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Quantum Monte Carlo study of long-range transverse-field Ising models on the triangular lattice
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Motivated by recent experiments with a Penning ion trap quantum simulator, we perform numerically exact
Stochastic Series Expansion quantum Monte Carlo simulations of long-range transverse-field Ising models on
a triangular lattice for different decay powers α of the interactions. The phase boundary for the ferromagnet
is obtained as a function of α. For antiferromagnetic interactions, there is strong indication that the transverse
field stabilizes a clock ordered phase with sublattice magnetization (M,−M

2 ,−M

2 ) with unsaturated M < 1 in a
process known as “order by disorder” similar to the nearest-neighbor antiferromagnet on the triangular lattice.
Connecting the known limiting cases of nearest-neighbor and infinite-range interactions, a semiquantitative phase
diagram is obtained. Magnetization curves for the ferromagnet for experimentally relevant system sizes and with
open boundary conditions are presented.
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I. INTRODUCTION

The large ground-state degeneracy, which is the hallmark of
geometrically frustrated magnets [1,2], can give rise to emer-
gent phenomena governed by degrees of freedom that are quite
distinct from those of the underlying spin system. An exotic
phase that is particularly sought after in frustrated magnets
is the famous spin liquid state, which was first proposed as
a possible ground state for the triangular lattice Heisenberg
model [3,4] and has been found, e.g., in a charge-transfer salt,
adjacent to a superconducting phase [5]. The study of frustrated
magnetism is plagued in many cases by the sign problem,
which makes quantum Monte Carlo (QMC) simulations in-
feasible, while an exact diagonalization of the Hamiltonian for
sufficiently large systems is impossible due to the exponential
increase of the Hilbert space with system size. Therefore the
idea of a quantum simulator has been put forward [6,7], i.e.,
using a well-controlled physical system to emulate another
physical system, adding complexity step by step.

In Ref. [8], a Penning trap quantum simulator is described,
which is expected to simulate a transverse field Ising model
with Hamiltonian

Ĥ = 1

2

∑
ij

Jij Ŝ
z
i Ŝ

z
j − �

∑
i

Ŝx
i (1)

with tunable long-range interactions Jij = J |ri − rj |−α . We
summarize the setup in the following. When a collection
of ions is laser-cooled in a Penning trap, below a certain
temperature the ions undergo a structural phase transition from
a plasma to a Wigner crystal that is stabilized by their mutual
Coulomb repulsion. For a strong trapping potential in z direc-
tion, the system becomes two-dimensional and the correspond-
ing Wigner crystal is a triangular lattice. The number of trapped
ions in a Penning trap ranges from a few to a few millions; in
Ref. [8], the creation of a triangular Wigner crystal with ≈300
9Be+ ions was reported. There, the valence electron of each ion
serves as a qubit, which is represented by the spin- 1

2 operators
(Ŝx

i ,Ŝ
y

i ,Ŝz
i ) in Eq. (1). It can be driven by applying microwave

radiation, which corresponds to an effective magnetic field that
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can be tuned to have both transverse and longitudinal compo-
nents. The use of a spin-dependent optical dipole force allows
to engineer a long-range Ising-type spin-spin interaction
Ji,j ∝ |ri − rj |−α between the internal two-level systems of
the ions [9], where the exponent α can be continuously varied
between 0 and 3 (dipolar decay) by adjusting a laser detuning
parameter. The mechanism by which this interaction arises is
naturally long-range and antiferromagnetic (AFM) if the direc-
tion of the spin-dependent optical dipole-force is perpendicular
to the 2D Coulomb crystal so that ions with opposite spin move
away from each other in the z direction thereby minimizing
their Coulomb repulsion. Ferromagnetic (FM) interactions can
be generated by additionally adjusting a detuning from the
eigenfrequencies of normal modes of the Coulomb crystal. The
goal of this paper is to map out the ground-state phase diagram
of this effective spin model as a function of α and � for both
ferromagnetic and antiferromagnetic interactions, which may
help to benchmark such a potential quantum simulator.

Long-range interactions. Long-range systems are inter-
esting as they exhibit a number of thermodynamic and
dynamical peculiarities [10–14]. While all ground states of
gapped short-range Hamiltonians obey the “area law” for the
entanglement entropy, a violation thereof was recently found
in the long-range transverse-field Ising chain [15] along with
algebraically decaying correlation functions in a gapped phase
(see also Ref. [14] for this last point). Furthermore, apart from
ion traps, one of the best realizations of the transverse-field
Ising model, the Ising ferromagnet LiHoF4 [16], is actually
long-range with a dipolar decay of the interactions.

Few works have dealt with the competition of long-range
and AFM interactions in 2D quantum spin models [14]. On
a bipartite lattice, long-range AFM interactions induce only
weak frustration. The triangular lattice, on the other hand, is
already frustrated, giving rise, in the case of the short-range
Ising AFM, to a disordered classical ground-state manifold
with the long-range interactions leading—in principle—to
additional frustration. The minimum energy configurations of
the classical model (1) with � = 0 on the triangular lattice may
depend sensitively on α and computing them may amount to a
difficult optimization problem. To the best of our knowledge,
the classical phase diagram of (1) as a function of decay
exponent α is not known. It will be shown in the following
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that including quantum fluctuations through a transverse field,
however, stabilizes a phase that extends over a range of
decay exponents α, thus merging potentially different classical
ground states.

