOS IDROBO PHYSICAL REVIEW B 93, 104420 (2016)

We should stress here that by the nature of our model,
Eq. (3), the results shown below apply exactly only for an
undistorted probe, i.e., the numerical values of EMCD strength
should be valid only for very thin samples. For thicker samples
the actual relative EMCD strength will be most likely reduced
due to elastic scattering, channeling, and the resulting defor-
mation of the probe. Only a full dynamical electron-scattering
calculation, including elastic-scattering effects before and after
the inelastic event, can provide a more reliable estimation of
the EMCD strength. Yet, the model presented here should
serve as a first-step qualitative guide for experimentalists and
theoreticians in searching for magnetic signals in spectrum
images.

A. Model diffraction pattern

Here we assume the case of a tetragonal crystal with crystal
axes a = b and a beam propagating along the c axis. In such a
case, the four closest diffracted disks are at positions (0, ± a�)
and (±a�,0). It is a matter of the relative size of α/λ and a�,
whether the CBED disks overlap, and by how much.

To provide some actual numbers, at Vacc = 100 kV, λ

is 3.70 pm, and at α = 30 mrad, the α/λ = 8.11 nm−1 is
comparable to G(200) = 2/a = 5.68 nm−1 for fcc nickel with
lattice parameter a = 3.524 Å. The corresponding twofold
Bragg scattering angle is 2�B = λG = 21 mrad. This means
that all five considered CBED disks overlap with each other;
see Fig. 4. For a smaller convergence angle, one can prove that
there are only overlaps of the transmitted beam with Bragg
scattered beams. For the case of fcc Ni at 100 kV that happens
if α < λG/

√
2 = √

2�B = 14.8 mrad. Eventually, there will
be no overlap for α < Gλ/2 = �B = 10.5 mrad. All these
diffraction situations are illustrated in Fig. 4.

The example of fcc Ni was chosen because it is a close-
packed structure with relatively small interatomic distance.
Fcc Ni also has quite a relative large number of kinematically
forbidden reflections, i.e., its shortest kinematically allowed
G vector is one of the longest ones among common crystal
structures. In other words, in most of today’s aberration-
corrected STEMs there will be significant overlaps between
the CBED disks, unless the convergence angle is deliberately
chosen smaller than working at conditions offering the optimal
spatial resolution.

The values of Vacc = 100 kV and α = 30 mrad were
chosen, because these are typical operation conditions of the
Nion UltraSTEM 100 electron microscope, to which we will
refer in Sec. V.

FIG. 4. Illustration of different degrees of overlap of the CBED
disks as a function of relative sizes of convergence angle α and Bragg
scattering angle �B .

In the calculations below the k space was discretized at 2
pixels per mrad.

B. Optimization of fourfold astigmatism for magnetization
along the optical axis (out of plane)

Here, the amplitude of diffracted beams TG for G �= 0 is
assumed to be negligible, i.e., TG = 0. This assumption is in
principle fulfilled for very thin specimens, where the elastic-
scattering effects on the probe shape are negligible. In such
a case, the double-differential scattering cross section can be
written using Eq. (3) as

∂2σ

∂E∂

=

∑
k,k′

k⊥,k′
⊥<α/λ

ei(χk−χk′ )S(q,q′,E). (17)

The detector in the calculations is centered around the
optical axis direction, kf = (0,0,kf ). For a pointlike detection
one can directly utilize the expressions Eqs. (9) and (10) to
evaluate the nonmagnetic and magnetic signal, respectively,
as a function of aberrations and a size of the reciprocal-lattice
vector G. For a finite collection angle β there will be an
additional summation over x,y components of kf , again
discretized with a step of 0.5 mrad per pixel.

From the discussion in Sec. III, it is known that the phase
differences �χk,G = χk − χk+G should be antisymmetric with
respect to all symmetry axes. In the calculated geometry,
such condition is fulfilled by C3,4b and C5,4b aberrations.
Because the latter one is much more difficult to manipulate
in aberration-corrected STEMs available today (early 2016),
the search was done for optimal values of C3,4b as a function
of twofold Bragg scattering angle 2�B = λG. This is a simple
optimization of a single parameter, which was performed by a
direct evaluation of the relative strength of the EMCD signal
for each pair of G and C3,4b. The results are shown in Fig. 5 for
various collection angles. The bottom panel of Fig. 5 shows
also some typical examples of lengths of reciprocal-lattice
vectors (vertical dashed lines), e.g., fcc nickel or (La/Sr)MnO3

for illustration purposes.
Notice how the EMCD signal can change sign when C3,4b

gradually increases at a fixed �B . The actual optimal value of
relative EMCD strength as a function of �B is plotted in Fig. 6.
As can be seen in Fig. 6, its behavior is not monotonic. The
reasons for this behavior can be better understood from Fig. 5,
where numerous lobes with an approximately hyperbolic shape
can be observed. The lobes get denser towards small values of
�B . Moreover, at each constant �B value there are numerous
local minima, which results in a complicated deployment of
numerical optimization routines. In principle, only a brute
force search with a fine step, a long Monte Carlo simulation,
or a simulated annealing with a slowly decreasing effective
temperature would recover the global minimum.

At larger collection angles the optimized relative EMCD
strength (Fig. 6) shows two broader local maxima. Increasing
the collection angle also results in an EMCD signal decreasing
in strength. Therefore, in actual experiments, a certain tradeoff
must be found for the collection angle in order to optimize the
magnetic SNR; see Sec. IV E.
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FIG. 5. Relative EMCD strength for out-of-plane magnetization
for different collection angles as a function of C3,4b and twofold
Bragg scattering angle 2�B . The acceleration voltage is 100 kV and
convergence semiangle 30 mrad. The collection angle is displayed
in the legend of each plot. The blue dots mark the C3,4b values at
which the absolute EMCD signal reaches its maximum for a given
value of 2�B . The vertical dashed lines in the bottom panel mark
the Bragg scattering angles of (La/Sr)MnO3, LaMnAOs, bcc-Fe, and
fcc-Ni from left to right, respectively. Circle marks an optimal region,
to which we refer in Sec. IV C.

