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The material copper pyrimidine dinitrate (Cu-PM) is a quasi-one-dimensional spin system described by the
spin-1/2 XXZ Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions. Based on numerical results
obtained by the density-matrix renormalization group, exact diagonalization, and accompanying electron spin
resonance (ESR) experiments we revisit the spin dynamics of this compound in an applied magnetic field. Our
calculations for momentum and frequency-resolved dynamical quantities give direct access to the intensity of
the elementary excitations at both zero and finite temperature. This allows us to study the system beyond the
low-energy description by the quantum sine-Gordon model. We find a deviation from the Lorentz invariant
dispersion for the single-soliton resonance. Furthermore, our calculations only confirm the presence of the
strongest boundary bound state previously derived from a boundary sine-Gordon field theory, while composite
boundary-bulk excitations have too low intensities to be observable. Upon increasing the temperature, we find a
temperature-induced crossover of the soliton and the emergence of new features, such as interbreather transitions.
The latter observation is confirmed by our ESR experiments on Cu-PM over a wide range of the applied field.

DOI: 10.1103/PhysRevB.93.104411

I. INTRODUCTION

The isotropic spin-1/2 Heisenberg chain with antiferro-
magnetic nearest-neighbor exchange coupling is a paradig-
matic model for quantum magnetism. Due to the strong
enhancement of quantum fluctuations on account of its low
dimensionality, there is no long-range order at zero temper-
ature. The ground state is a spin singlet and its elementary
excitations are spinons carrying a fractional S = 1/2. They are
unbound and interact only weakly [1]. The dynamics of this
model is governed by a gapless two-spinon continuum [2,3]. A
uniform magnetic field makes the soft modes of the excitation
spectrum incommensurate [4,5], but leaves the spinon contin-
uum gapless. Since the Heisenberg antiferromagnetic chain is
in a critical phase, even small perturbations can significantly
change its ground-state physics. A typical perturbation in
spin chain materials is the presence of Dzyaloshinskii-Moriya
interactions caused by spin-orbit coupling and/or a staggered g

tensor due to alternating crystal axes. In such cases, an applied
magnetic field H induces an effective transverse staggered
field hstag ∝ H , which opens an energy gap ∝H 2/3 [6,7].
There are several realizations of such quasi-one-dimensional
materials, for example, copper benzoate [8–11], copper pyrim-
idine dinitrate ([PM · Cu(NO3)2 · (H2O)2]n, PM=pyrimidine;
or shortly Cu-PM) [12–20], Yb4As3 [21], dimethylsulfoxide
CuCl2 [22,23], and KCuGaF6 [24–26].

The low-energy degrees of freedom of these materials can
be effectively described in the framework of the quantum sine-
Gordon field theory [6,7,27,28]. One central approximation of
this approach is that the field-dependent parameters such as
the coupling constant β(H ) in the sine-Gordon model need
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to be determined in the absence of the staggered field. The
quantum sine-Gordon model is exactly solvable [29–32], so
that many experimental observables can be evaluated for these
sine-Gordon quantum magnets. This includes static properties
such as the specific heat [33] and the field dependence of the
excitation energies [6,7,27]. Very important progress has been
made in the prediction of dynamical properties. Nevertheless,
they are accessible only for a restricted set of wave vectors.
For instance, the dynamical magnetic susceptibilities can be
calculated at the antiferromagnetic wave vector q = π using
the form-factor method [27]. This approach has also been
used to obtain the dynamical spin structure factor for both
the isotropic Heisenberg chain [34] and anisotropic XXZ

Heisenberg antiferromagnets [35] in a uniform longitudinal
and a transverse staggered field. Nevertheless, the sine-Gordon
theory does not fully capture the physics of high-energy
bound-spinon states observed in neutron scattering [23] and
its predictions are limited to the range of small to moderate
fields. Beyond this, the density-matrix renormalization group
(DMRG) [36–39] has provided new insights into the field
dependence of a few low-lying excitations up to strong
magnetic fields [40–42]. Furthermore, it has been shown
that DMRG calculations for the lowest excitation are in
agreement with ESR experiments probing the field dependence
of the excitation gap at very strong magnetic fields [20].
For small systems, there exist a few numerical results for
dynamical properties of sine-Gordon quantum magnets; see,
e.g., Refs. [23] and [43].

In the present work, we revisit these systems and present
a detailed and systematic study based on DMRG and exact
diagonalization (ED) [44–46] calculations for momentum and
frequency-resolved response functions at zero and at finite
temperature. This gives direct access to relevant dynamical
quantities probed in electron spin resonance (ESR) [47,48] or
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neutron scattering and allows us to study the emergence of new
features when increasing the temperature. In our approach, the
DMRG results for the spectral functions are computed directly
in the frequency domain via a Chebyshev expansion of the
Green’s function [49–52] using matrix product states (MPS)
[53]. At finite temperatures this is done in the framework of a
Liouville space formulation for the dynamics of the purified
finite-temperature density operator; see Ref. [54] and Sec. IV
below. This combination of methods allows us to elucidate
various aspects of previous predictions and findings with a
high resolution, and to make a prediction for the evolution of
intensities of the spectral functions with temperature.

At T = 0, we study the ESR resonance modes and their
intensities for a wide range of the applied magnetic field
and at higher frequency. Although the predictions by sine-
Gordon field theory are in very good agreement with many of
the resonance frequencies in ESR experiments, a systematic
deviation for the single-soliton resonance probed in Cu-PM
[16] has been observed. We are able to resolve this discrepancy
with the help of our DMRG results for the dynamical spin
structure factor.

As ESR experiments on Cu-PM [16,18,20] and KCuGaF6

[24] also probed excitations which cannot be explained in
the bulk sine-Gordon theory, Furuya and Oshikawa studied
boundary and impurity effects in sine-Gordon quantum mag-
nets [28]. Using a boundary sine-Gordon field theory approach,
they found that there is only one type of boundary bound
state (BBS) for the soliton, antisoliton, and the first breather,
which is found below the bulk gap. The energy of this BBS is
also known from DMRG calculations restricted to low-lying
excitations [41,42]. According to the boundary field theory,
there are even more predictions for boundary resonances at
T = 0. However, the exact intensities of these excitations have
not been determined, yet. In this work we find that, except for
the BBS, none of the boundary resonances is clearly observable
in our DMRG results for the spectral functions.

At T > 0, Ref. [28] also expects additional thermally
induced transitions between the sine-Gordon excitations. Since
a few interbreather excitations were experimentally observed
in KCuGaF6 [24], one central goal of this paper is the
observation of thermally induced transitions between breathers
in the material Cu-PM. To this end, we perform both numerical
calculations and accompanying ESR experiments for a wide
range of the applied magnetic field. We find that finite
temperature can lead to excitations between the elementary
breatherlike excitations of the sine-Gordon field theory at
T = 0 and are able to follow the evolution of their intensities
with temperature.

The paper is organized as follows. After presenting the
effective model and its excitations in Sec. II, we review
the relevant contributions probed in ESR experiments on
sine-Gordon quantum magnets in Sec. III. Next, the numerical
methods used in this work are briefly presented in Sec. IV.
In Sec. V, we study the zero-temperature ESR modes in the
material Cu-PM and their intensities and compare them to
previous experiments. Section VI is focused on thermally
activated transitions between excited states and includes
both numerical and experimental results. Finally, the main
results and conclusions of the paper are summarized in
Sec. VII.

FIG. 1. Structure of Cu-PM: chain of staggered Cu coordination
octahedra linked by pyrimidine rings (running along the a-c diag-
onal). The magnetic interaction J is mediated by a Cu-N-C-N-Cu
superexchange pathway.