Order by disorder. Let us first summarize the known results
for the short-range case, starting from the classical triangular
Ising antiferromagnet and moving on to ferromangetically
stacked layers of antiferromagnets, which—by virtue of a
quantum-to-classical mapping—corresponds to a transverse
field quantum Ising model, which is the main subject of
our interest. The phase diagram of the classical triangular
Ising antiferromagnet, which is obtained by setting � = 0 in
equation (1), is well-known from the work of Wannier [17]
and Stephenson [18]: it is disordered at all temperatures
with a macroscopic ground-state degeneracy [17] and criti-
cal spin-spin correlations at T = 0 where 〈Sz

0S
z
r 〉 decreases

asymptotically as r−1/2 [18]. The ground-state degeneracy can
be explained by looking at the Fourier transformation, J̃ (q), of
the Ising interactions on the triangular lattice and taking into
account the nature of the Ising spins. While

J̃ (q) = J

[
cos qx + 2 cos

(qx

2

)
cos

(√
3qy

2

)]
(2)

has minima of −3J/2 at the corners of the hexagonal Brillouin
zone, at Q± = (± 4π

3 ,0) and equivalent points, such ordering
vectors are not compatible with the hard-spin constraint of
classical Ising spins [19]. The lowest possible energy per
frustrated triangle can be realized in a multitude of ways
so that a macroscopic ground-state degeneracy arises. The
situation changes for stacked triangular antiferromagnets [20].
If several triangular layers are stacked ferromagnetically on
top of each other, chains of spins in the stacking direction can
be combined to form an averaged macrospin. Then, for finite
temperature, the spins, which are coupled ferromagnetically
within a chain, fluctuate and the averaging removes the
hard-spin constraint so that the 2D system of chains can settle
into the minima at ordering vectors Q±. This is the classical,
i.e., finite-temperature induced version of the phenomenon
“order by disorder.”

The transverse field quantum Ising model can be mapped by
the Trotter-Suzuki formalism to a ferromagnetically stacked
classical Ising model so that the statements made above for
stacked triangular magnets carry over to the 2D transverse field
Ising model on the triangular lattice [21]. The mechanism that
is responsible for the appearance of clock order in a transverse
field is the quantum version of “order by disorder”; quantum
fluctuations induced by the transverse field stabilize those
states from the classical ground-state manifold, which can
lower their energy the most by resonance processes. Thus the
exponential degeneracy of the ground-state manifold is lifted
and—since the favored states tend to be regularly structured
spin configurations—an ordered state emerges. Which reso-
nance processes are possible within the ground-state manifold
(and to which order in �) is determined by the lattice structure
and the interactions [22,23]. For fully frustrated systems,
the action of the transverse field to lowest order within the
ground-state manifold is equivalent to S+

i S−
j + H.c. because

one always needs to flip two spins in order to get back to the
ground-state manifold.

XY order parameter. The ordering vectors Q± =
(±4π/3,0) of the critical modes correspond to inequivalent
points in the hexagonal Brillouin zone. This implies a
two-component order parameter. A Landau-Ginzburg-Wilson
analysis [19,20] found an XY action with an XY symmetry
breaking clock anisotropy term

HLGW =
∑

q

(r + q2)m2

+u4

∑
4

m4 + u6

∑
6

m6 + v6

∑
6

m6 cos(6ϑ), (3)

where the sums
∑

p are over p momentum arguments which
add to zero. Depending on the sign of the coefficient v6, the
clock anisotropy term selects between two different three-
sublattice ordered states according to 〈sj 〉 ∝ M cos(Q+ · rj +
θ ), namely a ferrimagnetic state (1, − 1

2 , − 1
2 ) for θ = ϑ = 0

and a partially disordered antiferromagnetic state (1, − 1,0)
for θ = ϑ = π/6. Both states are sixfold degenerate, which
can be seen by relabeling the sublattices and by making use
of spin-inversion symmetry. Monte Carlo simulations [20,24]
showed that at intermediate temperatures the stacked triangular
antiferromagnet orders according to (1,−1,0) and at low tem-
peratures approximately according to (1,− 1

2 ,− 1
2 ) with possi-

bly unsaturated magnetization. However, the nature of the low-
temperature phase has been the subject of controversy [25–28].

The fact that the frustration on the triangular lattice gener-
ates an XY order parameter has several consequences: with the
clock term in (3) being dangerously irrelevant, the transition
from the paramagnetic to the clock ordered phase is believed
to be in the 3D XY universality class [20,21]. The location of
this quantum critical point was determined to be at �c/J =
1.65 ± 0.05 [21]. The Kosterlitz-Thouless transition from a
clock-ordered phase with sublattice magnetization (1,−1,0)
to a paramagnetic phase via an extended critical phase, which
occurs as a consequence of a finite-temperature induced
dimensional crossover in the (d + 1)-dimensional quantum
system, was also investigated in Ref. [21]. The possibility of
a Kosterlitz-Thouless transition at finite temperature in the
long-range system is beyond the scope of this work.

The structure of this paper is as follows. Section II
gives a mean-field analysis of both the ferromagnetic and
antiferromagnetic problem in a transverse field. In Sec. III, we
briefly discuss the variant of the Stochastic Series Expansion
QMC method that we have used. Section IV contains results on
the long-range ferromagnet and antiferromagnet, respectively.
The main results are summarized in Sec. V.

II. MEAN-FIELD THEORY

It is well-known that for the infinitely coordinated Ising
model, that is with weak constant interactions Jij = J

N
, where

N is the number of sites, the saddle point approximation, which
maps the system to a mean-field problem, becomes exact. It is
intuitively clear that for long-range systems mean-field theory
provides a good description. However, this is only true for
FM interactions since long-range AFM interactions lead to
additional frustration. We start from the Hamiltonian

Ĥ = 1

2

∑
i,j

Jij Ŝ
z
i Ŝ

z
j − �

∑
i

Ŝx
i − h‖

∑
i

Ŝz
i , (4)
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where for the sake of completeness, we have added a
longitudinal field h‖. Writing the spin operator in terms
of small fluctuations around an average value, Ŝz

i = 〈Sz
i 〉 +

δŜz
i ≡ m + δŜz

i , and neglecting second-order fluctuations, a
mean-field Hamiltonian can be obtained

ĤMF = 1

2
NJ̃ (0)m2 − (J̃ (0)m + h‖)

∑
i

Ŝz
i − �

∑
i

Ŝx
i , (5)

where J̃ (q) = ∑
R J (R) exp(−iq · R) is the Fourier transform

of the interactions. Thus, dropping an overall constant, the
thermodynamics reduces to that of paramagnetic spins in
a longitudinal and transverse field. The single-spin Hamil-
tonian can easily be diagonalized with eigenenergies E± =
±

√
(J̃ (0)m + h‖)2 + �2 and eigenvectors

|φ+〉 =
(

cos θ
2

sin θ
2

)
, |φ−〉 =

(
− sin θ

2

cos θ
2

)

with

tan θ = �

J̃ (0)m + h‖

so that the self-consistency condition for the thermal average
(with β = 1/kBT ) is given by

m = 〈Ŝz〉 = 〈φ−|Ŝz|φ−〉e−βE− + 〈φ+|Ŝz|φ+〉e−βE+

e−βE− + e−βE+

= J̃ (0)m + h‖√
�2 + (J̃ (0)m + h‖)2

tanh[β
√

�2 + (J̃ (0)m + h‖)2].

