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Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This
intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into
a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic
magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete
Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and
explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic
magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic
magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially
inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing
our model to a commonly used alternative parametrization procedure for the continuum fields, we show that
the physical interpretations of these fields depend critically on the choice of parametrization procedure for the
discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of
AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected
the intrinsic spin of the textured order parameter.
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I. INTRODUCTION

Measuring the ordered state of antiferromagnets (AFMs) is
complicated by the absence of macroscopic magnetization.
The promise of AFMs as candidates for active roles in
spintronics logic elements have increased the interest in
addressing this problem [1,2]. In particular, the observation
of tunneling anisotropic magnetoresistance in AFMs [3–6]
represents a clear experimental procedure to detect the anti-
ferromagnetic order. Furthermore, current-induced torques on
the antiferromagnetic order have been theoretically predicted
[7–10] and experimentally indicated in spin valve sys-
tems [11]. Also, the ferromagnetic concept of spin pumping
has been generalized to AFMs [12]. The possibility of ma-
nipulating the antiferromagnetic order parameter by external
forces has fueled renewed theoretical interest in domain-wall
motion in AFMs due to both charge [13–15] and spin [16–18]
currents. However, the reports on current-induced domain-
wall motion [19] are based on indirect observations and not
confirmed by other methods or groups. Therefore, there is
no straightforward method to reliably detect the dynamics of
textures in the antiferromagnetic order.

In this paper, we discuss the intrinsic magnetization
associated with an inhomogeneous antiferromagnetic order
parameter. We describe the origin of the intrinsic spin and
discuss whether it can be exploited to detect antiferromagnetic
texture dynamics, e.g., domain-wall motion. To revisit this
topic, which was pioneered for one-dimensional systems in
Refs. [20–22], we construct the continuum free-energy func-
tional for AFMs from the discrete Heisenberg Hamiltonian
in the exchange approximation. We use the Hamiltonian
approach to show that the intrinsic magnetization due to
textures in the order parameter arises from a parity-breaking
term in the energy functional that is absent in a commonly used
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alternative parametrization of the continuum fields. We clarify
the mapping between the two different parametrizations and
explain how the intrinsic magnetization can be easily missed
in models which are based on the alternative parametrization.
We further describe the shape of the intrinsic magnetization
density for an antiferromagnetic domain wall and discuss
its physical significance as a twisting of the homogeneous
spinless AFM into a state with a finite spin. The intrinsic
magnetization adds up in two- and three-dimensional extended
domain-wall systems and can affect the dynamics of domain
walls subject to external magnetic fields and spin-polarized
currents. We discuss how these consequences can go beyond
that of the purely quantum topological effects [23] observed
in one-dimensional spin chains.

Studies of domains in AFMs and descriptions of the shape
and properties of antiferromagnetic domain walls date back
several decades [24–26]. However, most of the experimental
evidence of such domains was restricted to studies of AFMs
in which the collinearity of the sublattices is broken due
to Dzyaloshinskii-Moriya (DM) anisotropy. In these studies,
when the DM field or the external field vanishes, so does
the equilibrium magnetization of the AFM. Consequently, the
detection of domain walls and their dynamics in compen-
sated AFMs remains an experimental challenge. However,
antiferromagnetic domain walls are known to exist and
have been experimentally observed, e.g., in monolayers of
antiferromagnetic Fe [27], in the elemental AFM Cr [28], and
in the antiferromagnetic insulator NiO [29]. Antiferromagnetic
domains and domain walls can also be tailored by manipulating
the ferrimagnetic precursor layer before cooling the AFM
below the Néel temperature [30]. Observation of individual
domains in AFMs can be done, e.g., using x-ray magnetic
linear dichroism [31,32].