II. EFFECTIVE MODEL AND ITS EXCITATIONS

Quasi-one-dimensional spin systems such as Cu-PM
[12–20] and copper benzoate [8–11] possess alternating crystal
axes giving rise to staggered Dzyaloshinskii-Moriya (DM)
interactions and an alternating g tensor. The crystal structure of
Cu-PM is illustrated in Fig. 1 [12–14]. For simplicity, we first
neglect the effects of the anisotropic g tensor and assume that a
uniform magnetic field H is applied along the z direction, i.e.,
H = hz. Furthermore, only nearest-neighbor spin exchange
and DM interactions along the chain are taken into account,
leading to the model Hamiltonian

H =
∑

i

[
J Si · Si+1 + hzS

z
i + (−1)i D · (Si × Si+1)

]
. (1)

The DM interactions can be eliminated [55,56] by a staggered
rotation of the spin operators about the direction of the
DM vectors Di = (−1)i D as long as |D| � J [6,7]. For
Cu-PM treated here, we have J/kB = 36 K and D = 0.139J

[14], so that this condition is fulfilled, and we expect the
effective model in Eq. (2) to be valid for all strengths of
the magnetic field considered. The redefinition of the spin
operators generates a transverse staggered magnetic field
perpendicular to both the longitudinal field and D. Then the
Hamiltonian in Eq. (1) takes the simpler form

H = J
∑

i

Si · Si+1 + hz

∑
i

Sz
i + hx

∑
i

(−1)iSx
i . (2)

The transverse staggered field hstag = hx is chosen along the x

direction and its strength is proportional to the uniform field,
hx = c hz. The effect of the initially neglected anisotropy of
the g tensor in the Zeeman term also generates a staggered
magnetic field whose transverse component we also include in
the material parameter c, whereas the longitudinal component
we assume to be very small and therefore negligible. Note that
the elimination of the DM interactions also leads to a very
small exchange anisotropy which is ignored in the following.
For hstag � J , the low-energy behavior of the Hamiltonian in
Eq. (2) can be treated by Abelian bosonization and is given
by the quantum sine-Gordon model with Lagrangian density
[6,7,27,33],

L = 1
2 (∂μ�)2 + λ(hstag) cos(β�). (3)

Here � is a boson field and � the corresponding dual
field and the coefficient λ(hstag) is field dependent. Another
field dependence is included in the coupling β(hz) which is
calculated from the exact solution of the Heisenberg model in
only a uniform magnetic field (hstag = 0). This approximation
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FIG. 2. Schematic sketch of the low-energy modes of the
transverse (left panel) and longitudinal (right panel) dynamical
susceptibility, as defined later in Eqs. (9) and (10). Here B1 and B2
label the first two breathers, whereas S (S) denotes the (anti)soliton.
As discussed in the main text, note that the modes are actually
connected to each other via the dashed lines, while the field theory
(thin gray lines) assumes a linear dispersion of the soliton around
q = 0, leading to a larger value of ES than observed in our DMRG
results.

is assumed to be justified for hstag � hz. The model in Eq. (3)
is exactly solvable [29–32] and the low-energy elementary
excitations are known to be solitons and antisolitons which
interact and propagate as robust localized quasiparticles
with mass MS and charge Q = ±1. The soliton mass was
determined for magnetic fields hz comparable to J (hstag � J )
[34]:

MS

J
= 2v√

π

�
(

ξ

2

)
�

( 1+ξ

2

)
[

�
(

1
1+ξ

)
�

(
ξ

1+ξ

) gμBπAx

2Jv
hstag

](1+ξ )/2

, (4)

where v is the dimensionless spin velocity. Although Eq. (4) is
exact [57], the field-dependent amplitude Ax for the bosonized
expression of a spin operator is not known analytically.
Therefore, both v and Ax were determined via DMRG for
static correlation functions [34]. The parameter ξ is related
to the field-dependent coupling β via ξ = β2/(8π − β2). It is
important to stress that the soliton and antisoliton are found at
incommensurate wave vectors qs = ±q0 and qs = π ± q0 as
sketched in Fig. 2. The shift q0 = 2πm(hz) is given in terms of
the total magnetization per site m(hz) [7]. As it will be reviewed
in Sec. III, in ESR experiments on sine-Gordon magnets only
excitations at q = 0 and q = π can be probed [48]. Therefore,
the dispersion branch linked to the soliton and antisoliton at qs

is probed at these two experimentally accessible momenta. In
order to predict the single-soliton resonance at q = 0 (q = π ),
the field theory assumes a Lorentz invariant dispersion

ES =
√

M2
S + h2

z, (5)

which is sketched as a gray solid line in Fig. 2. Further elemen-
tary excitations, the breathers, consist of soliton-antisoliton
bound states. The mass gap of the nth breather depends both
on the soliton mass MS and on ξ as

Mn = 2MS sin

(
nπξ

2

)
. (6)

The number of breathers is restricted, i.e., n = 1,2, . . . ,�ξ−1�.
Breather excitations do not carry any soliton charge Q = 0.

At finite temperatures T > 0, interbreather transitions at
frequencies Mn − Mm (n > m) are possible, and Ref. [24]
reports to have observed these excitations for the material

KCuGaF6 in pulsed-field ESR experiments, even though
the measurements were performed at very low tempera-
tures (T/J ≈ 0.005). Moreover, there is the field theoretical
expectation for additional finite-temperature resonances at
|ES − Mn| [28].

In the materials Cu-PM [16,20] and KCuGaF6 [24], there
are observed resonance modes which cannot be accounted for
by the bulk sine-Gordon theory for an infinite system which
has been discussed so far. Pursuing a boundary sine-Gordon
field theory approach, Furuya and Oshikawa found that for
the soliton, antisoliton, and the first breather there is only one
identical boundary bound state (BBS) [28]. This BBS is found
below the bulk gap and its mass is given by

MBBS = MS sin(πξ ). (7)

Furthermore, Furuya and Oshikawa argued that additional
boundary resonances predicted from their theory can be
assigned [28] to unexplained modes in the materials Cu-PM
[16,20] and KCuGaF6 [24].

III. ESR AND MIXING OF COMPONENTS

In ESR [47] experiments a linearly polarized electromag-
netic wave is coupled to the q = 0 component of the total
spin operator Sα = ∑

i S
α
i . In the Faraday configuration the

radiation is polarized perpendicular to the applied magnetic
field in the z direction, i.e., α ⊥ z. Within linear response
theory, the absorption intensity is proportional to the imaginary
part χ ′′ of the dynamical magnetic susceptibility as defined
below in Eq. (10) [58]:

I (ω) = πf 2
0

2
ωχ ′′

phys(q = 0,ω). (8)

The amplitude of the electromagnetic wave is denoted by
f0, which for the calculations we set to f0 = 1. Due to the
staggered rotation of the spin operators performed to eliminate
the DM interaction in Eq. (1), the dynamical susceptibility
χphys relevant for the experiments has contributions from
both uniform (q = 0) and staggered (q = π ) susceptibilities
calculated for the effective model in Eq. (2) [28]:

χ ′′
phys(q = 0,ω) ∼ χ ′′

+−(q = 0,ω) +
(

Dz

J

)2

χ ′′
+−(q = π,ω)

+
(

D⊥
J

)2

χ ′′
zz(q = π,ω). (9)

The mixing is determined by Dz and D⊥ which are the
components of the DM vector D parallel and perpendicular
to the external magnetic field pointing in the z direction.
Here χ ′′

+− (χ ′′
zz) denotes the imaginary part of the transverse

(longitudinal) dynamical susceptibility. The definition in
terms of the retarded Green’s function corresponding to the
momentum-resolved spin operators Sα

q and S
γ
q is given by

χ ′′
αγ (q,ω) = −ImGSα

q S
γ
q
(q,ω). (10)

The closely related dynamical spin structure factor then reads

Sαγ (q,ω) = 1

π

χ ′′
αγ (q,ω)

1 − e−ω/(kBT )
. (11)

104411-3



ALEXANDER C. TIEGEL et al. PHYSICAL REVIEW B 93, 104411 (2016)

TABLE I. Typical resonance modes from bulk (boundary) sine-
Gordon field theory at T = 0 [28]. Note that χ ′′

zz(q = π,ω) contains
the same resonances as χ ′′

+−(q = 0,ω).