C. Influence of residual aberrations for magnetization
along the optical axis

An aberration corrector is designed to reduce the aberration
coefficients under certain tolerable limits. In practice, some
small nonzero values of aberrations are always present, but
they can be compensated with lower-order aberrations of the
same symmetry. For instance, a remaining C5,2 aberration
in the electron probe is compensated with C3,2 and C1,2

aberrations [43]. Thus a question arises of how sensitive is
the expected EMCD strength with respect to other unwanted
aberrations?

In the calculations below the same illumination conditions
as in the previous sections are assumed (α = 30 mrad, Vacc =
100 kV). C3,4b and a collection angle β are set to 20 μm and
20 mrad, respectively, for the Bragg scattering angle of �B =
20 mrad. These electron optical conditions correspond to one
of the optimal regions, marked with a black circle in Fig. 5,

10 20 30 40 50 60
2Θ

B
(mrad)

0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e 
E

M
C

D

point-like detector
β = 5mrad
β = 10mrad
β = 20mrad
β = 30mrad
β = 40mrad

FIG. 6. Absolute value of the optimized relative EMCD strength,
as a function of reciprocal-lattice vector represented by twofold Bragg
scattering angle 2�B and collection angle β. The position of two local
maxima is marked with dashed lines.

and where our idealized model predicts a relative EMCD
strength of about 13% (at N = M = 1). The optimization was
performed by searching for the limits when the relative EMCD
strength is reduced by a factor of 2. The fourfold astigmatism
value was fixed, while the other aberration coefficients, up to
fifth order, were varied one by one.

The results are summarized in Table I. Some of the values
deserve a few comments. First of all, the C0,1 aberrations (beam
shift) have limits of 0.23 Å, which means that the EMCD signal
is rather strongly localized around the atom. This value should
be compared to the diffraction-limited probe size, which has
a full width at half maximum (FWHM) of 0.65 Å at Vacc =
100 kV and α = 30 mrad. In this context, the localization of
the EMCD signal is about 2/3 of the electron probe FWHM.

The rotationally symmetric aberrations C1,C3,C5 allow
for quite non-negligible values. In particular, the spherical
aberration (C3 or Cs) can be up to ±12 μm, which is more than
a half of the desired fourfold astigmatism. Of course, reaching
this value still requires an aberration corrector; nevertheless
the optimum seems rather robust with respect to the value
of spherical aberration. Interestingly, some of the even-m
aberrations (C1,2,C5,6) have different limits for the a-type and

TABLE I. Robustness of the EMCD strength at α = 30 mrad,
β = 20 mrad, Vacc = 100 kV, �B = 20 mrad with respect to parasitic
aberrations. These values give limits above which the predicted
EMCD strength is reduced by factor of 2 or more.

Aberration Limits Aberration Limits

C0,1ab ±0.23 Å C4,1ab ±0.28 mm
C1 = df ±8.4 nm C4,3ab ±0.65 mm
C1,2ab ±1.7/1.8 nm C4,5ab ±0.26 mm
C2,1ab ±110 nm C5 ±19 mm
C2,3ab ±270 nm C5,2ab ±12 mm
C3 = Cs ±12 μm C5,4a ±11.5 mm
C3,2ab ±5.6 μm C5,4b −16/ + 18 mm
C3,4ab ±5.4/7.5 μm C5,6ab ±61/18 mm
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b-type aberrations. This is naturally the case also for m = 4
aberrations, where the influence of C5,4b is also asymmetric
for positive vs negative values.

We notice that a well tuned Nion UltraSTEM 100 in a
day-to-day performance has residual averaged values of fifth-
order aberrations around 5 mm or smaller. The fourth-order
residual aberrations are on average less than 200 μm, while
the third-order residual aberrations are on average below 4
μm. We do not know the day-to-day performance of other
aberration-corrected electron microscopes (i.e., FEI, JEOL,
and Hitachi), but since their spatial resolutions are comparable
at the same optical conditions, it is safe to assume that the
residual aberrations are also similar. This means that under
normal operational conditions an EMCD signal should be
detected, in principle, in all aberration-corrected STEM, even
in the presence of residual aberrations.

We summarize this subsection by noting that the EMCD
signal should be well localized around the atomic column, and
that it is relatively robust with respect to residual aberrations.

D. Optimization of beam shift for in-plane magnetization

Replacing the expression for magnetization along the z axis,
Eq. (10), with an expression for magnetization along the x axis,
Eq. (11), and using the same optimization routine described
above, one can obtain maps of relative EMCD strength as a
function of C0,1b and Bragg scattering angle.

For in-plane magnetization, the EMCD maps are very
similar across all the considered collection angles (0, 5, 10,
20, 30, 40 mrad). Contrary to the magnetization along the z

direction, the strength of the EMCD signal as a function of
beam shift does not degrade strongly with the larger collection
angles. Only a gradual smearing of the EMCD signal obtained
for the pointlike detection is observed. For this reason, we
show in Fig. 7 only the results for the pointlike detection
(β = 0 mrad) and for the largest collection angle considered,
β = 40 mrad. As expected, the dependence of beam shift
reflects the periodicity of the crystal and dimension of the
unit cell corresponding to the Bragg scattering angle.