(6)

In the limit � → 0, this reduces to the well-known mean-
field equation for an Ising ferromagnet in a longitudinal
field. In the following, we consider h‖ = 0 so that the
only contribution to the longitudinal field is the mean field
coming from the interaction with other spins. Taking the limit
m → 0 gives the phase boundary �

J̃ (0)
= tanh(βc�) with a

zero-temperature critical point at �c = J̃ (0) and a critical point
in zero field at kBTc = J̃ (0). At T = 0, the order parameter

increases as m = ±
√

1 − �

J̃ (0)
, as is typical of mean-field

solutions. Thus, in this admittedly very simple model, the
extent of the ordered phase scales with the interaction sum
J̃ (0), which—as will be shown below—provides already
qualitatively correct predictions of the phase boundary for both
ferromagnetic and antiferromagnetic long-range interactions.
For a mean-field treatment of the antiferromagnet, we assume
that the magnetic unit cell consists of three sites. Then, the
self-consistency equation for each of the sublattices A, B, and
C reads

mA ≡ 〈
Sz

l

〉 = Hz
l (mA,mB,mC,h‖)√

�2 + (
Hz

l

)2
tanh

(
β

√
�2 + (

Hz
l

)2)

(7)

with the longitudinal mean field Hz
l = J̃AA(0)mA +

J̃AB(0)(mB + mC) acting at sites l ∈ A. The equations for mA

and mB are obtained by cyclic permutation of the indices
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FIG. 1. Mean-field phase boundary (red line) of the ferromagnetic
Ising model on the triangular lattice and in a transverse field as given
by Eq. (8). The dotted lines are for successively larger hexagonally
shaped systems of radius R = 10, 100, 1000, and 2000.

A, B, and C. The interaction sum J̃AA(0) = ∑
i∈A

J
rα
i

gives
the interaction of a spin in sublattice A with all other spins
in the same sublattice. J̃AB(0) = J̃AC(0) = ∑

i∈B
J
rα
i

is the
interaction of a spin in sublattice A with all spins in either
of the other two sublattices B or C, and J̃ (0) = J̃AA(0) +
J̃AB(0) + J̃AC(0). With the reasonable assumption that the
total magnetization has to be zero, mA + mB + mC = 0, the
mean field simplifies to Hz

l = mA(J̃AA(0) − J̃AB(0)). Thus
the mean-field phase boundary of the antiferromagnet is the
same as that of the ferromagnet, except that it is scaled by
the interaction sum J̃AA(0) − J̃AB(0). The lattice sums are
absolutely summable for α > 2 (FM interactions) and α > 0
(AFM interactions) and we compute them as a function of α

analytically in the thermodynamic limit,1and numerically for
a large triangular lattice with hexagonal boundaries. Figures 1
and 2 show the resulting mean-field phase boundaries as a
function of the decay exponent α:

�MF
c (0; α) =

{
J̃ (0; α)

J̃AA(0; α) − J̃AB(0; α)
, (8)

1J̃AA(0; α) − J̃AB (0; α) ≡ H2(α) is equivalent to the hexagonal
lattice sum, i.e., the interaction sum of an antiferromagnetic configu-
ration on the (bipartite) hexagonal lattice, which in turn corresponds
to a sublattice magnetization (1,−1,0) on the triangular lattice. A
useful parametrization for the hexagonal lattice sum is [29]

H2(2s = α)

= 4

3

∞∑
m,n=−∞

sin(n + 1)θ sin(m + 1)θ − sin nθ sin(m − 1)θ[
(n + 1

2 m)2 + 3( 1
2 m)2

]s .

with θ = 2π/3. An analytical formula is given in [29] as H2(α) =
3(31− α

2 − 1)ζ ( α

2 )L−3( α

2 ) in terms of the Riemann ζ function ζ (s) =∑∞
n=1

1
ns and a Dirichlet L-series L−3(s) = 1 − 2−s + 4−s − 5−s +

7−s − 8−s · · · . The exact result for the triangular lattice sum is [29]

J̃ (0; 2s = α) =
∞∑

m,n=−∞

1(
n2 + nm + m2

)s

= 6 ζ
(α

2

)
L−3

(α

2

)
.
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FIG. 2. Mean-field phase boundary of the antiferromagnetic Ising
model on the triangular lattice and in a transverse field as given by
Eq. (8).

where the first line applies to FM and the second line to AFM
interactions. To illustrate the issue of convergence with system
size, the lattice sum �MF

c (0; α) = J̃ (0; α) was computed for a
system of lattice points with hexagonal shape, the size of which
is parametrized by its radius R (see Appendix). For α < 2, the
lattice sum diverges as the system size tends to infinity; for
α = 2, it diverges logarithmically with the linear extent R of
the system. This can be seen from Fig. 1, where the dotted
lines correspond to systems with radius R = 10,100,1000,
and 2000 (in units of the lattice constant). The curve of the
phase boundary in the thermodynamic limit (red line) is the
exact result J̃ (0; α) = 6 ζ ( α

2 )L−3( α
2 ).