A key aspect of detecting the dynamics of antiferromagnetic
domain walls is whether such solitons of staggered magnetic
order are associated with a spatially constricted magnetization
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density. Reference [20] argued that such a magnetization exists
and that the earlier studies of antiferromagnetic spin chains
missed certain parity-breaking terms in the transition from
the discrete spin model to the continuum approximation. The
antiferromagnetic Heisenberg Hamiltonian has been mapped
to the nonlinear σ model for the continuous staggered order
parameter [24,25]. However, in Haldane’s seminal work on
large-spin Heisenberg AFMs [25], no apparent parity-breaking
terms survived the transition to the continuum model. In
Haldane’s mapping [33,34], the continuum field that is
conjugate to the antiferromagnetic order parameter describes
the dynamic magnetization only (see Sec. II D). Using a
slightly different parametrization of the antiferromagnetic
order and the magnetization field, Ivanov et al. [21,22]
later demonstrated that the energy functional based on the
one-dimensional antiferromagnetic Heisenberg model indeed
contains a parity-breaking term in the continuum limit and
that this term must be taken into account to describe the
equilibrium magnetization of a domain wall. The parity-
breaking term included in Refs. [21,22] is not equivalent
to the well-known “topological � terms” [35,36], which
arise in effective σ -model Lagrangians for one-dimensional
antiferromagnetic spin chains and are responsible for quantum
effects such as Haldane’s conjecture [25,33,36]. The recently
increased interest in AFMs as active spintronics components
has spawned a number of effective models for antiferromag-
netic dynamics [13,15–18]. These recent models mostly adopt
the nonlinear σ model without introducing a Hamiltonian
that includes parity-breaking terms that lead to the intrinsic
magnetization of antiferromagnetic textures. The absence of
parity-breaking terms in these models may be due to different
definitions of the continuum fields, or these terms may have
been disregarded in the transition to the continuum limit due
to specialized symmetry requirements, which only hold for
homogeneous AFMs. Whether the intrinsic magnetization of
extended two- and three-dimensional systems can lead to qual-
itatively new physics for the dynamics of antiferromagnetic
textures under the influence of external forces remains an open
question that we seek to address in this paper.

The intrinsic magnetization of antiferromagnetic textures is
small. A domain wall in a one-dimensional antiferromagnetic
spin chain exhibits intrinsic magnetization that is in total no
larger than the spin of one sublattice [20,21]. It is therefore
unlikely that such a small magnetic moment can be directly
detected in the near future. However, the presence of the small
spin of domain walls in one-dimensional spin chains manifests
itself through quantum effects [23,37]. In higher-dimensional
extended systems, such as synthetic AFMs, the magnetization
of a textured multilayer may be of appreciable size [38].
Furthermore, in thin films or in bulk AFMs, which is the focus
of our study, the intrinsic magnetization of a transverse domain
wall is additive in the perpendicular directions. The result is
a macroscopic magnetization that can be more easily excited
and detected and that can influence the dynamics of AFMs
beyond that of purely quantum effects.

The paper is organized as follows. In Sec. II, we take
the continuum limit of the Heisenberg Hamiltonian, describe
the origin of the intrinsic magnetization, and discuss the
consequences for the antiferromagnetic dynamic equations.
We also compare our model to Haldane’s alternative mapping

of the continuum fields. This comparison demonstrates that
the continuum fields in these two parametrization procedures
have critically different physical interpretations. In Sec. III,
we describe the magnetization profile of a domain wall and
discuss generalizations to higher-dimensionsal systems. We
show how the intrinsic magnetization leads to qualitatively new
physics and that the domain wall can be moved by a spatially
inhomogeneous magnetic field that couples to the intrinsic
magnetization. In Sec. IV, we present numerical results for the
motion and control of an antiferromagnetic domain wall and
show that we can create potential wells for the domain wall
with spatially constricted magnetic fields. In Sec. V, we discuss
the experimental consequences of the intrinsic magnetization
for extended systems in two (2D) and three (3D) dimensions.
Section VI concludes the discussion.

II. THEORY

Our starting point is the Heisenberg Hamiltonian due to
the exchange coupling between classical spin vectors on a
lattice [39]

H = J
∑
〈α,β〉

Sα · Sβ , (1)

where the positive exchange energy J > 0 describes an
antiferromagnetic ground state. 〈α,β〉 denotes a sum over all
nearest-neighbor lattice sites described by the two sublattices
α and β, where each spin at α has Nn nearest neighbors of type
β, and vice versa. α and β are D-dimensional vectors, where
D is the dimensionality of the AFM. We proceed by describing
the simplest model, the D = 1 antiferromagnetic linear spin
chain with easy-axis anisotropy, and later generalize our results
to 2D and 3D in the Appendix. The focus of our subsequent
sections is on extended 3D AFMs in which the order parameter
varies along one dimension only.