These results indicate that if a TEM could achieve an atomic
size probe in a Lorentz mode optical configuration, there
should be a sizable magnetic signal, when the electron probe
is displaced perpendicular to the direction of the magnetic

1
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3

4

5

0

1

FIG. 7. Relative EMCD strength for in-plane magnetization as a
function of C0,1b and twofold Bragg scattering angle 2�B , calculated
for 100-kV acceleration voltage and convergence semiangle 30 mrad.
The collection angle is displayed in the legend of each plot. Blue dots
mark the lattice parameter corresponding to �B .

moment. This effect could be also detected on strongly
anisotropic magnetic materials, where the magnetization is
kept in plane due to high magnetocrystalline anisotropy energy,
despite the nonzero magnetic field of the objective lens, which
is parallel to the optical axis.

An optimum shift of approximately 0.2 Å appears to be
almost independent of the Bragg scattering angle. Presumably,
this is because the beam shape is fixed, while the calculations
are performed across unit cells of different sizes. We notice
that an electron probe shift by 0.2 Å in the opposite direction
also produces the same EMCD signal but with opposite
sign. Therefore in practice there might occur a quite strong
cancellation of the positive and negative EMCD signals due to
finite source size broadening.

We suggest that a larger probe (smaller convergence angle)
will lead to a larger separation of the regions of positive
and negative EMCD signal for in-plane magnetization, and
therefore it will be more robust with respect to source size
broadening.

E. Optimal signal-to-noise ratio of the EMCD signal

In this subsection we optimize the fourfold astigmatism,
convergence, and collection angles for a range of lattice para-
meters a, with an effort to reach the highest magnetic SNR.

Definition of the magnetic signal is straightforward, since
it is represented by the contribution from the imaginary parts
of the MDFFs. However, the noise should be calculated from
the total intensity at the core-level edges, which consists of the
magnetic signal, nonmagnetic part originating from real parts
of the MDFFs, but also from the background intensity follow-
ing approximately a power law. The background contribution
depends on a number of factors, for example the presence of
other nearby edges, convergence, and collection angles, but
also sample thickness. Many of these factors are well beyond
the scope of our simple model. We will thus assume that
the background intensity is approximately proportional to the
nonmagnetic part of the edge signal intensity.

Next, we need to choose, how do we define the SNR. One
could normalize the detection to a certain fixed number of
counts, i.e., in an actual experiment that would mean waiting
until a fixed total number of counts are accumulated at the
desired edge. It is easy to show that SNR defined in this way
would be proportional to a relative strength of the EMCD
signal. This might sound reasonable on a first look, however,
such optimization invariably leads to a preference of pointlike
detection, because this is where the largest relative EMCD
strengths are predicted; see Figs. 5 and 6. In practice this
cannot be a viable solution, because a very small collection
angle would mean long acquisition times and thus, most likely,
also serious problems with beam damage and sample drift.

Both sample drift and beam damage constrain the acquisi-
tion time—so-called dwell time—and they do that in a different
manner. Sample drift means a movement of the sample during
the acquisition of the spectrum image, resulting in images that
are distorted and warped. The operator of the microscope is
then forced to limit the dwell time, so that the acquired images
are interpretable. For experiments that are sample drift limited,
one should seek to maximize the SNR per unit of acquisition
time.
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Achieving a maximum in the SNR per unit of acquisition
time typically entails for a larger beam current (Ip ∝ α2), and
a larger collection angle β (integrated scattering cross-section
is roughly proportional to β2, when β � α). Both aspects are
naturally represented in our calculations and the definitions of
A(
,χ ),B(
,χ ); see Sec. II C and Fig. 2. Thus, normalizing
the SNR to the detected counts per unit of time leads to a SNR
expression that is proportional to the strength of the magnetic
component divided by a square root of the nonmagnetic
component of the EEL spectrum signal, i.e., SNR ∝ B/

√
A.

For experiments when the beam damage is the primary
factor constraining the dwell time, one should try to maximize
the SNR per electron dose. Fixing the electron dose means that
a product of A and acquisition time t is constant. SNR will be
then proportional to Bt/

√
At = √

t × B/
√

A, i.e.,
√

t times
the criterion for drift-limited optimization. The time to reach a
given dose is inversely proportional to the beam current, which
is itself proportional to squared convergence angle: t ∝ I−1

p ∝
α−2. Finally, the quantity that we need to optimize becomes
1/α × B/

√
A. This tends to favor smaller convergence angles

and typically leads to higher relative strength of the EMCD
signal, B/A.

Both optimization criteria have their own domain of suit-
ability. Interestingly, very often they lead to the same results,
especially in the case of small Bragg angles. In this section
we present results for the SNR drift-limited experiment, but
Tables II–V below in the Appendix summarize also the results
for the dose-limited experiment.

For the optimization criteria one does not need actual
SNR values; it is sufficient to optimize a property that is
proportional to the SNR. On the other hand, with a suitable
choice of various experimental parameters one could obtain
semiquantitative estimates of the physical SNR. Those can give
an experimentalist some idea about what levels of data counts
are needed in order to detect a sufficiently strong EMCD signal.

The question is what parameters in an atomic resolved
EMCD spectrum imaging experiment one needs to look out
for semiquantitative estimates of the physical SNR?

The first obvious parameter is the number of pixels, Npix,
that an atomic column covers in the spectrum image. Other
two straightforward parameters are the intensities of the
background signal and the L-edge signal for each pixel. Since
we are interested in detecting an EMCD signal, it is better to
work with their total integrated intensities (or counts), i.e., CL3

and Cbkg , for the L edge and background, respectively. Notice
that here we work only with the L3 peak, but the same concept
applies to the L2 peak.

Our experience in ORNL’s Nion UltraSTEM 100 is that CL3

and Cbkg can be in the order of thousand of counts for dwell
times of few tens of milliseconds, and with atomic columns that
cover Npix = 3 × 3 pixels. For simplicity we assume values of
CL3 = 1000 and Cbkg = 2000.