Bulk Boundary

χ ′′
+−(q = π,ω) ω = Mn, Mn + Mm ω = MBBS, Mn + MBBS

χ ′′
+−(q = 0,ω) ω = ES , ES + Mn ω = En = √

M2
n + h2

z ,
ES + MBBS, En + MBBS

We set kB = 1 and � = 1 in our calculations. Moreover, it
is known that the longitudinal susceptibility χ ′′

zz(q = π,ω)
contains the same resonances as the transverse contribution
χ ′′

+−(q = 0,ω) [28]. That is why we in particular consider
χ ′′

zz(q = π,ω) to study the corresponding excitations since
their intensity is enhanced in this component of the dynamical
susceptibility. Table I gives an overview of the most relevant
bulk and the predicted boundary excitations in the different
components of the dynamical susceptibility at T = 0 [28].

IV. METHODS

A. DMRG at zero temperature

The DMRG [36–39] is arguably one of the most
efficient algorithms for the computation of ground states in
one-dimensional quantum systems and can be formulated
in terms of the underlying variational ansatz class of
matrix product states (MPS) [53]. Moreover, there exist
various extensions for the calculation of Green’s functions
GBC(ω + iη) with respect to the operators B and C,
where η > 0 denotes the broadening. The closely related
zero-temperature spectral functions are of the form

AT =0
BC (ω) = − lim

η→0

1

π
Im GBC(ω + iη)

= − lim
η→0

1

π
Im〈�0|B 1

ω + iη − (H − E0)
C|�0〉

(12a)

= 〈�0|Bδ(ω − (H − E0))C|�0〉. (12b)

Here |�0〉 is the ground state and E0 its energy. Besides real-
time evolution and a subsequent Fourier transform [59–62],
there exist DMRG approaches evaluating these expressions
directly in the frequency domain. One possibility is to evaluate
the resolvent for a given broadening η > 0 by correction-
vector methods [63–66]. However, each frequency has to be
addressed individually in these approaches. An approximation
of the spectral function over the entire frequency range can, for
instance, be obtained by a continued fraction expansion (CFE)
[67–71] or a Chebyshev expansion [50–52]. We use the latter
method hinged upon the kernel polynomial method [49] and
perform an MPS-based expansion of Eq. (12b) in Chebyshev
polynomials. Note that a Chebyshev expansion only grants
convergence in the interval [−1,1], since the Chebyshev
polynomials Tn(x) = cos[n arccos(x)] grow rapidly for |x| >

1. Thus we map the full many-body bandwidth W of the
Hamiltonian to [−1,1] and work with a rescaled Hamiltonian.
We adopt a linear rescaling scheme:

H ′ = H − E0

a
− W ′, ω′ = ω

a
− W ′, (13)

where a = W/(2W ′) and the choice of W ′ = 1 − ε/2 with
ε = 0.025 acts as a safeguard to strictly impose ω′ ∈ [−1,1].
The most important part of the algorithm is the computation
of the expansion coefficients

μn = 〈t0|tn〉 = 〈�0|BTn(H ′)C|�0〉, (14)

which are obtained via the recursion relation

|t0〉 = C|�0〉, |t1〉 = H ′|t0〉, |tn〉 = 2H ′|tn−1〉 − |tn−2〉.
(15)

Then the spectral function is represented as

AT =0
BC (ω) ≈ 2W ′/W

π
√

1 − ω′2

[
g0μ0 + 2

N−1∑
n=1

gnμnTn(ω′)

]
. (16)

The real numbers gn are damping factors which remove
artificial oscillations occurring as consequence of the finite
order N of the expansion. Following Ref. [49], we employ
Jackson damping

gn = (N − n + 1) cos πn
N+1 + sin πn

N+1 cot π
N+1

N + 1
(17)

introducing a nearly Gaussian broadening

η(ω,W ) = π

N

W

2W ′
√

1 − ω′2, (18)

which depends both on the frequency and the bandwidth. At
T = 0, the support of the spectral function is mapped onto the
lower part of the interval [−W ′,W ′], where ω′ is only slightly
larger than −1. As a consequence, the broadening varies
significantly in this frequency range. In order to guarantee a
uniform broadening at all frequencies, we adapt the expansion
order as a function of the frequency, if not stated otherwise.
The DMRG computations are performed in real arithmetics.
After each Chebyshev iteration, the new Chebyshev state
|t̃n〉 is variationally compressed [53] to an MPS |tn〉 with
smaller matrix dimension m. We control the accuracy of our
calculations by specifying m. This truncation leads to the
compression error

εcompr = ||t̃n〉 − |tn〉|2. (19)

If not stated otherwise, we use m = 250 in order to evaluate the
spectral line shape at T = 0 corresponding to εcompr ∼ 10−5.

B. DMRG at finite temperature

The original zero-temperature method DMRG only allows
for the treatment of pure states. There exist a few ways to
address the challenge of mixed density operators at T > 0.
Finite-temperature spectral functions have originally been
accessed by an application of the DMRG to transfer matrices
[72,73]. A more recent DMRG method is the minimally
entangled typically thermal states approach (METTS) [74]
which samples over an ensemble of pure states constructed by
imaginary-time evolution in order to approximate the finite-
temperature state of the system. Since its introduction, METTS
has been used for the calculation of static thermodynamic
quantities [75,76] and dynamical correlation functions [77,78].
Until today, most approaches are based on the purification
of the mixed density operator, represented by matrix product
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states or operators and obtained by imaginary-time evolution.
The dynamics are then studied by a subsequent real-time
evolution [79–86]. However, to calculate finite-temperature
spectral functions in this paper, we use a recently developed
MPS approach working directly in frequency space [54]. This
method is also based on the purification trick. For this reason,
we reconsider the underlying thermofield formalism [87,88]
and start by recapitulating that the T > 0 dynamics of a mixed
state with density operator ρ is governed by the Liouville–von
Neumann equation

i
dρ

dt
= [Ĥ ,ρ]. (20)

If one then thinks of the density operator ρ as a state vector
|ρ〉〉 in the Liouville space of operators, Eq. (20) becomes

i
d

dt
|ρ〉〉 = L|ρ〉〉 (21)

in Liouville space which is similar to the Schrödinger equation
in Hilbert space. HereL represents the Liouville superoperator.
According to Ref. [88], each vector |ρ〉〉 can be identified
with a pure-state wave function |�〉 in a doubled Hilbert
space HP ⊗ HQ, which is the tensor product space of the
physical state space HP and an auxiliary space HQ chosen
to be isomorphic to HP . With this association, the Liouville
superoperator serves as the Hamiltonian for the purification
|�〉. For simplicity, we say that the dynamics of the pure-state
wave function |�〉 is governed by the Liouville operator
L = HP ⊗ IQ − IP ⊗ HQ, which we implement as a matrix-
product operator, and where I means the identity operator.
The eigenvalues of the operator L are the differences of the
eigenenergies of the Hamiltonian H . From this, it becomes
evident that a Liouville space formulation is natural for the
treatment of finite-temperature dynamics and the expression
for a spectral function at T > 0 is simplified to

AT >0
BC (ω) = 1

Z

∑
n,m

e−En/T 〈ψm|B|ψn〉

× 〈ψn|C|ψm〉δ(ω − (Em − En)) (22a)

= 〈�T |(BP ⊗ IQ)δ(ω − L)(CP ⊗ IQ)|�T 〉. (22b)

Here |�T 〉 ∈ HP ⊗ HQ denotes the thermal state which is
obtained via an imaginary time evolution starting at infinite
temperature:

|�T 〉 = e−(HP ⊗IQ)/(2T )|�∞〉. (23)

|�∞〉 is an initial state with maximal entanglement between
the real and the auxiliary system, as explained in detail in
Ref. [53]. The Liouville formalism can be used to recast
finite-temperature spectral functions into a form very similar
[see Eq. (22b)] to the T = 0 expression in Eq. (12b). Therefore,
standard numerical methods working directly in the frequency
domain are inherently applicable also at T > 0. We thus
use an MPS-based expansion in Chebyshev polynomials of
Eq. (22b) which was found to have higher numerical stability
and better convergence properties than a CFE in Ref. [54].
Very similar to the Chebyshev expansion at T = 0 described
above, we perform the recursion in Eq. (15) with respect to
the linearly rescaled Liouville operator and use |�T 〉 as the
initial state. Concerning the resolution η(ω,W ) in Eq. (18),
it is important to note that the support of a finite-temperature

spectral function in the central region of the band is mapped
to frequencies ω′ � 1 by the linear rescaling scheme and
therefore η is only weakly frequency dependent. However, the
doubled system size needed for the purification and the fact that
the spectral width of the Liouvillian assumes twice the width
of the Hamiltonian make it computationally more expensive
to obtain the same resolution for a given system as at T = 0.
For the evaluation of finite-temperature spectral functions in
Sec. VI, we use a maximal matrix dimension of up to m = 300
in order to enforce a compression error of εcompr � 10−3.