If the Ising interactions do not decay with distance, i.e.,
α = 0 and Jij = J for all (i,j ), the Hamiltonian can be
rewritten in terms of a single macroscopic spin operator
Ŝ

z(x)
tot = ∑N

i=1 Ŝ
z(x)
i :

H = J

2

(
N∑

i=1

Ŝz
i

)⎛
⎝ N∑

j=1

Ŝz
j

⎞
⎠ − �

(
N∑

i=1

Ŝx
i

)

= J

2

(
Ŝz

tot

)2 − �Ŝx
tot, (9)

where we have omitted an additive constant. This is an
anisotropic variant of the Lipkin-Meshkov-Glick model [30].
For this infinitely coordinated Ising model, the lattice structure
becomes irrelevant. The AFM model (J > 0) for � = 0 has a
degeneracy, which is exponential in (N/2): any configuration
with Sz

tot = 0 is a ground state. The transition into the
paramagnetic state should occur immediately at �c = 0+ since
for Sz

tot = 0 there is no opposing Ising interaction.
As for the nearest-neighbor interactions, the Fourier trans-

formation of Jij = J/|ri − rj |α displays minima at the corners
of the hexagonal Brillouin zone. However, they become
increasingly shallow as α decreases and vanish around αc ≈ 1.
This means that for α < αc the lattice structure cannot dictate
the ordered state to be selected by the quantum fluctuations.

III. THE QMC METHOD

In Ref. [31], Sandvik proposed a Stochastic Series Ex-
pansion (SSE) QMC method that can deal with transverse

field Ising models with arbitrary, long-range, or frustrated,
interactions. In the case of long-range interactions, it avoids
the interaction summation that is typically necessary, and the
scaling of the CPU time with system size is reduced from N2

to N ln(N ). The main trick consists in adding constants |Jij |
to the Ising bond operators

Hi,j = |Jij | − Jijσ
z
i σ z

j , i �= j (10)

in such a way that only satisfied bonds (i.e., FM bonds,
Jij < 0, on FM spin configurations, σ z

i = σ z
j , or AFM bonds

on AFM spin configurations) have nonzero weight. This
constraint, which is active in the propagation direction of the
SSE algorithm, obviates techniques such as Ewald summation
of the interactions in real space that are typically used for
long-range interacting systems. Furthermore, it is evident
from (10) that even a frustrated transverse field Ising model
has no sign problem in the σ z basis since any negative matrix
elements can be shifted by a constant. As the Monte Carlo
update depends crucially on the presence of single-spin flip
(transverse field) terms in the Hamiltonian, ergodicity may
be lost for small transverse fields. On the other hand, this
update mechanism proves extremely efficient in the case of
large transverse fields.

Since the Ising model in a transverse field does not contain
off-diagonal two-body operators, it is not possible to use
a loop update. Instead, we employ a multi-branch cluster
update [31]. The simulation cell with open boundaries is
hexagonal and parametrized by its “radius” R so that the total
number of spins is N (R) = 1 + 3R(R + 1). To be closer to the
experimental situation in a cylindrically symmetric trapping
potential, for R � 7, additional spins were included which
extend the hexagon to an approximately circular shape (see
Fig. 17 in the Appendix) so that in those cases the number of
spins is larger than given by this formula. Due to the sixfold
symmetry the total number of spins is always N = 6n + 1,
where n is an integer.

Simulation parameters. While for FM interactions around
50–100 thermalization steps and 104 measurement steps
were sufficient to study the critical behavior, in the long-
range, frustrated AFM case ≈104 thermalization steps and
up to 4 × 106 measurement steps were required due to long
thermalization and autocorrelation times. The largest systems
studied consisted of 613 spins for FM interactions and 301
spins for AFM interactions, respectively. The simulations were
performed at T = 1/(2R)z, where 2R is the diameter of the
simulation cell and z = 1 is the dynamical critical exponent.
This choice ensures that the thermal energy kBT is smaller
than the finite-size gap such that the system is expected to be
at a temperature that is effectively T = 0. On the other hand,
rescaling the temperature with system size according to this
formula is generally necessary in order to obtain suitable data
sets for finite-size scaling (see discussion below).

Code verification. The Monte Carlo code was successfully
checked against Lanczos exact diagonalization (ED) on a
hexagonal system of radius R = 2 with N = 19 spins. Note
that the next larger system size R = 3, N = 37 with open
boundary conditions was not amenable to exact diagonal-
ization since momentum is not a good quantum number.
The agreement between QMC and ED for ferromagnetic
interactions is excellent. For antiferromagnetic interactions,
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FIG. 3. Comparison between Lanczos exact diagonalization and
SSE QMC for a hexagonal system of 19 spins with AFM interactions.
Shown are the fluctuations of the modulus of the complex XY
order parameter 〈m2〉. In the region of interest around � ≈ 1,
the results from both algorithms agree nicely. For some values
of �, the mean fluctuation of the magnetization could not be
determined due to technical issues. Those points lie around 〈m2〉 ≈
0.17 and are meaningless. For comparison, the critical value in the
AFM mean-field theory for α = 2.5 is indicated by an arrow at
�MF

c (α = 2.5) = 2.1758.

on the other hand, the error bars are only meaningful in the
paramagnetic phase. In Fig. 3, the square of the clock order
parameter (12), that is, its fluctuations versus the transverse
field � is shown for different decay powers α. There is good
agreement between QMC and ED in the paramagnetic phase
whereas in the ordered phase the curves do not agree within
errorbars. This is due to the fact that in the ordered phase
the fluctuations are non-Gaussian, exhibiting asymmetric tails
as can be seen from the histogram of the squared clock
order parameter in Fig. 18 in the Appendix. Furthermore,
for small transverse fields, ergodicity may be lost when the
quantum clusters used in the Monte Carlo update percolate in
imaginary time (see Ref. [31] for a discussion of this issue).
As a consequence, the error bars in our simulations of the
antiferromagnet are only reliable for the paramagnetic phase
and for the onset of order, but not within the ordered phase.
For determining the critical field, only the former parameter
regions are needed so that the phase boundary can still be
obtained quantitatively. As an illustration of the quantitative
inaccuracy of mean-field theory, an arrow has been added in
Fig. 3 indicating the critical value in mean-field theory for
α = 2.5, which lies at �MF

c (α = 2.5) = 2.1758.