Another parameter to take into consideration is the ratio
present between magnetic and nonmagnetic signals in the EEL
spectra, M/N (see Sec. II B). The ratio M/N is limited by
sum rules [14] due to the fact that the spin magnetic moment
cannot be larger than the number of holes in the 3d shell.
Assuming that the orbital moment is a small fraction of the spin
moment and that the spin-orbital interaction is weak—both

assumptions are typically well fulfilled for 3d materials—its
maximum value for L3 edge is 1/8 = 0.125 (for the L2 edge
it is 1/4). Here we assume M/N = 0.1, which is reasonable
for 3d transition metals in their high-spin state.

Integrating the signal around an atomic column leads to a
slight reduction of the relative strength of the EMCD, and
so does source broadening. This effect can be taken into
account by introducing a reduction factor fred. For the example
presented here fred = 0.8.

With all these definitions, the optimized SNR simply
becomes

SNR = |ropt|fred
M
N

NpixCL3√
Npix(CL3 + Cbkg)

≈ 4.4|ropt| (18)

per magnetic column, where ropt is the ratio B/A found
at optimum conditions. We should stress that although the
resulting optimal SNR ∝ ropt, it is by no means true during the
optimization procedure, as discussed above. This relation can
be used only once the optimal conditions are found and the
corresponding ropt is extracted.

In the optimization of SNR, we have varied the Bragg
scattering vectors from 5 to 25 mrad, which corresponds to
lattice parameters a within a range 7.4–1.5 Å at 100 kV or
5.0–1.0 Å at 200 kV, respectively. The convergence angle was
varied from 14 to 50 mrad and the collection angle was varied
from 1 mrad up to the value of the convergence angle. This limit
of collection angle was chosen because the simulations (Fig. 6)
suggest that the relative strength of EMCD drops rapidly, once
the collection angle approaches the value of the convergence
angle. This restriction is also well supported a posteriori
because none of the optimal solutions are at this boundary,
i.e., having a collection angle equal to the convergence angle.
Instead, the optimum collection angle is typically between
0.5α and 0.8α. For each combination of convergence and
collection angles the value of C3,4b was varied from 0 to 40 μm
with a step size of 0.5 μm.

Representative results of the optimization procedure are
shown in Fig. 8 for twofold Bragg scattering angles of 2�B =
10, 15, and 20 mrad, respectively. One can see in the left
column of Fig. 8 that the sign of the magnetic signal does not
stay the same throughout the parameter space; instead it shows
domains, within which it stays either positive or negative.
This is related to the complicated topology of the magnetic
signal dependence on C3,4b, as seen in Fig. 5. The domains in
Fig. 8 correlate with a qualitatively different range of values
of optimized C3,4b shown in the middle column of Fig. 8. The
resulting estimate of the SNR shown in the right column of
Fig. 8 confirms the anticipated decrease of SNR for collection
angles β approaching the values of convergence angle α, but
primarily, there seems to be local optima of the SNR within
each of the domains of EMCD sign.

As a function of the lattice parameter, with increasing
lattice parameter (i.e., decreasing twofold Bragg scattering
angle 2�B) the domains seem to systematically shrink
and move down and left towards smaller convergence and
collection angles. This indicates that the preferred beam
sizes approximately scale with the lattice parameter. Along
with the shrinking of domains, the peak SNR within these
domains is fading to smaller values, giving space to new
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FIG. 8. Optimization of the magnetic SNR for Fe-L3 edge at
Vacc = 100 kV for a structure with twofold Bragg scattering angle
2�B = 10 mrad (top), 15 mrad (middle row), 20 mrad (bottom), i.e.,
a = 3.70, 2.47, and 1.85 Å, respectively. For each combination of
convergence angle α and collection angle β < α the highest SNR (in
arbitrary units; left column) obtained for optimal C3,4b value (middle
column) and the resulting relative strength of the EMCD signal (right
column) are plotted. Values where β > α were not calculated (white
color).

domains appearing at larger convergence/collection angles and
eventually offering higher SNR. It seems likely that when
larger convergence/collection angles can be used, there will be
more domains with alternating positive and negative signs of
the EMCD signal strength, and possibly with rising SNR.

A summary of the optimization results over the whole
range of Bragg scattering angles is presented in Fig. 9.
The actual extracted optimum depends on the maximum
convergence angle achievable in an electron microscope.
Therefore for practical purposes, we show here results for
maximum convergence angles 30 mrad suitable for the Nion
UltraSTEM 100 electron microscope.

The optimal convergence angle is often located at the
boundary of 30 mrad, suggesting that if larger convergence
angles would be achievable, the SNR could be further
improved. The collection angle is varying between 11 and
28 mrad. In dependence of C3,4b on 2�B one can identify a set
of monotonous segments, followed by a sudden change of the
value. These segments are related to the domains in Fig. 8 and
their changes with respect to �B discussed above. The C3,4b

values fall into the range 14–40 μm.
The plots in Fig. 9 constitute one of the primary outcomes

of this paper. Actual numerical values are summarized in
Tables II–V in the Appendix.

Returning to the question of feasibility of the experiment,
let us shortly discuss the estimate of SNR as given by Eq. (18).
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FIG. 9. Summary of optimized settings for Fe-L3 edge at Vacc =
100 kV as a function of twofold Bragg scattering angle 2�B or
lattice parameter a, respectively. Convergence and collection angles
are shown in the top panel and the desired fourfold astigmatism C3,4b

and resulting relative strength of EMCD signal are shown in the
bottom panel. The convergence angle α was restricted to a maximum
of 30 mrad in these plots.