C. Exact diagonalization

We also present exact diagonalization results for the
dynamical correlation functions. Here we take a different
approach from Ref. [43] and evaluate the spectral represen-
tation Eq. (22a) that is then subjected to Gaussian broadening.
Since this can be done to machine precision, this is referred
to as exact diagonalization (ED) [44,45]. In order to exploit
the translation invariance of the model in Eq. (2), periodic
boundary conditions (PBCs) are adopted. Full diagonalization
of the Hamiltonian was performed for L � 16 already some
time ago [17], and has been extended up to L = 18 in the
present context. To go to bigger systems, we use the Lanczos
method [89,90] in order to compute low-lying eigenvectors
|ψn〉 and their eigenvalues En. To get a large number of
eigenvectors, we employ the procedure outlined in Ref. [46]
in order to eliminate the “ghosts” that are generated during
the Lanczos iteration. Since we need to truncate the sums
in Eq. (22a), the results obtained in this manner are valid
only for low temperatures and small frequencies even if about
2000 (for L = 24) or even on the order of 10 000 terms (for
L = 20) are retained. Among the advantages of this approach,
we have access to the individual eigenvalues En and the
individual terms of the spectral representation in Eq. (22a).
Furthermore, only in the postprocessing step do we need to
specify temperature T and perform broadening.

V. ZERO-TEMPERATURE RESULTS

For our numerical study of the ESR modes and their
intensities, the value of c is a crucial model parameter
as it determines the magnitude of the staggered transverse
field hx = c hz. For instance, in KCuGaF6 the parameter c

assumes a value of c = 0.178 in the direction of the maximal
staggered magnetization [24]. In copper benzoate [8–11] and
dimethylsulfoxide CuCl2 [22,23] the values are c = 0.065 and
c = 0.075, respectively. This is a typical order of magnitude
that also applies to Cu-PM. When the magnetic field is applied
along the c′′ direction, in which the maximal value of the
staggered magnetization is assumed, the material parameters
c = 0.08 and c = 0.083 were determined for Cu-PM [16,18].
Except for Sec. V C, where c = 0.08 is considered for a direct
comparison to the experiments in Ref. [16], we adopt this value
c = 0.083 for our numerical calculations at T = 0.

A. BBS and breather excitations

We start by studying the BBS and the breather excita-
tions which appear in the transverse staggered susceptibility
χ ′′

+−(q = π,ω). Figure 3(a) shows our DMRG results for the
related ESR intensity for hz = 1 and c = 0.083. The first three
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breather excitations B1–B3 are clearly observed for different
system sizes L. Since the DMRG calculations are performed
for open boundary conditions (OBCs), the BBS observed in
earlier DMRG studies [41,42] and finally identified as such in a
boundary sine-Gordon field theory [28] is found slightly below
B1 in the bulk gap. The masses of the elementary excitations
from the sine-Gordon theory are included as vertical lines in
Figs. 3(a)–3(b). The peak positions are in good agreement
with the predictions. Moreover, the intensity decreases for
the heavier quasiparticles B2 and B3. Figure 3(b) shows the
finite-size dependence of the BBS and B1 at an enhanced
resolution (η = 0.006). Two interesting observations are that
the position of the B1 peak seems to converge towards the field
theoretical value, and that the BBS intensity decreases with
increasing system size. To check this, we performed finite-size
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FIG. 3. Zero-temperature DMRG results for the transverse stag-
gered contribution to the ESR intensity at hz = 1 (J = 1, c = 0.083)
complemented with values from the sine-Gordon theory (vertical
lines). (a) Observation of the BBS and three breathers B1–B3 in
the intensity ∼ωχ ′′

+−(q = π,ω) for various system sizes L and a
Gaussian broadening of η = 0.01. (b) Zoom-in on BBS and B1 at
higher resolution (η = 0.006). (c)–(e) Finite-size scaling analyses
for the mass M1 of B1 (c), and the integrated peak intensity of the
BBS (d) as well as B1 (e).

analyses using a fitting function of the form f (x) = A + B xγ ,
where x = 1/L. In Fig. 3(c) the analysis confirms that the
L → ∞ extrapolation of the B1 peak position agrees with
the field theoretical breather mass M1, which is plotted as the
horizontal solid line. Furthermore, we performed a finite-size
scaling of the integrated peak intensity, which is independent
of the broadening, both for the BBS in Fig. 3(d) and for B1 in
Fig. 3(e). Here the best fit to the data was achieved by setting
the exponent γ = 1. The peak intensity of the BBS scales
close to zero, whereas the intensity of B1 extrapolates to a
finite value in the thermodynamic limit. Thus the expectations
for a boundary (bulk) excitation are met.

As a next step, the frequency-field dependence of the
breather excitations B1, B2, and B3 is determined from
our DMRG results for the ESR spectral function. The peak
positions for B1 and B3 are obtained from the absorption
intensity ∼ωχ ′′

yy(q = π,ω) for L = 80 which is plotted as a
function of the magnetic field in Fig. 4(a). For this calculation,
m = 150 DMRG states are kept corresponding to εcompr ∼
10−4 at small fields and εcompr < 10−5 for hz > 1. Since we
use an MPS-based Chebyshev expansion of order N = 6000
and the spectral width becomes larger for increasing fields,
the Gaussian broadening included in these results depends
both on the frequency and the field, i.e., η(ω,hz). As an
example, the broadening ranges from η(ω = 0) = 0.004 to
η(ω = 3) = 0.01 at hz = 1 in this case. The frequency of
B2 is determined from the ESR intensity ∼ωχ ′′

+−(q = π,ω),
which is shown in Fig. 15(a) in Appendix A. In Fig. 4(b),
DMRG results for the breather resonances are compared
to sine-Gordon predictions for an infinite system and exact
diagonalizations (ED) of a system with L = 28 sites. For B1,
the DMRG results show deviations towards small magnetic
fields, since in this field regime finite-size effects (FSEs) are
gradually enhanced. However, this has been understood by
the finite-size analysis in Figs. 3(b) and 3(c). Since the ED
calculations are performed with periodic boundary conditions
(PBCs), FSEs are less severe in the ED data. Interestingly,
the DMRG results for B2 and B3 show a weaker finite-size
dependence than for B1. In this figure one can also assess the
limits of the field-theory description which is based on the limit
of a small hx : towards high fields, hz � 1.3, the description by
the field theory breaks down the earlier the heavier the mass
of the breather excitation is.