A. Free-energy functional for 1D

We consider a linear spin chain with 2N atomic lattice
sites, where the spins on half of the lattice sites, denoted by
α, minimize their energy by pointing in the opposite direction
of the spins on their Nn = 2 nearest-neighbor lattice sites,
denoted by β, and vice versa. For the AFM, we impose the
boundary conditions that the spin on the left end of the spin
chain is of type α, whereas the right end of the chain is
occupied by a β site. Therefore, in the ground state, the AFM
is fully compensated, and the total spin vanishes. We define
the z axis as the magnetic easy axis. The classical Heisenberg
Hamiltonian including the easy-axis anisotropy is

H1D = J

N,N∑
〈α,β〉

Sα · Sβ − K

⎛
⎝ N∑

α

S2
αz +

N∑
β

S2
βz

⎞
⎠, (2)

where K is the anisotropy energy. In typical easy-axis AFMs,
the exchange energy dominates, |J | � |K|. The classical
ground state of the Hamiltonian (2) is degenerate, (Sα,Sβ )0 →
±(Sẑ, − Sẑ), where S (in units of �) is the spin on a single
atomic lattice site. We now introduce the standard definitions
(see Sec. II D for a comparison with an alternative definition
that is occasionally mistaken to be equivalent to the present
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model) of the magnetic and staggered order parameters mi and
li on a two-sublattice linear lattice parametrized by i:

mi = Si
α + Si

β

2S
, (3a)

li = Si
α − Si

β

2S
, (3b)

where we have paired the sublattice spins Si
α and Si

β at unit
cell i running over a total of N antiferromagnetic unit cells. In
this convention, m2

i + l2i = 1 and the spins in unit cell i can be
expressed as follows:

Si
α = S(mi + li), (4a)

Si
β = S(mi − li). (4b)

After introducing the magnetization vector mi and the
staggered order parameter li , the Heisenberg Hamiltonian (2)
reduces to a sum over antiferromagnetic lattice points:

H1D = JS2
N−1∑

i

(mi − li)[(mi + li) + (mi+1 + li+1)]

+ JS2
(
m2

N − l2N
)

−KS2
N∑
i

[
(mi + li)2

z + (mi − li)2
z

]
. (5)

We continue by using the identities 2mimi+1 = m2
i +

m2
i+1 − (mi+1 − mi)2 and (limi+1 − mi li+1) = li(mi+1 −

mi) − mi(li+1 − li) to rewrite the bulk part of Eq. (5) as
follows:

H1D ≈ 2JS2
N∑
i

(
m2

i − l2i
)

+ JS2

2

N−1∑
i

[(li+1 − li)2 − (mi+1 − mi)
2]

+ JS2
N−1∑

i

[mi(li+1 − li) − li(mi+1 − mi)]

− 2KS2
N∑
i

(
m2

i,z + l2
i,z

)
, (6)

where we have disregarded the vanishingly small energy
contribution −JS2(m2

1 + m2
N − n2

1 − n2
N )/2 from the unit

cells at the edges.
Next, we go to the large-N limit and take the

continuum approximation, allowing us to write H1D ≈∫
(di/�)H(l,l′,m,m′), where � is the length of the antifer-

romagnetic unit cell and l′ and m′ are the (dimensionless)
spatial derivatives of the staggered field and the magnetization,
respectively. di is an infinitesimal length element along the spin
chain. For D = 1, � = 2d, where d is the nearest-neighbor
spacing in the linear chain. The energy density (apart from a

Sα Sβ

SαSβ …

…

Hα, β

Hβ,α 

FIG. 1. For a simple linear spin chain with antiferromagnetic
exchange coupling, the Heisenberg Hamiltonian is not invariant under
sublattice exchange, Sα ↔ Sβ , if the order parameter is spatially
inhomogeneous. (Top) A simplified sketch of a 6-spin 90◦ texture.
Exchanging the spins on sublattices α and β (bottom) creates
a more disordered phase that costs additional exchange energy,
hence, Hα,β < Hβ,α . In the continuum limit, this energy difference is
captured by the parity-breaking term in the antiferromagnetic energy
functional.

constant and in units of energy) is

H1D(l,l′,m,m′) =JS2[4|m|2+ |l′|2− |m′|2
+ (m · l′−l · m′)]−KS2[(l · ẑ)2+(m · ẑ)2].