From Fig. 9 and the tables below one can see than a value of
ropt � 0.10 should be reachable for most, except for the largest
of the column spacings. Equation (18) then gives SNR of
∼0.44 per magnetic column, which means that for the electron
counts estimated above, the EMCD signal would be covered
by noise. To reach SNR ≈ 3 we would need to either collect a
signal from approximately 7 × 7 magnetic columns, which is
an area of approximate extent 1–4 nm2, or we would need to
increase the electron counts CL3 by a longer dwell time and/or
finer scanning step allowing us to use higher Npix. We remind
that our optimization refers to thin samples. For thick samples
(tens of nanometers) the relative strength of the EMCD signal
should drop significantly.

In classical EMCD geometries based on two-beam or three-
beam orientations [3,4,9] probe sizes close to 1 nm have been
already reached, yet the EMCD on a pixel-by-pixel basis is
still rather noisy. However, with atomic size probes one can
freely decide the shape of the scanned area, e.g., a thin stripe
parallel to a surface or an interface. In addition, the atomic
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FIG. 10. Schematic of Ronchigrams of a LaMnAsO grain ori-
ented along the c axis, and phase distributions of fourfold astigmatism
probes at the aperture plane. The Ronchigram in the bottom is a copy
of the top panel that has been digitally rotated after acquisition for
illustration purposes.

size of the probes allows us to detect an EMCD signal also
from antiferromagnetic compounds, which is not possible with
probes larger than a unit cell.

V. CREATING A C3,4 ABERRATED PROBE

As it was shown in Sec. III B, a C3,4 aberrated probe is
needed in order to achieve an effective EMCD signal when
performing STEM spectrum imaging experiments. However,
it is not enough to only add an absolute value of C3,4 aberration
in the electron probe. The electron probe when entering the
sample also has to have an antisymmetric phase distribution
with respect to the main axes of the sample. In other words, the
C3,4b aberration, which is antisymmetric about the principal
longitudinal plane of the corrector (because of its sin 4θ

angular dependence), has to be aligned with the main axes of
the sample. Figure 10 shows schematically how the phase dis-
tribution of the C3,4b aberration is antisymmetrically aligned
with the main axes of a crystalline sample. Note the Kikuchi
lines in the Ronchigrams (left column) parallel to crystal axes
b1 and b2 and the desired phase distribution (right column).

However, it is very unlikely that the sample is loaded in
a TEM holder, such that after being tilted to zone axis, both
axes, sample and corrector, coincide. Thus, in practice the
proper amount of C3,4a and C3,4b aberrations need to be added
to produce a C3,4 phase distribution that is antisymmetrically
aligned with the sample main axes of the sample.

The first step to produce a correct C3,4b phase distribution
on the electron probe is to measure the relative alignment
of the corrector longitudinal axes with the horizontal axis.
For instance, one method is selecting a recognizable feature
in the sample when imaged with the Ronchigram camera.
Observe how that feature shifts, using a relative large defocus

of −1000 nm, with a beam shift of few tens of nm along the a

axis of the corrector. The relative angle is obtained by tracing a
line from the initial to the final position of the selected feature,
and measuring the angle that the line has with the horizontal
axis. Another approach is to select a feature while imaging
the sample in STEM mode, with the scanning coils relative
rotation set to zero, then proceed to perform a beam shift along
the a axis of the corrector, and measure the relative angle of
the line formed by the shifted feature and the horizontal axis.
This last approach also requires one to know the relative angle
between the axes of the Ronchigram camera and the axes of
the scanning coils.

The next step requires one to obtain the relative angle
between the main axes of the sample with the horizontal axis.
This can be achieved by identifying a main Kikuchi line of
the crystalline sample, which previously has been aligned
in a main zone axis, and measuring its relative angle with
the horizontal axis. Usually an illumination of the sample in
STEM mode with a defocused electron probe (500–1000 nm)
is enough to resolve the Kikuchi lines of a crystalline sample.

Notice that the sample here has to have a tetragonal
symmetry after being aligned in the major zone axis of interest.
As a consequence, pairs of Kikuchi lines with different spacing
could be observed, depending on the lattice parameters of the
sample. It is not important which Kikuchi line is selected
in this case. One can select the line that has the smallest
angle with respect to the horizontal axis. However, the relative
angles of both the corrector and the sample with the horizontal
axis need to be defined consistently (either clockwise or
counterclockwise).

The desired phase distribution of the aberrated electron
probe is obtained by calculating the amount of C3,4a and
C3,4b, as C3,4a = C3,4 cos δ and C3,4b = C3,4 sin δ. Here, δ is
the difference of the relative angles between the sample and
the corrector with the horizontal axis.

Finally, the values of C3,4a and C3,4b aberrations need to
be used in the aberration correction algorithm, such that the
lenses in the corrector produce the desired phase distribution.
In a Nion microscope, this is achieved by selecting as C3,4a and
C3,4b target values the new calculated C3,4 aberrations. Then
one simply needs to proceed with the aberration correction
algorithm as in a normal operation procedure [35]. The desired
C3,4 aberrated probe is normally reached within a few minutes.

Figure 10 shows two schematic examples of a LaMnAsO
grain that has been aligned such that its c axis is parallel
to the electron-beam direction. The grain is shown with two
different relative angles between its respective Kikuchi lines
and the horizontal axis. If the relative angle of the corrector
with the Ronchigram camera is zero, then for the two schematic
examples shown in Fig. 10, δ = γ and δ = γ ′.