Moreover, it is interesting to study the evolution of the
field-induced gap up to strong magnetic fields, i.e., beyond
the realm of sine-Gordon physics. In Fig. 4(c), we compare
the frequency-field dependence of the BBS extracted from the
spectral function for L = 80 in Fig. 4(a) to DMRG results
from Ref. [20]. We note that the previously published data for
the lowest excitation energy computed by a multitarget DMRG
approach for L = 200 and OBCs perfectly coincidence with
our results for the BBS. Furthermore, we observe the BBS as
a weak feature of the absorption intensity ∼ωχ ′′

zz(q = π,ω)
in Fig. 6(a) below. Besides the BBS, Fig. 4(c) also includes
results for B1. Interestingly, the two excitations merge into
one single excitation close to the saturation field. In the fully
spin-polarized phase at high fields, the elementary excitations
are magnons and the gap is proportional to hz − hsat

z , where
hsat

z is the saturation field [20]. Furthermore, the two-magnon
continuum and in particular its lower boundary are clearly
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FIG. 4. Frequency-field diagrams in the presence of an applied
external field hz. (a) Frequency-field plot at T = 0 of the absorption
intensity ∼ωχ ′′

yy(q = π,ω) obtained by DMRG-based Chebyshev
expansions (order N = 6000) at fixed fields hz ∈ [0,3.4] for a step
increment of �hz = 0.1 and L = 80. (b) The frequency-field depen-
dence of the first (B1), second (B2), and third (B3) breather excitations
obtained by DMRG for L = 80 is compared to field-theoretical
and ED results. (c) DMRG calculations for the frequency-field
dependence of the BBS and the first breather showing the transition
to magnon physics towards high fields (J = 1 and c = 0.083 for all
panels). The DMRG results for L = 200 are taken from Ref. [20].

visible in Fig. 4(a). Again, note that the resolution becomes
worse towards higher fields and frequencies, since we keep the
expansion order fixed at N = 6000.

B. Single-soliton resonance

The single-soliton resonance probed in ESR experiments
using the Faraday configuration mainly originates from the
uniform component of the transverse susceptibility χ ′′

+−(q =
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FIG. 5. Zero-temperature DMRG results for the longitudinal
uniform contribution to the ESR intensity for different system sizes
L and three values of the applied field hz: (a) hz = 1, (b) hz = 0.25,
and (c) hz = 0.5. We adopt J = 1 and c = 0.083 in all panels. The
dominant peak corresponds to the single-soliton resonance and is

found below the field theoretical prediction ES =
√
M2

S + h2
z (solid

vertical line). The dashed vertical line marks the result of the
finite-size scaling.

0,ω) since its presence in the longitudinal staggered sus-
ceptibility χ ′′

zz(q = π,ω) is suppressed in Eq. (9). However,
since the intensity of the excitation is higher in χ ′′

zz(q = π,ω)
by about two orders of magnitude [cf. Fig. 6(c) below],
we focus on this component for our DMRG calculations.
Figure 5 shows our results for different system sizes L and
various values of the magnetic field hz. In Fig. 5(a) the
peak corresponding to the single-soliton resonance is the
dominating feature at hz = 1. In addition, one observes the
lower edge of a two-particle continuum at higher frequency.
The extension of this continuum will be discussed in more
detail in Sec. V D where results for the momentum-resolved
dynamical spin structure factor are presented. The L → ∞
extrapolation of the single-soliton resonance is represented
by the dashed vertical line in Fig. 5(a) and is found below
the field theoretical prediction ES =

√
M2

S + h2
z (solid vertical

line). This discrepancy even persists for the smaller fields
hz = 0.25 and 0.5 in Figs. 5(b) and 5(c), which focus on
the region around the soliton resonance. By plotting the field
dependence of the ratio ω/hz for the soliton resonance in
Fig. 6(b), this discrepancy is also confirmed by ED results
for L = 28 and PBCs which are in good agreement with our
DMRG calculations. Thus it cannot be a boundary effect. A
very similar deviation from the same theory has been observed
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FIG. 6. Results for the soliton resonance (J = 1; c = 0.083).
(a) Frequency-field plot of the intensity ∼ωχ ′′

zz(q = π,ω) obtained
by DMRG-based Chebyshev expansions (order N = 4500) at fixed
fields hz ∈ [0,2.6] for a step increment of �hz = 0.1 and L = 80.
Here we use m = 150 corresponding to εcompr ∼ 10−4 at small fields.
(b) Comparison of the ratio ω/hz for the soliton as a function of
the applied field between DMRG, ED, and the sine-Gordon theory.
Both numerical approaches find the soliton resonance below the field
theory irrespective of the boundary conditions. (c) DMRG results for
the integrated peak intensity of the soliton in different components of
the dynamical susceptibility.

in ESR experiments on Cu-PM [16] and will be discussed in
detail in the next subsection.

Furthermore, we would like to discuss the fate of the
soliton excitation after the transition into the fully spin-
polarized phase. To this end, we determine the position
and intensity of the single-soliton resonance from the ESR
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FIG. 7. Comparison between DMRG (L = 80), experimental,
and field theoretical results for the frequency-field dependence of
the breather excitations (c = 0.08). The experimental data are taken
from Ref. [16].

absorption ∼ωχ ′′
zz(q = π,ω) obtained by DMRG calculations

for different fields in Fig. 6(a) for a system of L = 80 sites.
The fact that the ratio ω/hz approaches a value close to one
for very high fields in Fig. 6(b) suggests that this excitation
becomes the paramagnetic line which is located at ω = hz

in standard ESR experiments and perturbed by the small
staggered field here. In Fig. 6(c), the integrated peak intensity
from different components of the dynamical susceptibility is
depicted as a function of the magnetic field. From this, we find
that the highest soliton intensity appears in the longitudinal
staggered susceptibility χ ′′

zz(q = π,ω), whereas the intensity
of the paramagnetic line at high fields is largest in the
uniform transverse susceptibilities χ ′′

xx(q = 0,ω) and χ ′′
yy(q =

0,ω). An additional frequency-field diagram for the intensity
∼ωχ ′′

xx(q = 0,ω) is provided in Fig. 15(b) in the Appendix.

C. Comparison to the experiment

In the following we want to relate our DMRG results to
the experimentally determined ESR resonance modes in the
material Cu-PM from Ref. [16]. Since the only free parameter
c has been determined as c = 0.08 by a fit to the B1 mode
in this previous experiment [16], we adopt the value in our
calculations for the comparison to the experiment. We start
by comparing the frequency-field dependence of the breather
excitations in Fig. 7. The resonance modes B1 and B3 are
extracted from the absorption ∼ωχ ′′

yy(q = π,ω) for L = 80
as their intensity is higher in this component. The B2 mode
is again determined from the intensity ∼ωχ ′′

+−(q = π,ω).
Apart from the finite-size effects towards small magnetic
fields [discussed earlier in Figs. 3(b) and 3(c)], there is good
agreement between DMRG and experiment.

Next, we compare the experimental data for the frequency-
field dependence of the single-soliton resonance in Cu-PM
to sine-Gordon and our DMRG results for the intensity
∼ωχ ′′

zz(q = π,ω). Figure 8 shows this comparison for two
values of the material parameter c from the literature, c = 0.08
and c = 0.083 [16,18]. One of our main results is that there
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FIG. 8. Comparison between DMRG (L = 80), experimental,
and field-theoretical results for the frequency-field dependence of
the single-soliton resonance. The experimental data are taken from
Ref. [16].

is very good agreement between the DMRG results and the
experiment. Moreover, these results are both found below
the sine-Gordon field theory irrespective of the c value. The
reason for the deviation can be understood by considering
the momentum dependence of the dynamical structure factor
Szz(q,ω) = χ ′′

zz(q,ω)/π in Fig. 9(c). For q ∼ π , the domi-
nating feature is the dispersion relation of the antisoliton,
which clearly exhibits curvature. This curvature comes from
irrelevant operators which break Lorentz invariance [47].
Therefore, the Lorentz invariant dispersion ES =

√
M2

S + h2
z

used by the field theory is not perfectly suitable for describing
the single-soliton resonances appearing at q = π in χ ′′

zz(q,ω)
and at q = 0 in χ ′′

+−(q,ω).
Moreover, it is important to also discuss the presence of

boundary modes in Cu-PM. Due to the very low impurity
concentration in the sample, the BBS just below B1 is not
experimentally observed [16,20]. Since we perform DMRG
calculations with open boundaries, we have clearly identified

this BBS in Figs. 3 and 4(c). According to the boundary field
theory [28], there should be even more boundary resonances
at T = 0. However, none of them is clearly observable in
our DMRG results for the spectral functions since their
intensity is too low. Reference [28] argues that some of these
additional modes can be assigned to the unknown modes,
which were observed in Cu-PM [16,20] and to similar modes
observed in KCuGaF6 [24]. These unexplained resonances
could previously not be accounted for in the bulk sine-Gordon
theory. However, the fact that the BBS was not observed in
Cu-PM while we did observe a significant weight for the chain
lengths studied by us numerically indicates the Cu-PM samples
to be very clean. Now the other boundary modes seem to
have so low a spectral weight that they are unobservable even
in our computations. Thus we conclude that these additional
boundary modes are unlikely to explain the experimental U1
and U2 modes in Cu-PM.