(7)

We note that the fourth exchange term in Eq. (7) has an unusual
parity-breaking form [35,40] and is an odd function of the order
parameter l.

In the models of AFMs that we consider, the two-sublattice
linear lattice in 1D, the centered squared lattice in 2D,
and the body-centered-cubic lattice in 3D, the Heisenberg
Hamiltonian is not invariant under sublattice exchange (α ↔
β) if the order parameter is spatially inhomogeneous (see
Fig. 1). However, there is an ambiguity in the pairing of
spins Si

α and Si
β and the definition of the order parameter

li in Eq. (3b). One might as well choose l̃i = −li as the
order parameter, and consequently, one usually demands that
the bulk Hamiltonian is invariant under the transformations
li → −li and mi → mi [41] because the two possible choices
of the order parameter are physically equivalent. Under these
transformations, the definitions of Si

α and Si
β in Eqs. (4) also

change, and the fourth exchange term in Eq. (7) undergoes
an additional sign change. The energy functional is therefore
invariant with respect to the two equivalent definitions of the
order parameter but not invariant under sublattice exchange. In
the latter case, the ordering of the spins changes, resulting in a
larger exchange energy penalty for inhomogeneous AFMs. A
simplified sketch of this energy difference is shown in Fig. 1
for a 6-spin chain with a 90◦ texture. The permutation of the
two sublattices α and β leads to a more disordered phase that
costs additional exchange energy. This result generalizes to an
arbitrary number of spins in a linear textured spin chain.

To describe the order-parameter dynamics of the AFM, it
is useful to work in the exchange approximation [41] |J | �
|K| and consider slowly varying antiferromagnetic textures.
In this case, |m|2 
 |l|2, and we can disregard terms that are
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of higher order than |m|2, such as the magnetic anisotropy
energy term and the magnetic stiffness term in Eq. (7). We
choose the spin chain axis to be along the z axis and introduce
the normalized staggered vector field n(z,t) ≡ l(z,t)/|l(z,t)|.
We can consequently write the energy density as a function
of the deviations ∂zn (≡ ∂n/∂z) and m from the ground state.
After integrating by parts, we arrive at the free-energy density
for the linear antiferromagnetic spin chain to the lowest order
in deviations from an equilibrium state [22]:

H1D(n,∂zn,m) = a

2
|m|2 + A

2
|∂zn|2 + L(m · ∂zn)

− Kz

2
(n · ẑ)2 . (8)

The equation has the following parameters: the homogeneous
exchange energy a = 8JS2, the exchange stiffness terms
A = �2JS2 and L = 2�JS2, and the anisotropy energy
Kz = 2KS2. Here, a finite L lifts the degeneracy of the
sublattice exchange.

B. Free-energy functional for D > 1

In the Appendix, we generalize the free energy of Eq. (8)
to 2D and 3D for the centered squared and the body-centered-
cubic unit cell, respectively. We find that the generalized free-
energy density in the exchange approximation is given by

H(n,∂in,m) = a

2
|m|2 + A

2

⎡
⎣∑

i

|∂in|2 + 1

2

∑
i �=j

(∂in · ∂j n)

⎤
⎦

+L
∑

i

(m · ∂in) − Kz

2
(n · ẑ)2, (9)

where a = 4NDJS2, A = ND�2JS2/2, L = ND�JS2, Kz =
2KS2, and ND is the number of nearest neighbors. N1 = 2,
N2 = 4 for the squared lattice, and N3 depends on the
choice of unit cell, 6 for the simple cubic cell and 8 for
the body-centered-cubic cell. The stiffness part of the above
Hamiltonian density contains two apparent anisotropic terms:
∼(∂in · ∂j n) and ∼(m · ∂in). However, in the following, we
show that after eliminating the degrees of freedom associated
with m, the effective Lagrangian reduces to the nonlinear σ

model and the resulting antiferromagnetic spin-wave disper-
sion remains isotropic.