Figure 11 shows simulated Ronchigrams of an amorphous
sample illuminated with electron probes with 15 μm of C3,4a

(top row) and C3,4b (bottom row) aberrations. The fourfold
symmetry of the C3,4 aberration can be appreciated in the
Ronchigram for relatively large defocus values of ±20 nm.
Additionally, the relative rotation of 22.5◦ between the C3,4a

and C3,4b aberrations can be observed by the rotation of the
fourfold features in the Ronchigram. However, it looks like if at
opposite defocus values of 20 and −20 nm the fourfold features
observed in the Ronchigram also rotate, in this case by 45◦.
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FIG. 11. Simulated Ronchigrams of an amorphous sample il-
luminated with a C3,4 aberrated electron probe. The simulations
were performed for 100-kV acceleration voltage and convergence
semiangle of 30 mrad. The a axis of the corrector is parallel to the
horizontal axis.

The apparent rotation is due to an enhancement of the negative
lobes of the C3,4 aberrations (a and b) for a negative defocus
value, while for a positive defocus value the enhancement
occurs in the positive lobes of the C3,4 aberrations. This effect
is better appreciated if only the phase of a C3,4 probe is plotted
at the aperture plane, as shown in Fig. 12.

Figure 13 shows experimental Ronchigrams of an amor-
phous carbon film illuminated with a C3,4 aberrated probe.
Similarly as in the case of the simulation, the fourfold
symmetry features of the C3,4 aberration and their apparent
rotation for opposite defocus values can be observed in the
Ronchigram. The dashed red lines at a defocus value of
−20 nm show the relative rotation of the fourfold features
in the Ronchigrams.

Our experience in setting a C3,4 aberrated probe indicates
that the alignment of the effective C3,4b phase distribution
can be achieved within ∼3◦ of the desired rotation. For a
15-μm C3,4 probe that means less than 1 μm of a residual
C3,4, which is within the limits of C3,4a and C3,4b aberrations
required for the EMCD measurements (see Table I). The
estimate in the accuracy of the measurements has been
obtained by comparing the measured values of C3,4a and C3,4b

FIG. 12. Phase distribution at the aperture plane of 15 μm of C3,4a

and C3,4b aberrations as a function of defocus �f . The simulations
were performed for 100-kV acceleration voltage. The blue circle
schematically highlights the convergence semiangle of 30 mrad.

FIG. 13. Experimental Ronchigrams of an amorphous sample
illuminated with a C3,4 aberrated electron probe. The experiments
were performed for 100-kV acceleration voltage and convergence
semiangle of 30 mrad. The experiments were performed by config-
uring the corrector such that the C3,4a and C3,4b aberrations generate
a relative rotation of the fourfold features in the Ronchigrams. The
relative rotation angle is shown for each row.

with their desired target values. The procedure was carried out
at different rotations of the C3,4 phase distribution with respect
to the longitudinal plane of the corrector.

VI. CONCLUSIONS AND OUTLOOK

We have described in detail an approach to atomic resolu-
tion measurement of magnetic properties based on an EMCD
method using aberrated electron probes. Model of inelastic
scattering of a convergent electron probe provides a simple
explanation of the desired symmetries of the probe phase distri-
bution. Within the model, the key experimental parameters—
strength of fourfold astigmatism, convergence, and collection
angles—have been optimized to achieve the strongest signal-
to-noise ratio. Finally, the actual procedure of setting the
fourfold astigmatism in experiments has been discussed.

Based on the results of optimization of signal-to-noise ratio,
it appears that one could profit from the new generation of
aberration correctors allowing one to use larger convergence
angles, at least for very thin samples.

When discussing the symmetry considerations that an
electron probe has to have in its phase distribution for EMCD
measurements, one needs to distinguish between necessary
and sufficient conditions. The perfect antisymmetry of phase
distribution is a sufficient condition for observing atomic
resolution EMCD, but strictly speaking it is not necessary. This
opens for a possibility that less symmetric probes utilizing
several types of aberrations at once might provide more
optimal probes. This is at present under investigation and will
be the subject of another publication.

Another direction of further optimization of the probe is
based on an observation that a substantial part of the fourfold
astigmatic probe wave function in the k space—the middle
section—has a negligible phase variation. As a consequence,
the center of the electron probe is inactive in the generation
of the needed phase distribution for detection of an EMCD
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signal. Using an annular aperture with a carefully chosen
inner and outer radii, instead of a circular one, will partially
reduce the center part of the electron probe and enhance
its tails in real space with the required phase distribution.
An electron probe formed with an annular aperture should
increase the relative strength of the EMCD signal without
sacrificing too much SNR.

Finally, in this work we have focused on the detection
of magnetic properties in materials. However, one could
well imagine that electron probe shapes could be tailored to
detect other materials properties with unprecedented spatial
resolution, such as charge ordering, crystal-field splitting,
spin-orbit-coupling, optical dichroism, and other physical
phenomena associated with broken symmetries such as topo-
logical insulators and quantum Hall effect.

All these outlined directions call for further research
in a different class of electron energy-loss spectroscopy
experiments—experiments where aberration correctors and
shaped apertures in STEM will be used, not only to achieve

TABLE II. Optimized convergence angle α, collection angle β,
and fourfold astigmatism C3,4b for EMCD measurements at Fe L3

edge of cubic or tetragonal structures with magnetization along the
c axis and parallel to electron beam. Acceleration voltage 100 kV,
maximum convergence angle 30 mrad.