IV. RESULTS

A. Long-range ferromagnet on the triangular lattice

The value of the critical field can be estimated with various
methods. We determine the critical field by locating the
crossing points of the Binder cumulant [32] for consecutive
system sizes and extrapolating to the thermodynamic limit. For
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FIG. 4. Squared magnetization per site for α = 3.0. For a mean-
field transition, β = 0.5 and 〈m2

z〉 should vanish linearly in the vicinity
of the critical field.

a scalar order parameter, the appropriate Binder cumulant is

UL = 3

2

(
1 − 〈m4〉

3〈m2〉2

)
, (11)

where 〈mi〉 is the ith moment of the z component of the
magnetization (see Fig. 4). It has scaling dimension zero since
at the critical point the power laws in the linear system size R

for 〈m4〉 and 〈m2〉 cancel out. In the limit R → ∞, the Binder
cumulant has the following properties: UR → 1 in the ordered
phase, UR → 0 in the disordered phase and at the critical point
UR → U�, i.e., the Binder cumulants for different system
sizes intersect at a common point U�, which is also universal.
Often there are subleading finite-size corrections so that
the crossing points for pairs of system sizes drift providing
a size-dependent critical point which typically converges
much faster than the usual finite-size shift ∝ R−1/ν of other
quantities with singular behavior at the critical point [33].

Figure 5 shows the Binder cumulant UR for system sizes
N = 241,301,367,439,517,613. The fact that the crossing
points of the Binder cumulants for successive system sizes
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FIG. 5. Binder cumulants for α = 3.0.
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occur at small values of UR renders this otherwise very
accurate method of determining the critical field problematic.
(An error propagation shows that small 〈m2〉 lets the error on
the Binder cumulant increase drastically.) Figure 6 shows the
extrapolation of the crossing points of the Binder cumulant
versus 1/N which leads to an estimate for the critical field
of �c ≈ 10.0. Smaller system sizes are more affected by
boundary effects due to the open boundary conditions and
therefore they were excluded from the fit. The fact that a fit
including only the smaller system sizes would underestimate
the critical transverse field is consistent, as a larger boundary to
bulk ratio reduces the restoring Ising interaction energy relative
to the energy of the spins aligned with the transverse field, the
latter being independent of the boundary to bulk ratio.

The critical behavior of long-range ferromagnetic quantum
Ising and rotor models has been studied by Dutta and
Bhattacharjee [34] using field theory and renormalization
group equations. They find that in two dimensions the critical
exponents attain values of the short-range system for α � 4.
For αu � α < 4, the critical exponents depend continuously
on α and reach mean-field values for α < αu where αu =
10/3 is the upper critical range in two dimensions. We
verify this prediction of mean-field critical exponents for
α = 3 using finite-size scaling. According to the finite-size
scaling hypothesis [35], close to the critical point the order
parameter squared scales with the linear system size R and
the reduced control parameter �r = �−�c

�c
as 〈m2〉(�r,T ,R) =

R−2β/νg(�rR
1/ν,T Lz), where ν is the critical exponent for the

correlation length, ξ ∝ |�r |−ν , β is the exponent for the order
parameter, 〈m2〉 ∝ |�r |2β and z = 1 is the dynamic critical
exponent. If the temperature is rescaled with system size
according to T = 1/(2R)z, the second argument of the scaling
function g becomes a constant for all data sets, and then the
scaling function depends only on a single parameter. Then,
when plotting yR = 〈m2〉(�r,R)R2β/ν against xR = �rR

1/ν ,
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FIG. 7. Data collapse for α = 3.0 with mean-field critical expo-
nents β = 1/2 and ν = 1. The linear extent of the system is measured
in terms of the radius R of the simulation cell. �r = (� − �c)/�c

denotes the reduced field. The best data collapse is achieved for
�c ≈ (9.6 ± 0.1)J .

data sets for different linear system size should collapse onto
the scaling function g(x) if the critical exponents β and ν are
chosen appropriately.

It is a well-established fact that the 2D transverse-field Ising
model on any integer-dimensional regular lattice has a dynam-
ical critical exponent of z = 1 [36]. It is argued in Ref. [34]
that the dynamical exponent for the long-range transverse-field
Ising model depends continuously on the decay exponent α,
reaching z = 1 only for α = 4 (or for σ = 2 in their notation,
where α = d + σ and the spatial dimensionality is d = 2). For
α < 4, Ref. [34] predicts z < 1, which reflects the expectation
that the correlation length in imaginary time grows slower
than that in the spatial direction as a consequence of the
long-range interactions. On the other hand, in Ref. [37], it
was found by extensive QMC simulations that the infinitely
coordinated Ising model in a transverse field has z = 1. We did
not attempt to determine z numerically, but naively assumed
z = 1 for rescaling the temperature with system size. This
should not affect the validity of the finite size scaling as long
as the temperature is always below the respective finite-size
gap such that the system is effectively at T = 0. Then, the
second variable T Lz in the scaling function drops out.

Figure 7 shows that for α = 3 a satisfactory data collapse
can be achieved with mean-field critical exponents β = 1

2 and
ν = 1. The best data collapse is obtained for �c = (9.6 ±
0.1)J . A critical field of �c = (10.0 ± 0.4)J is thus consistent
with the two estimates based on the extrapolation of the
crossing points of the Binder cumulant and the data collapse.
This value is, as expected, smaller but very close to the value
�MF

c (α = 3.0) = 10.95 of mean-field theory, which is not
obvious since the critical field is not a universal quantity. Since
for increasingly long-range interactions mean-field theory
should become a better approximation, with the true phase
boundary never exceeding that given by mean-field theory,
this fact implies that for α < 3, the mean-field phase boundary
gradually becomes the true phase boundary.