D. Dynamical spin structure factor

Up to this point, our results are obtained for the momenta
q = 0 and q = π , which are relevant for a comparison to ESR
experiments [cf. Eq. (9)]. Now we want to go beyond this
and study the full momentum dependence of the elementary
excitations at T = 0 for a magnetic field of magnitude hz =
1. Figure 9 shows DMRG results for the xx, yy, and zz

components of the dynamical spin structure factor Sαα(q,ω)
for an L = 80 site chain. For momentum resolved quantities,
we define the spin operators in q space as [91]

Sα
q =

√
2

L + 1

L∑
i=1

sin(qi)Sα
i , (24)

with respect to the quasimomenta q = πn/(L + 1) and
integers n = 1, . . . ,L. The transverse components of the
dynamical structure factor in Figs. 9(a) and 9(b) contain
the soliton dispersion which assumes a minimum at the
incommensurate wave vector q = q0. The minimum of
the antisoliton dispersion at q = π − q0 is a main feature of the
zz component shown in Fig. 9(c). In the yy (zz) component,
the soliton continuously merges into the B1 dispersion, which
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FIG. 9. DMRG results for the xx, yy, and zz components of the dynamical spin structure factor at T = 0 for hz = 1 and c = 0.083 using
a uniform broadening of η = 0.012 (J = 1, L = 80, m = 150, and εcompr ∼ 10−6). The horizontal solid lines represent the frequencies of
the elementary excitations from the sine-Gordon theory. Most importantly, the curvature of the soliton dispersion for q ∼ 0 in panel (a) [the

curvature of the antisoliton for q ∼ π in panel (c)] lead to a deviation from the Lorentz invariant dispersion ES =
√
M2

S + h2
z . The arrows at

q = π in panels (b) and (c) mark the soliton-antisoliton excitation SS and the lower edge of the continuum, respectively.
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has its minimum at the antiferromagnetic wave vector q = π

(q = 0). We can further identify the heavier breathers B2 and
B3 at q = π in Sxx and Syy . Interestingly, there is a manifes-
tation of the BBS in all three components of the dynamical
structure factor, while the most intense signal occurs in the yy

component in Fig. 9(b). As expected for a localized mode, we
also find that the BBS has a flat dispersion [28].

Our results in Fig. 9 represent an improvement over a
previous ED investigation of the dynamical structure factor for
L ∼ 20 in Ref. [23]. These ED calculations for c = 0.075 are
in agreement with neutron scattering results for the low-energy
modes in dimethylsulfoxide CuCl2 published in the same
work. The DMRG calculations for L = 80 in Fig. 9 provide
a higher momentum and frequency resolution enabling us
to resolve the multi-particle continua more clearly. As a
main result, we are able to observe the curvature of the
soliton dispersion for q ∼ 0 in Fig. 9(a) [the curvature of
the antisoliton for q ∼ π in Fig. 9(c)]. The presence of this
curvature is also implied by previous ESR experiments [16]
since the single-soliton resonance is found below its field
theoretical prediction ES =

√
M2

S + h2
z (see Sec. V C).

Moreover, multiparticle continua are observed at higher
frequency. In particular, we analyzed the extended continuum
in Fig. 9(c) using the following consideration. Since there
is a continuous one-particle dispersion ε1(q) throughout the
Brillouin zone, it is possible to construct the energies of the
two-particle excitations at q1 + q2 by ε2(q1 + q2) = ε1(q1) +
ε1(q2). We indeed find that the boundaries of the continuum
mostly coincidence with the extremal ε2(q1 + q2). Thus the
continuum corresponds to the continuous dispersion linking
the first breather and the soliton.

An important resonance labeled as “SS” in our DMRG
calculations for the absorption intensity ∼ωχ ′′

yy(q = π,ω) in
Fig. 4(a) is also found in the yy component of the dynamical
spin structure factor [see Fig. 9(b)] where it is marked
by an arrow. This feature is found at an energy of twice
the single-soliton resonance and therefore consistent with a
soliton-antisoliton excitation. It represents the singularity at
the upper edge of a continuum.

VI. FINITE-TEMPERATURE RESULTS

Motivated by experimental hints of strong temperature
dependencies of ESR linewidths in Cu-PM [48], we study
the temperature effects on the ESR intensity of this material.
We focus on the wave vectors q = 0 and q = π , which are
relevant for a comparison to ESR experiments [cf. Eq. (9)].
With increasing temperature, we investigate the redistribution
of spectral weight and, in particular, the emergence of
thermally induced transitions between zero-temperature
excitations of the sine-Gordon theory. For the breather and
interbreather excitations, there are both experimental and
numerical results in Sec. VI A. In our numerical results,
we furthermore observe a soliton-breather transition in
Sec. VI B. Moreover, temperature effects may also lead to a
crossover between excitations. As an example, we discuss the
temperature dependence of the soliton in Sec. VI C.

A. Breather and interbreather excitations

1. Numerical results

First of all, we focus on the temperature dependence of the
breathers at hz = 1. To this end, we study both contributions,
Ixx(q = π,ω) and Iyy(q = π,ω), to the staggered transverse
ESR intensity for L = 50 in Fig. 10. It is important to note that
B2 is contained in the former component and B1 as well as B3
in the latter. These finite-temperature DMRG calculations for
OBCs are obtained by a Chebyshev expansion with respect to
the Liouville operator, as explained in Sec. IV B. In contrast to
the purely T = 0 results shown at a broadening of η = 0.01 in
Fig. 3(a), the resolution in Fig. 10 assumes the value η = 0.035
at T > 0 and is therefore not as high as at T = 0. This is due
to the increased computational effort for purifying the thermal
density matrix as well as applying the Liouville operator,
whose spectral width is twice the width of the Hamiltonian
and, most importantly, directly proportional to the broadening.
As a consequence of this limitation, the BBS and B1 are not
resolved as two separate peaks at T = 0 in Fig. 10. However,
the obtained resolution is high enough to see that at higher
temperature the breather excitations are clearly subject to
thermal broadening. In particular, B3 is only observable at
T = 0 in our DMRG computations due to this effect.