This isotropic dispersion is in contrast to the anisotropic
dispersion relation resulting from the exchange term identified
by Lifshitz and Pitaevskii [41], which is similar but not
identical to the third term in Eq. (9). Lifshitz and Pitaevskii
consider only the small deviation n⊥ (n → n0 + n⊥) from the
equilibrium homogeneous antiferromagnetic spin configura-
tion and add the exchange term ∼(m · ∂zn⊥ − n⊥ · ∂zm) to the
free-energy density. Compared to Eq. (7), this also results in a
surface anisotropy ∼(n0 · ∂zm), which (after integration over
the space) favors magnetization buildup on the edges of the
AFM. Consequently, the dispersion relation for this model is
anisotropic. The parity-breaking exchange term (∼L) in the
above free-energy density (7) differs from the term of Lifshitz
and Pitaevskii because it involves n rather than n⊥ and does not
violate the isotropic dispersion relation of antiferromagnetic
spin waves due to small variations in the staggered field n. This

is also the case for D > 1. Neglecting the parity-breaking term
as being of leading order in the exchange energy would imply
that an AFM at equilibrium exhibits no intrinsic magnetization,
even when textures in the staggered field are present.

C. Lagrangian density and equations of motion

The equations of motion for the staggered field n and
the magnetization field m can be found from, e.g., linear
combinations of the equations of motion for the sublattice
spins Sα and Sβ [20]. Equivalently, we may proceed by
constructing the Lagrangian density and directly compute
the dynamic equations for n and m from the variation of
the Lagrangian with respect to these fields. Our starting
point is the generalized free-energy density in the exchange
approximation (9). The Lagrangian density can be constructed
as L = K − H, where K is the kinetic energy term. Analogous
to the procedure for constructing the kinetic term for a single
spin in a ferromagnet [42,43], K can be constructed from
the Berry phase of the spin pair Sα + Sβ that constitutes the
antiferromagnetic unit cell:

∫
K dV = −S�

⎡
⎣∑

α

Aα · Ṡα +
∑

β

Aβ · Ṡβ

⎤
⎦, (10)

where it is convenient to choose the gauge potential Aα(β)

such that the spin-pair Berry phase vanishes in the strictly
antiparallel configuration Sα = −Sβ . One such choice is
Aα(β) = −φ̂α(β) cos θα(β)/ sin θα(β) in the spherical coordinate
system, where θ is the polar angle and φ̂ is a unit vector
along the azimuth. This gauge is identical to that which is
normally used to describe the kinetic energy of a single spin in
ferromagnets [43] and generalized to a two-sublattice model
with antiparallel spin configuration. By expanding the spin-
pair Berry phase in small deviations from the antiparallel con-
figuration, θβ → π − (θα + δθ ) and φβ → π + (φα + δφ),
and transferring back to the [n,m] basis, the kinetic term in
the continuum approximation is given by [21,25]

K = ρm(ṅ × n), (11)

where ρ = 2S� is the magnitude of the staggered spin angular
momentum per unit cell and we have disregarded terms of the
order |m|4 and higher.

Varying the Lagrangian with respect to the magnetization
m and the staggered field n gives the coupled Landau-Lifshitz
equations of motion

ṅ = ωm × n, (12a)

ṁ = ωn × n + ωm × m, (12b)

where damping is typically phenomenologically intro-
duced [13]. In the transverse basis, where |n|2 = 1, no term
of the form ∼(ωn × m) (as present in the dynamics of l in,
e.g., Ref. [10]) appears in Eq. (12a), which is valid in the
exchange approximation and includes terms up to second order
in small deviations from equilibrium. The effective magnetic
and staggered fields (in units of s−1) are defined as functional
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derivatives of the total free energy H :

ρωm ≡ −δH

δm
= −am − L∂in, (13a)

ρωn ≡ −δH

δn
= A

(
∇2n + 1

2
∂i∂j n

)

+L∂im + Kz(n · ẑ)ẑ, (13b)

where we have defined the sum over spatial derivatives in all
directions as ∂i ≡ ∑

i=x,y,z ∂/∂i and ∂i∂j ≡ ∑
i �=j ∂2/(∂i∂j ).