The quantum critical behavior of the dipolar (α = 3) Ising
ferromagnet differs in a subtle way from the behavior at the
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finite-temperature phase transition in zero field. While in d = 2
the exponent α = 3 places the classical system in its thermal
phase transition on the boundary between long-range (i.e.,
α-dependent) and mean-field critical exponents, leading to
logarithmic corrections for the divergence of the correlation
length and susceptibility at the critical point [38], the increased
dimensionality deff = d + z of the quantum critical point
results in mean-field critical behavior without any corrections.
Therefore one can expect that for the dipolar Ising FM an
experiment in the thermodynamic limit could show that the
finite-temperature phase transition has logarithmic corrections
to its critical behavior whereas the zero-temperature phase
transition does not. However, it is extremely difficult to observe
the presence or absence of logarithmic corrections in numerical
studies on finite-size systems. A similar dimensional cross-
over of the values of critical exponents has been experimentally
observed in the 3D nearest-neighbor Ising model, which
exhibits mean-field critical exponents at its quantum critical
point in a transverse field [39]. Of course, this is a much more
pronounced effect than the absence or presence of logarithmic
corrections in the dipolar ferromagnet.

Figure 8 shows magnetization curves for α = 2.5, 2.0, and
1.5. In view of possible experiments on finite-size systems
it needs to be pointed out that the approach of the critical
field to the value of mean-field theory in the thermodynamic
limit is very slow for α < 3. For α � 2, the interaction energy
J̃ (0) is superextensive in the system size and the mean-field
critical field diverges in the thermodynamic limit. This is
typically remedied by introducing a regularizing factor 1/N

into the model, which corresponds to rescaling the energy
and time scales and gives a well-defined thermodynamic limit.
Since the experimental system under consideration is always
finite with a few hundreds to thousand spins, the question of
stability in the thermodynamic limit is not important.

B. Long-range antiferromagnet on the triangular lattice

Clock order parameter. The complex XY order parameter
following from the Landau-Ginzburg-Wilson analysis can be
written as (see Ref. [21] and references therein):

meiθ ≡ (mA + mBei(4π/3) + mCei(−4π/3))/C, (12)

where mj,j = A, B, and C are the magnetizations of the three
sublattices. The normalization is C = √

3 for (1,−1,0) order
and C = 3/2 for (1,− 1

2 ,− 1
2 ) order.

Binder cumulant. The correct Binder cumulant for an
n-component order parameter (n = 2 in our case) is [33]

U = n + 2

2

(
1 − n

n + 2

〈m4〉
〈m2〉2

)
. (13)

Whether the Binder cumulant has to be extrapolated against
1/N or 1/Nx , where x is another power greater than 1
depends on the subleading finite-size corrections of the Binder
cumulant [32].

Structure factor. The structure factor defined as

S(q) = 〈
Sz

qS
z
−q

〉 = 1

N

∑
ij

〈
Sz

i S
z
j

〉
eiq·(ri−rj )
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FIG. 8. Squared magnetization per site for α = 2.5, 2.0, and 1.5.
The error bars are smaller than the symbol size.

diverges ∼N if there is order with wave vector q = Q. Figure 9
shows the structure factor for R = 8 and N = 241 spins at
transverse fields � below (� = 0.8) and above (� = 1.2 and
1.4) the phase transition to a clock ordered phase. The Bragg
peaks at ordering vectors Q± = (±4π/3,0) and vectors related
by reciprocal lattice vectors, i.e., at the corners of the hexagonal
Brillouin zone, clearly indicate clock order without any trace
of competing orderings.

In Fig. 10, the structure factor at Q+ is presented for
α = 3.0 and for different system sizes. The domelike structure
indicates a clock-ordered phase roughly between � ≈ 0.2 and
� ≈ 1.0. As opposed to the nearest-neighbor AFM, where
clock order appears for infinitesimally small � = O+, in
the long-range case there is a threshold in � for the onset
of clock order. It was not possible to perform a scaling
analysis of the height of the structure factor due to metastable
states that appear for larger systems (see below): already for
systems with radius R = 7, 8, and 9 the structure factor fails
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FIG. 9. Structure factor for R = 8, N = 241 spins, and α = 3.0
for different values of the transverse field � below (� = 0.8J ) and
above (� = 1.2J,1.4J ) the phase transition, i.e., in the clock ordered
and the fully x-polarized phase, respectively.

to increase further. Both the ferrimagnetic (1,− 1
2 ,− 1

2 ) and
the partially antiferromagnetic (1,−1,0) states have the same
ordering vectors being distinguished only by the value of ϑ

in Eq. (3). However, while for the partially antiferromagnetic
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FIG. 10. Structure factor S(Q) at Q+ = (4π/3,0) for α = 3.

state the wave vectors Q+ and Q− correspond to two different
degenerate states, for the ferrimagnetic state both wave vectors
give the same spin configuration. Therefore, when spontaneous
symmetry breaking occurs in the thermodynamic limit, the
partially antiferromagnetic state will manifest itself in Bragg
peaks at either Q+ (and equivalent corners of the first Brillouin
zone) or Q−. The ferrimagnetic state, on the other hand,
will exhibit Bragg peaks at both Q+ and Q−, that is, at
all six corners of the Brillouin zone. Since there is no
spontaneous symmetry breaking in a finite system, Monte
Carlo simulations—and also experiments on finite systems—
do not allow to distinguish between the two types of states
at the level of the structure factor, and one needs to look
at the sublattice magnetization. The squares of the sublattice
magnetizations shown in Fig. 11 (middle panel) for R = 4,
N = 61 spins, α = 3.0, are consistent with the ferrimagnetic
state (M,−M

2 ,−M
2 ) where M is below the saturation value

of 1. The sublattice magnetizations compensate each other
so that there is no net magnetic moment. This justifies the
assumption mA + mB + mC = 0 in the mean-field analysis
of section II. For N = 37 spins (Fig. 11, upper panel) or
N = 61 spins (Fig. 11, lower panel), one sublattice must
have one spin more than the other two, which explains the
small deviation of 〈(mz)2〉 from zero. In a larger system with
N = 187 spins (Fig. 11, lower panel) where metastabilities
are more pronounced (see Fig. 18 in Appendix) such that
an interpretation is difficult, the ordered phase has sublattice
magnetizations (mB + mC, − mB, − mC) which would re-
duced to the ferrimagnetic state if mB ≈ mC = M

2 . For a small
system of N = 37 spins (Fig. 11, upper panel), the structure
of the sublattice magnetizations is quite different with two
sublattices having a larger modulus of the magnetization than
the third sublattice, |mA|,|mB | > |mC |. Apparently, resonance
processes due to the transverse field, which stabilize the
clock ordered phase [23] and its characteristic sublattice
magnetization cannot fully develop on this small system as
they are strongly influenced by the open boundary conditions.