Since thermally activated interbreather transitions at fre-
quencies Mn − Mm (n > m) have been reported in the sine-
Gordon magnet KCuGaF6 [24], it is interesting to look for
these excitations in our calculations for Cu-PM. We therefore
enhance the resolution of the DMRG calculation at T/J = 0.5
in the inset of Fig. 10(b), which focuses on the region around
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FIG. 10. DMRG results for the temperature dependence of
breather excitations in the transverse ESR intensities Ixx(q = π,ω) (a)
and Iyy(q = π,ω) (b) for a magnetic field of hz = 1 and c = 0.083.
The solid vertical lines mark the T = 0 sine-Gordon predictions.
Inset: DMRG calculations with enhanced resolution provide evidence
for the interbreather transition at M3 − M2 (solid vertical line).
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FIG. 11. ED results for systems with PBCs addressing the
temperature dependence of breather and interbreather excitations
at a magnetic field of hz = 0.6 and c = 0.08. The transverse ESR
intensities Ixx(q = π,ω) and Iyy(q = π,ω) are shown for η = 0.01
in panels (a) and (b). We show results for L = 24 at T � 0.25 and
L = 20 at T = 0.5. The insets focus on finite-temperature transitions
at Mn − Mm between breather excitations, which are marked by solid
vertical lines. (c) Temperature dependence of the spectral weight
of the interbreather transition between B1 and B2 calculated from
different components of the absorption intensity in dependence of
temperature (L = 24).

the field-theoretical value for M3 − M2 (solid vertical line).
Very close to this frequency a weak maximum is found
which we interpret as evidence for the M3 − M2 interbreather
transition. Unfortunately, it is not possible to observe further
excitations of this type in our DMRG calculations. For
instance, the observation of a possible feature at ω = M2 − M1

is obstructed by the choice of OBCs. More precisely, the large
BBS intensity appears very close to this frequency. Therefore,
we resort to ED calculations with PBCs for further detection of
interbreather transitions, since the BBS is absent in this case.
The ED results are shown for L = 20 at T = 0.5 and L = 24
at T � 0.25 in Fig. 11. Here the magnetic field is chosen as
hz = 0.6, which corresponds to a field of about 14.36 T in
experiments on Cu-PM discussed further below. The vertical

solid lines in the insets of Figs. 11(a) and 11(b) highlight the
frequencies Mn − Mm at which the excitations are expected.
However, here these predictions are not determined via the
sine-Gordon theory but from the finite-size positions of the
breathers, as B2 and B3 are still subject to finite-size effects
for L = 24. In both the xx and the yy component of the ESR
intensity, the transitions at M2 − M1 and M3 − M1 are clearly
visible and match the expected frequencies. Figure 11(c) traces
the spectral weight of the B1–B2 transition as a function
of temperature for L = 24. Here, we have computed the
coefficient of the corresponding δ function in the spectral
representation Eq. (22a), i.e., the thermal occupation of the B1
mode multiplied with the matrix elements for the transition
to B2. The effect is that the temperature dependence of all
three quantities in Fig. 11(c) is identical, just the matrix
elements are different. We observe that the B1–B2 transition
is thermally activated at low T , goes through a maximum
a little below T/J = 0.15, and then decays again towards
high temperature. The latter is also reflected in panels (a)
and (b) of Fig. 11 where one observes that upon increasing
the temperature to T/J = 0.5, these weak-intensity features
become hardly distinguishable from the finite-temperature
background. Thus we find the appearance of these transitions,
which is expected from the sine-Gordon theory [28], to be
limited to low temperatures only.

2. Experimental results

High-field ESR experiments on Cu-PM were performed us-
ing a 16 T superconducting magnet ESR spectrometer (similar
to that described in Ref. [92]), equipped with VDI sources of
millimeter-wave radiation (product of Virginia Diodes Inc.)
and a transmission-type probe in the Faraday configuration.
The field sweep rate was 0.5 T/min. The magnetic field was
applied along the c′′ direction, which is characterized by the
maximal value of the staggered magnetization for Cu-PM
[14]. High-quality single crystals of Cu-PM with typical size
of 3 × 3 × 1 mm3 were used that have been grown by slow
evaporation of the equimolar aqueous solution of copper nitrate
and pyrimidine [12,13].

Figure 12(a) shows the temperature dependence of ESR
absorption spectra in Cu-PM measured at 178 GHz. The
most prominent feature is the first breather B1 which is
clearly visible up to temperatures T ∼ 3 K. Furthermore,
the measurement confirms that there is no evidence for the
presence of the BBS towards higher fields. The only stable
feature we observe in addition to B1 is identified as the
interbreather transition at M2 − M1. The inset of Fig. 12(a)
shows the corresponding absorption minimum at T = 2.2 K
for a few selected frequencies. By measuring the frequency-
field diagram over a broad range of the applied magnetic field,
we show that there is excellent agreement with sine-Gordon
and DMRG results for M2 − M1 in Fig. 12(b). In the DMRG
calculations, M1 and M2 were determined as the peak position
of B1 and B2 in the absorption intensities ∼ωχ ′′

yy(q = π,ω)
[∼ ωχ ′′

xx(q = π,ω)] for large systems of L = 120 to minimize
finite-size effects at small magnetic fields.

The signals of the interbreather transition in our ESR
experiments are rather weak at a temperature of T/J ≈ 0.06.
Therefore, it is surprising that the authors of Ref. [24] report
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FIG. 12. (a) Temperature dependent ESR absorption intensity of
the first breather B1 at 178 GHz. There is no signature of the BBS
towards higher fields, but at about H = 14.5 T the interbreather
transition between B1 and B2 is observed. The inset shows this
excitation for different frequencies at T = 2.2 K. (b) Frequency-field
plot of the B1–B2 interbreather transition comparing the ESR modes
with M2 − M1 from the sine-Gordon theory and zero-temperature
DMRG calculations for L = 120.
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FIG. 13. ED results for L = 24, η = 0.01, and PBCs addressing
the temperature dependence of the soliton and the transition between
the soliton and the first breather for different values of the magnetic
field hz = 0.6 (a) and hz = 1 (b). The finite-temperature transition
ES − M1 is highlighted by the solid vertical lines in the two insets.

that the intensities of breather and interbreather excitations
are of the same order in KCuGaF6 at an even much lower
temperature (T/J ≈ 0.005). However, it has to be mentioned
that their ESR measurements have been performed in a pulsed
magnetic field using a larger sample of size 3 × 3 × 3 mm3.
This is different from our experiments in a static magnetic field.

B. Soliton-breather transition

Based on field-theoretical considerations, soliton-breather
transitions at frequencies |ES − Mn| have been predicted to
occur at finite temperature [28]. However, nothing has been
known about the corresponding intensities so far. Our ED
results for L = 24 resolve the low-intensity transition between
the soliton and the first breather at ω = ES − M1 in the
intensity Izz(q = π,ω). The temperature dependence of this
feature is shown in the insets of Fig. 13 for magnetic fields of
hz = 0.6 and hz = 1. The transition assumes its maximum
intensity around a temperature of T/J = 0.25, while it is
hardly visible at T/J = 0.5. Therefore, this feature occurs
in the same temperature range as the interbreather transitions.

C. Crossover: Soliton to paramagnetic line

Next, we want to study the temperature-induced crossover
between the soliton at low temperature and the paramagnetic
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FIG. 14. Temperature-induced crossover between the soliton at
low temperature and the paramagnetic line at higher temperature in
Ixx(q = 0,ω): (a) DMRG results for L = 50 in the presence of a
uniform magnetic field hz = 1 and c = 0.083 with resolution η =
0.03. (b) ED results for systems with PBCs at higher resolution η =
0.01, hz = 1, and c = 0.083. (c) ED results for systems PBCs at
hz = 0.6 and c = 0.08 with resolution η = 0.01. The ED results are
shown for L = 24 (T/J � 0.25) and L = 20 at T/J = 0.5.
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line perturbed by the staggered field at higher temperature.
For small systems, Iitaka and Ebisuzaki have presented
results [43] using their Boltzmann-weighted time-dependent
method which is based on a random vector representation
for the evaluation of the trace and a Chebyshev expansion of
the Boltzmann operator. Results for lattices of L = 16 sites
have been published. Our finite-temperature DMRG approach
(see Sec. IV B) allows us to revisit this feature using state-
of-the-art results for larger systems with L = 50 sites. We
furthermore correct the interpretation given in Ref. [43]. Our
DMRG results for different temperatures at hz = 1 are shown
in Fig. 14(a). Figure 14(b) contains ED results at hz = 1. Here
we use systems with L = 24 (T/J � 0.25) and L = 20 sites
at T/J = 0.5. In Appendix B we show a detailed finite-size
analysis for these data. ED results for hz = 0.6 are depicted
in Fig. 14(c). For both magnitudes of the magnetic field, it is
intriguing how quickly an increase in temperature redistributes
spectral weight from the soliton at T = 0 to the paramagnetic
line perturbed by the staggered field at ω ≈ hz and that this
crossover can be traced numerically.