2�B a α β C3,4b Relative
(mrad) (Å) (mrad) (mrad) (μm) EMCD, ropt

5.0 7.40 30 25 34.0 0.008
5.5 6.73 30 27 30.5 −0.014
6.0 6.17 29 22 40.0 0.036
6.5 5.70 30 25 32.0 0.028
7.0 5.29 30 23 34.0 −0.040
7.5 4.93 30 (29) 24 (26) 27.0 (25.5) −0.027 (−0.025)
8.0 4.63 30 28 20.5 −0.023
8.5 4.36 27 20 40.0 0.040
9.0 4.11 28 20 33.5 0.044
9.5 3.90 30 20 26.0 0.048
10.0 3.70 30 18 40.0 −0.067
10.5 3.52 30 19 35.5 −0.066
11.0 3.37 30 (27) 14 (14) 29.5 (31.0) −0.091 (−0.086)
11.5 3.22 30 (28) 14 (14) 24.5 (26.0) −0.092 (−0.092)
12.0 3.08 30 16 21.0 −0.084
12.5 2.96 30 16 18.5 −0.088
13.0 2.85 30 17 16.0 −0.082
13.5 2.74 30 26 14.0 −0.045
14.0 2.64 30 15 40.0 0.109
14.5 2.55 30 (28) 15 (14) 37.5 (37.5) 0.118 (0.123)
15.0 2.47 29 (24) 15 (14) 32.5 (40.0) 0.117 (0.126)
15.5 2.39 25 14 40.0 0.150
16.0 2.31 30 (25) 15 (15) 40.0 (40.0) 0.163 (0.156)
17.0 2.18 26 15 35.5 0.170
18.0 2.06 28 16 27.5 0.168
19.0 1.95 30 (29) 17 (17) 21.5 (23.0) 0.165 (0.166)
20.0 1.85 30 18 19.0 0.160
21.0 1.76 30 18 16.5 0.153
22.0 1.68 30 19 15.0 0.134
23.0 1.61 30 (22) 11 (10) 39.5 (40.0) −0.203 (−0.244)
24.0 1.54 23 (22) 11 (11) 39.5 (40.0) −0.245 (−0.239)
25.0 1.48 24 (23) 12 (11) 33.5 (35.0) −0.233 (−0.249)

the smallest possible probes, but instead, to sculpt the electron
wave function such that its phase distribution could be
harvested at will to reveal interesting physical phenomena.
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APPENDIX: SUMMARY OF OPTIMIZED PARAMETER
VALUES FOR EMCD EXPERIMENTS WITH FOURFOLD

ASTIGMATIC PROBES

In this appendix we summarize the numerical values of
optimized parameters for convergence and collection angles
and fourfold astigmatism, as a function of lattice parameter
(or twofold Bragg angle). Individual tables show results for
two values of maximal convergence angle, 30 or 50 mrad, and
for two values of acceleration voltage, 100 and 200 kV.

The optimization procedure and ranges of parameter values
are described in the text, Sec. IV E. As mentioned in the

TABLE III. The same as Table II, with Vacc = 200 kV.

2�B a α β C3,4b Relative
(mrad) (Å) (mrad) (mrad) (μm) EMCD, ropt

5.0 5.02 29 24 31.0 −0.020
5.5 4.56 28 20 39.5 0.042
6.0 4.18 29 22 27.5 0.038
6.5 3.86 29 23 31.0 −0.041
7.0 3.58 30 24 23.0 −0.039
7.5 3.34 29 26 17.5 −0.027
8.0 3.13 25 16 36.5 0.055
8.5 2.95 27 17 27.0 0.053
9.0 2.79 30 12 40.0 −0.120
9.5 2.64 30 12 33.0 −0.136
10.0 2.51 30 12 28.0 −0.130
10.5 2.39 30 (26) 13 (13) 23.5 (24.5) −0.113 (−0.102)
11.0 2.28 30 (27) 13 (13) 20.0 (20.5) −0.115 (−0.109)
11.5 2.18 30 (28) 14 (14) 16.5 (17.5) −0.107 (−0.105)
12.0 2.09 30 14 14.5 −0.114
12.5 2.01 30 15 12.5 −0.106
13.0 1.93 27 13 39.0 0.123
13.5 1.86 28 (22) 13 (13) 33.5 (40.0) 0.128 (0.116)
14.0 1.79 29 (22) 14 (13) 29.0 (40.0) 0.121 (0.136)
14.5 1.73 28 (23) 13 (13) 40.0 (40.0) 0.159 (0.155)
15.0 1.67 28 (23) 14 (13) 35.5 (39.5) 0.156 (0.163)
15.5 1.62 29 (24) 14 (14) 31.5 (34.0) 0.160 (0.155)
16.0 1.57 30 (25) 15 (14) 27.5 (29.5) 0.153 (0.161)
17.0 1.47 27 (26) 15 (15) 22.5 (24.0) 0.155 (0.156)
18.0 1.39 28 16 18.5 0.154
19.0 1.32 30 (29) 17 (17) 14.5 (15.5) 0.150 (0.150)
20.0 1.25 30 17 13.0 0.153
21.0 1.19 30 (20) 18 (9) 11.5 (40.0) 0.135 (−0.227)
22.0 1.14 30 (20) 19 (10) 10.0 (40.0) 0.117 (−0.209)
23.0 1.09 22 (21) 11 (10) 31.5 (33.0) −0.201 (−0.216)
24.0 1.04 23 (22) 11 (11) 26.5 (28.0) −0.208 (−0.203)
25.0 1.00 24 (23) 12 (11) 22.5 (23.5) −0.197 (−0.211)
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TABLE IV. The same as Table II, but with maximum convergence
angle α = 50 mrad.