While the nonsaturated magnetization M < 1 could be
attributed to the difficulties of the Monte Carlo update in
the ordered phase, it has been argued in Ref. [25] for
the closely related stacked triangular short-range AFM that
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FIG. 11. Squared sublattice magnetizations for decay exponent
α = 3.0 for R = 3, N = 37 spins (upper panel); R = 4, N = 61
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Landau-Ginzburg-Wilson theory is unreliable for the low-
temperature behavior and that the low-temperature phase
should not be in the ferrimagnetic state (1,− 1

2 ,− 1
2 ). Based on

entropy considerations, in Ref. [25], a three sublattice structure
was conjectured in which the spin chains in the stacking
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FIG. 12. Rescaled structure factor S(Q)/N at Q+ = (4π/3,0)
around the critical field �c = 1.05 for α = 3.

direction are fully ordered and where most configurations
are such that the chains on two sublattices align antiparallel
while the third one is randomly oriented. This phase has
been referred to as the 3D analog of the 2D Wannier
phase [17,26] and its character was subsequently supported by
Monte Carlo simulations [26,27]. More recent Monte Carlo
simulations [28] also favor this scenario with sublattice mag-
netizations (mA,mB,mC) = (M, − M,0) whose magnitude M

is unsaturated, M < 1, and decays as a power law with
system size such that in the thermodynamic limit all sublattice
magnetizations vanish and the low-temperature phase of the
stacked triangular AFM shows no long-range order. In view
of this controversy in a closely related system and because a
reliable scaling analysis of the structure factor within the order
phase was not possible in our simulations due to metastable
states, a conclusive statement about true long-range order in
the thermodynamic limit cannot be made.

Location of the quantum critical point. Figure 12 shows
the rescaled structure factor S(Q)/N , where N is the number
of spins, at the ordering vector Q+ = (4π/3,0) around the
critical field. In order to determine the quantum critical
point in the thermodynamic limit we extrapolate the rescaled
structure factor S(Q+)/N versus inverse system size 1/N .
The extrapolation is done with a third-order polynomial fit
in 1/N as shown in the inset of Fig. 13. The value in the
thermodynamic limit 1/N → 0 has an error attached to it
which is determined via the bootstrapping method: the fitting
procedure is repeated 105 times adding Gaussian noise to
the data points with a spread of the size of the error bars
attached to the points. Then the distribution of extrapolated
values gives a mean value and quantifies its error. In this
way, we obtain the thermodynamic limit of S(Q+)/N in the
main panel of Fig. 13. From the field-dependence of the
structure factor S(Q+)/N at Q+ = (4π/3,0), extrapolated to
the thermodynamic limit, we can make an estimate of the
critical field �c = 1.00 ± 0.05 at which the structure factor
vanishes. Clearly, there is some arbitrariness in the choice of
extrapolation scheme regarding the degree of the extrapolation
polynomial and the included system sizes. From the crossing
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with a third-order polynomial is shown in the inset for different
transverse fields �.

points of the Binder cumulant (see Fig. 14) a critical field of
� = 1.05 ± 0.05 can be deduced.

Metastable states. In the Appendix, histograms are shown
of the average energy per spin and the modulus squared of
the complex XY order parameter for increasing system sizes.
While the energy histograms are always Gaussian and become
narrower as the system size increases, the histograms of the
order parameter have asymmetric tails and are irregularly
shaped for large system sizes. This is an indication of
metastable states.

Universality class of the quantum critical point. The short-
range model has a quantum critical point, which is believed
to be in the 3D XY universality class [20]. The XY order
parameter is the result of the interplay between frustration on
the triangular lattice and quantum fluctuations. So the effective
model at the quantum critical point is that of a ferromagnetic

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1  1.2  1.4  1.6  1.8 2

B
in

de
r 

cu
m

ul
an

t

Γ

R=3, 37 spins
R=4, 61 spins
R=5, 91 spins

R=6, 127 spins
R=7, 187 spins
R=8, 241 spins

 0.6
 0.7
 0.8
 0.9

1
 1.1
 1.2

187 127 91 61

Γ c

1/N

FIG. 14. Binder cumulants UNR
for different system sizes;

α = 3.0. (Inset) Extrapolation of their crossing points CNR
=

C(UNR
,UNR−1 ), which are indicated with horizontal error bars in the

main graph, vs inverse system size.

FIG. 15. Semiquantitative phase diagram for the long-range
transverse-field Ising AFM on the triangular lattice. FP: fully
x-polarized phase, CO: clock-ordered phase, and class: region
dominated by classical ground states.

XY model that undergoes a clock-order symmetry breaking
transition where the anisotropy does not affect the critical
behavior [20]. For the long-range ferromagnetic quantum XY
model, one expects mean-field critical exponents for α < αu =
10/3 [34]. While the quality of the data is not good enough
to determine the critical exponents directly, it can be shown
that mean-field critical exponents give a better data collapse
than for example the 3D XY exponents (see Fig. 19 in the
Appendix), which is consistent with the above predictions.
From the data collapse, the critical field can be determined as
�c = 1.15 ± 0.05.