VII. CONCLUSION

Spectral functions for the material Cu-PM have been
computed with unprecedented accuracy using DMRG and ED.
At T = 0, we studied the intensities and the frequency-field
dependence of the breather excitations and the BBS found
directly below the first breather, which was predicted by a
boundary sine-Gordon field theory in Ref. [28]. Adopting
OBCs for our DMRG calculations, we could show that the
BBS intensity scales to zero in the thermodynamic limit.
Moreover, the first breather and the BBS merge into one
single excitation close to the saturation field. Besides the
BBS, Furuya and Oshikawa also predicted additional boundary
modes at T = 0 and in the case of Cu-PM assigned two of them
to the previously unexplained modes U1 and U2 found for this
compound [28]. These additional boundary resonances are not
observable in our DMRG calculations for Cu-PM. Thus we
conclude that their intensities must be so low that they are
unlikely to explain the U1 and U2 modes. This conclusion
is supported by the fact that in ESR experiments not even
the boundary mode with the highest intensity is observed
[16]. The absence of boundary effects in our experiments can
be explained by the high purity of the Cu-PM samples. A
second conclusion in this context is that we have not obtained
signatures for the experimental modes U1, U2, or U3 [16] in
our DMRG computations, which suggests that these modes
in Cu-PM may not be contained in the effective model in
Eq. (2). They might occur as a consequence of further effects
beyond this effective model. Possible candidates are additional
anisotropies, a lattice relaxation close to the impurity, or
interchain coupling.

Another main finding is that the DMRG results provide
a better description for the frequency-field dependence of
the single-soliton resonance in the material Cu-PM [16]
than the sine-Gordon theory. The reason is that the Lorentz
invariant dispersion relation ES =

√
M2

S + h2
z used by the

field theory does not capture the band curvature generated
by the coupling of marginally irrelevant operators. This is
supported by our DMRG calculations for the momentum and

frequency-resolved dynamical spin structure factor in Fig. 9.
Furthermore, recent inelastic neutron scattering experiments
on KCuGaF6 [26] probed the dispersion branch along which
the soliton and antisoliton are located at the incommensurate
wave vectors qs = π ± q0 as sketched in Fig. 2. We conclude
that these experimental results are also compatible with
the occurrence of band curvature and the single-soliton
resonance at q = π .

At T > 0, we investigated the temperature dependence of
the breather and thermally activated interbreather transitions.
In ED calculations with PBCs, we observed various inter-
breather excitations up to temperatures of about T/J = 0.5
at both hz/J = 0.6 and hz/J = 1. In Fig. 11(c) the transition
at M2 − M1 shows maximum intensity at about T/J = 0.15
and quickly decays upon increasing the temperature. We also
observed this interbreather excitation below the first breather
over a wide field range in ESR experiments on Cu-PM. The
frequency-field dependence is in excellent agreement with
sine-Gordon theory. Unfortunately, the open boundaries for
our DMRG computations are not convenient in this case since
the high BBS intensity is located very close to the frequency of
the strongest interbreather excitation M2 − M1, which could
therefore not be resolved. However, we found evidence for the
M3 − M2 transition in our DMRG data.

Finally, we revisited the single-soliton resonance which
with increasing temperature crosses over to the paramagnetic
line perturbed by the staggered field. This has been studied
before by Iitaka and Ebisuzaki for small systems (L = 16)
using their Boltzmann-weighted time-dependent method [43].
The finite-temperature DMRG approach working directly in
the frequency domain enables us to correct their interpretation
by studying larger systems with L = 50 sites.

Concerning the effects of impurities in sine-Gordon mag-
nets, the doping of Yb4As3 offers an interesting perspective
for further experimental research of boundary resonances.
Beyond ESR and inelastic neutron scattering on Cu-PM and
other compounds, the finite-temperature MPS approach [54]
exploiting the Liouvillian formulation of frequency-space
dynamics at T > 0 can also be applied to other systems that
are, e.g., relevant in the context of ultracold gases [93] and
transport experiments.

Note added. We regret to announce that one of our
coauthors, Professor Thomas Pruschke, passed away after
the submission of this article. We would like to express our
gratitude for his unflagging support as a colleague and his
incisive contributions as a physicist.
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�hz = 0.1.

crystal structure in Fig. 1 was visualized using the program
Mercury 3.3 [94].

APPENDIX A: FREQUENCY-FIELD PLOTS

In this Appendix, additional frequency-field plots of
the ESR absorption intensity computed by DMRG-based
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FIG. 16. Finite-size analysis of the ED results with PBCs at
hz = 1 contained in Fig. 14(b).

Chebyshev expansions at T = 0 are provided in Fig. 15.
Note the two different expansion orders N and that conse-
quently the Gaussian broadening included here depends on
both ω and the spectral width W (hz).

APPENDIX B: FINITE-SIZE ANALYSIS OF ED RESULTS

Here we show a finite-size analysis for the ED data at
hz = 1 shown in Fig. 14(b). To this end, we plot the ESR
absorption intensity Ixx(q = 0,ω) for different system sizes at
various temperatures in Fig. 16. We note that at T/J = 0 the
line shape resembles the thermodynamic limit for all studied
system sizes, while at T/J = 0.125 and T/J = 0.5 the results
for the largest system should be very close to those of an infinite
system. Only at T/J = 0.25, we still observe finite-size effects
for L = 20.
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Jérome, and S. Süllow, Phys. Rev. B 68, 220406 (2003).

[16] S. A. Zvyagin, A. K. Kolezhuk, J. Krzystek, and R. Feyerherm,
Phys. Rev. Lett. 93, 027201 (2004).

[17] A. U. B. Wolter, P. Wzietek, S. Süllow, F. J. Litterst, A.
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[86] I. Pižorn, V. Eisler, S. Andergassen, and M. Troyer, New J. Phys.
16, 073007 (2014).

[87] H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field
Dynamics and Condensed States (North-Holland, Amsterdam,
1982).

[88] S. M. Barnett and B. J. Dalton, J. Phys. A 20, 411 (1987).
[89] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
[90] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[91] H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett.
92, 256401 (2004).

[92] S. A. Zvyagin, J. Krzystek, P. H. M. van Loosdrecht, G.
Dhalenne, and A. Revcolevschi, Phys. B (Amsterdam, Neth.)
346–347, 1 (2004).

[93] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature (London) 454,
744 (2008).

[94] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P.
McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de
Streek, and P. A. Wood, J. Appl. Crystallogr. 41, 466 (2008).

104411-16

http://dx.doi.org/10.1088/1367-2630/15/8/083031
http://dx.doi.org/10.1088/1367-2630/15/8/083031
http://dx.doi.org/10.1088/1367-2630/15/8/083031
http://dx.doi.org/10.1088/1367-2630/15/8/083031
http://dx.doi.org/10.1088/1367-2630/16/7/073007
http://dx.doi.org/10.1088/1367-2630/16/7/073007
http://dx.doi.org/10.1088/1367-2630/16/7/073007
http://dx.doi.org/10.1088/1367-2630/16/7/073007
http://dx.doi.org/10.1088/0305-4470/20/2/026
http://dx.doi.org/10.1088/0305-4470/20/2/026
http://dx.doi.org/10.1088/0305-4470/20/2/026
http://dx.doi.org/10.1088/0305-4470/20/2/026
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1016/j.physb.2004.01.009
http://dx.doi.org/10.1016/j.physb.2004.01.009
http://dx.doi.org/10.1016/j.physb.2004.01.009
http://dx.doi.org/10.1016/j.physb.2004.01.009
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1107/S0021889807067908
http://dx.doi.org/10.1107/S0021889807067908
http://dx.doi.org/10.1107/S0021889807067908
http://dx.doi.org/10.1107/S0021889807067908