2�B a α β C3,4b Relative
(mrad) (Å) (mrad) (mrad) (μm) EMCD, ropt

5.0 7.40 50 37 16.0 0.022
5.5 6.73 46 40 11.0 0.018
6.0 6.17 50 (31) 45 (22) 8.0 (40.0) 0.017 (0.041)
6.5 5.70 34 25 29.0 0.040
7.0 5.29 36 26 22.0 0.041
7.5 4.93 39 28 16.5 0.041
8.0 4.63 41 29 13.0 0.042
8.5 4.36 44 32 10.0 0.042
9.0 4.11 46 33 8.0 0.042
9.5 3.90 49 34 6.5 0.044
10.0 3.70 48 (32) 35 (19) 8.0 (39.5) −0.043 (−0.075)
10.5 3.52 50 (33) 39 (19) 4.5 (33.0) 0.037 (−0.082)
11.0 3.37 49 (35) 38 (21) 5.5 (27.0) −0.043 (−0.076)
11.5 3.22 50 (36) 26 (21) 4.5 (23.0) −0.061 (−0.080)
12.0 3.08 50 (38) 41 (23) 4.0 (19.0) −0.036 (−0.077)
12.5 2.96 42 (39) 24 (24) 16.0 (16.5) −0.077 (−0.076)
13.0 2.85 41 24 14.0 −0.081
13.5 2.74 45 (43) 27 (18) 12.0 (12.0) −0.074 (−0.121)
14.0 2.64 44 19 10.5 −0.120
14.5 2.55 46 19 9.0 −0.127
15.0 2.47 47 (24) 19 (14) 8.0 (40.0) −0.133 (0.126)
15.5 2.39 49 (25) 21 (14) 7.0 (40.0) −0.121 (0.150)
16.0 2.31 50 (25) 21 (15) 6.0 (40.0) −0.123 (0.156)
17.0 2.18 50 (26) 21 (15) 5.0 (35.5) −0.120 (0.170)
18.0 2.06 34 (28) 17 (16) 25.0 (27.5) 0.161 (0.168)
19.0 1.95 36 (29) 17 (17) 20.5 (23.0) 0.171 (0.166)
20.0 1.85 38 (31) 18 (18) 16.5 (18.0) 0.169 (0.165)
21.0 1.76 40 (32) 20 (19) 13.5 (15.5) 0.158 (0.161)
22.0 1.68 41 (34) 20 (20) 11.5 (12.5) 0.166 (0.162)
23.0 1.61 43 (35) 21 (20) 9.5 (10.5) 0.164 (0.168)
24.0 1.54 45 (22) 22 (11) 8.0 (40.0) 0.163 (−0.239)
25.0 1.48 47 (23) 23 (11) 7.0 (35.0) 0.158 (−0.249)

main text, we remind the reader that the results presented in
Tables II–V originate from model calculations, which neglect
the deformation of the probe due to elastic scattering on
the lattice and, as such, they should be valid for very thin
specimens. With increasing sample thickness it is expected

TABLE V. The same as Table III, but with maximum convergence
angle α = 50 mrad.

2�B a α β C3,4b Relative
(mrad) (Å) (mrad) (mrad) (μm) EMCD, ropt

5.0 5.02 50 38 11.0 0.024
5.5 4.56 46 (28) 42 (20) 7.5 (39.5) 0.018 (0.042)
6.0 4.18 44 (31) 26 (22) 30.0 (27.5) 0.038 (0.043)
6.5 3.86 34 23 19.5 0.044
7.0 3.58 36 25 15.0 0.044
7.5 3.34 39 27 11.0 0.044
8.0 3.13 42 (38) 28 (28) 8.5 (13.5) 0.043 (−0.045)
8.5 2.95 44 (38) 30 (30) 7.0 (10.5) 0.042 (−0.043)
9.0 2.79 46 32 5.5 0.044
9.5 2.64 49 (30) 33 (12) 4.5 (33.0) 0.044 (−0.136)
10.0 2.51 48 (31) 35 (13) 5.5 (27.5) −0.044 (−0.126)
10.5 2.39 50 (33) 37 (13) 4.5 (22.5) −0.044 (−0.141)
11.0 2.28 50 (35) 24 (14) 3.5 (18.5) −0.067 (−0.135)
11.5 2.18 50 (36) 26 (14) 3.0 (15.5) −0.065 (−0.144)
12.0 2.09 38 15 13.0 −0.141
12.5 2.01 42 (39) 16 (16) 11.0 (11.0) −0.134 (−0.133)
13.0 1.93 41 16 9.5 −0.146
13.5 1.86 43 (22) 17 (13) 8.0 (40.0) −0.139 (0.116)
14.0 1.79 44 (22) 18 (13) 7.0 (40.0) −0.137 (0.136)
14.5 1.73 46 (23) 18 (13) 6.0 (40.0) −0.144 (0.155)
15.0 1.67 47 (23) 18 (13) 5.5 (39.5) −0.148 (0.163)
15.5 1.62 49 (24) 19 (14) 4.5 (34.0) −0.138 (0.155)
16.0 1.57 50 (25) 19 (14) 4.0 (29.5) −0.140 (0.161)
17.0 1.47 50 (26) 20 (15) 3.5 (24.0) −0.130 (0.156)
18.0 1.39 34 (28) 16 (16) 17.0 (18.5) 0.159 (0.154)
19.0 1.32 36 (29) 17 (17) 14.0 (15.5) 0.155 (0.150)
20.0 1.25 38 (31) 18 (18) 11.0 (12.0) 0.153 (0.148)
21.0 1.19 40 (20) 20 (9) 9.0 (40.0) 0.141 (−0.227)
22.0 1.14 42 (20) 20 (10) 7.5 (40.0) 0.148 (−0.209)
23.0 1.09 43 (21) 21 (10) 6.5 (33.0) 0.146 (−0.216)
24.0 1.04 45 (22) 22 (11) 5.5 (28.0) 0.144 (−0.203)
25.0 1.00 48 (23) 23 (11) 4.5 (23.5) 0.141 (−0.211)

that the probe phase distribution will distort, which will most
likely lead to a reduction of the EMCD signal strength.

The primary optimization condition was for the drift-
limited dwell time; see Sec. IV E. Whenever the optimization
for dose-limited dwell time led to different results, these are
shown in parentheses.
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