Semiquantitative phase diagram. The intuition from mean-
field theory and the results of this section can be combined
into a semiquantitative phase diagram (Fig. 15). There we
denote by dots the known results for the nearest-neighbor
model (α → ∞), the results of the present simulation (α = 3),
and the infinite-range model (α = 0). The clock symmetry
broken phase that extends for the short-range model between
� = 0+ and �c(α = ∞) = 1.65 ± 0.5 [21] persists for long-
range interactions, with a critical field that decreases with
decreasing α as the additional frustration due to long-range
AFM interactions destabilizes order. For α = 3, the critical
point is located at �c(α = 3) = 1.05 ± 0.05, most likely with
mean-field critical exponents. For α = 2, we find that the
critical point is around �c(α = 2) ≈ 0.8. Whether the ordered
phase for α < 2 is still clock-ordered is not clear. At any
rate, for α � αc with αc ≈ 1 the Fourier transformation of the
interactions becomes flat so that there is no longer a preferred
state dictated by the lattice structure that quantum fluctuations
can select. The infinitely coordinated classical Ising AFM at
(α = 0,� = 0) has an exponential ground-state degeneracy:
all states with Sz

tot = ∑
i S

z
i = 0 are ground states. Upon

introducing a transverse field, the model at α = 0 turns into an
anisotropic variant of the Lipkin-Meshkov-Glick model [30]
[see Eq. (9)]. From exact diagonalization for 19 spins (see
Fig. 16) and from the behavior of the structure factor at
small fields in Fig. 9 one can conclude that for long-range
interactions there is a threshold for quantum fluctuations to
establish order. The continuous line in Fig. 15 corresponds to
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FIG. 16. Modulus m of the complex XY order parameter meiθ ≡
(mA + mBei4π/3 + mCe−i4π/3)/C with C = 3/2 computed with Lanc-
zos exact diagonalization for a hexagon of 19 spins.

this expectation of a classically dominated region, where the
possible phases of the classical model (� = 0) extend to finite
values of the transverse field �. However, with the caveats
pointed out in the main text, it should be stressed that this
phase diagram remains a semiquantitative one.

V. CONCLUSION

The ground-state phase diagrams of ferromagnetic and
antiferromangetic long-range transverse field Ising models
on the triangular lattice have been examined. The critical
transverse field strength �c at which the transition from the
fully x-polarized phase to the clock-ordered phase occurs was
determined by two independent procedures: by data collapse
and by extrapolation of the crossing points of the Binder
cumulants. The results of both methods agree within the error
bars. For the ferromagnet with dipolar decay exponent, α = 3,
the critical field is located at �c = (9.6 ± 0.1)J (from data
collapse) or �c = (10.0 ± 0.4)J (from extrapolation), which
is only slightly below the value from mean-field theory. This is
remarkable as the critical field is not a universal quantity. For
the antiferromagnet, there is strong indication for a quantum
phase transition from the fully x-polarized phase to a clock
ordered phase at �c = (1.15 ± 0.05)J (from data collapse) or
�c = (1.05 ± 0.05)J (from extrapolation).

It remains an open problem to investigate the transition
to the clock-ordered phase from the side of small �. The
simulation results indicate that the classical ground states
at zero field extend to finite field, before they finally yield
to the strength of quantum fluctuations, which results in
the clock-ordered phase. The QMC algorithm suffers from
loss of ergodicity in this region of small transverse field,
which hampered a quantitative study. It might be possible to
overcome this problem by parallel tempering in � which lets
simulations at small �, which tend to get stuck in some region
of phase space, profit from the increased ability to explore
phase space that simulations at larger � possess. Another open
issue is the finite-temperature phase diagram of the long-range
AFM, in particular whether there is a Kosterlitz-Thouless
phase transition as in the short-range AFM.

The results presented in this paper may be helpful for future
ion trap experiments.
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APPENDIX

1. Simulation cell

For radius R � 6, the shape of the simulation cell is that of
a hexagon centered at a lattice site; for R � 7, it has a circular
shape similar to the experimental realization in a Penning trap
(see Fig. 17).

2. Histograms for energy and XY order parameter

As pointed out in the main text, the error bars in the
clock ordered phase are not reliable. The reason is that the
histograms of the modulus squared |m|2 of the complex XY
order parameter are not Gaussian, but exhibit long tails, or
even show no well-defined shape at all due to metastabilities.
This is illustrated by the histograms in Fig. 18 where the
distribution of |m|2 and the distribution of the energy per spin
are contrasted. The bin size for the histograms is chosen such
that they appear continuous, and the units of the y axis are
arbitrary. The histograms in Figs. 18(a), 18(b), and 18(c) are
examples of distributions with asymmetric tails. Figure 18(i)
shows a distribution in the presence of strong metastabilities
which can no longer be described by a mean value and a

FIG. 17. Simulation cell with open boundary conditions with
radius R = 8.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 18. Histograms for the average energy per spin and the
modulus squared |m|2 of the complex XY order parameter for
(α = 3,� = 0.7) and different radii R of the simulation cell. (a) R =
3,|m|2, (b) R = 3, energy, (c) R = 4,|m|2, (d) R = 4, energy, (e)
R = 5,|m|2, (f) R = 5, energy, (g) R = 6,|m|2, (h) R = 6, energy, (i)
R = 7,|m|2, and (j) R = 7, energy.
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FIG. 19. Data collapse for α = 3 with mean-field exponents and
�c = 1.15 (upper panel) and data collapse with 3D XY exponents
and �c = 1.05 (lower panel). �r ≡ (� − �c)/�c is the reduced field.

standard deviation. On the other hand, the histograms of the
energy per spin are always Gaussian and their width shrinks
with increasing system size, as is to be expected according to
the central-limit theorem.

3. Data collapse for the AFM quantum critical point

It has been detailed in the main text that the short-range
transverse field Ising AFM on the triangular lattice is believed
to have a quantum critical point in the 3D XY universality
class, whereas the quantum critical point for the long-range
counterpart should be in the mean-field universality class. A
comparison of the data collapse with one or the other set of
exponents for the long-range AFM with α = 3 is shown in
Fig. 19. With mean-field exponents, ν = 1 and β = 1

2 , the best
achievable data collapse is obtained for �c = 1.15. The best
achievable data collapse with 3D XY exponents, ν = 0.669
and β = 0.346, is shown in the lower panel. Slightly different
transverse fields lead to a similar unsatisfactory data collapse
in that case.
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