In the Appendix, we discuss how these anisotropic differential
operators arise in 2D and 3D.

In the absence of external forces in the effective magnetic
field, Eqs. (12a) and (13a) give [21]

m = ρ

a
ṅ × n − L

a
∂in, (14)

which indicates that the magnetization field m is simply a slave
variable that follows the temporal and spatial evolution of the
staggered field n. We note that if we neglect the parity-breaking
term in the free energy (L → 0), the intrinsic magnetization of
a textured AFM vanishes at equilibrium. Our analysis shows
that for our particular parametrization of the continuum fields,
this parity-breaking term is an important part of the transition
from the discrete spin model to the continuum approximation
and cannot be disregarded.

Equation (14) allows us to eliminate m and write an
effective Lagrangian density for the staggered field and its
derivatives as

L(n,ṅ,∂in) = ρ2

2a
|ṅ|2 − A − L2/a

2

∑
i

|∂in|2

+ ρL

a

∑
i

∂in · (n × ṅ) + Kz

2
(n · ẑ)2. (15)

This Lagrangian density describes the anisotropic nonlinear σ

model with a kinetic topological term (third term) [25,40,44–
47]. This topological term is a by-product of the elimination of
m from the Lagrangian. It can be shown that this term has the
form of a total derivative [40]. Consequently, it has no effect
on the effective equations of motion for n or the domain-wall
dynamics that we describe in the next sections. We will not
discuss in any detail the quantum effects of the topological
term in the following.

D. Comparison with Haldane’s mapping

We digress for a moment to compare the one-dimensional
model described above with a commonly used alternative
definition of the continuum fields known as Haldane’s map-
ping [25,33,34] of the antiferromagnetic order parameter. We
include this comparison because the different parametrizations
are not equivalent and are, therefore, recurrent sources for
confusion. In contrast to the Hamiltonian approach described
by Eqs. (3) and (4), Haldane’s parametrization maps each spin
in the spin chain at cite i onto two continuum fields:

Si/S = (−1)i ñi

√
1 − |m̃i |2 + m̃i , (16)

Hamiltonian approach:

Haldane’s mapping:

Si
α Si

β Si+1
α Si+1

β

S2i-1 S2i S2i+1 S2i+2

……

[ni, mi] [ni+1, mi+1]

FIG. 2. In the Hamiltonian approach (top), Eqs. (3) define values
for the staggered field ni and the magnetization field mi at the center of
every antiferromagnetic unit cell labeled by i. In Haldane’s mapping
(bottom), every single spin is mapped onto two continuum fields: the
Néel field ñ and the “canting” field m̃.

where ñ is the unitary Néel field and m̃ is the “canting”
field. We note that this mapping introduces extra degrees of
freedom, which must subsequently be reduced by limiting the
Fourier components of the fields ñ and m̃ to include only
long-wavelength excitations [34].

Figure 2 compares the labeling of the spins in the Hamilto-
nian approach used in this work with that of Haldane’s map-
ping. By equating the expressions for Si

α and Si
β in Eqs. (4) and

their corresponding expressions in Haldane’s parametrization,
we find the relationship between the continuum fields in the
two different parametrizations:

mi + ni

√
1 − |mi |2 = −ñ2i−1

√
1 − |m̃2i−1|2 + m̃2i−1, (17a)

mi − ni

√
1 − |mi |2 = ñ2i

√
1 − |m̃2i |2 + m̃2i . (17b)

In the exchange approximation, m 
 n and m̃ 
 ñ. Keeping
only the lowest-order contributions in the magnetization m
and the canting field m̃, it follows that

ni ≈ − 1
2 (ñ2i−1 + ñ2i) + 1

2 (m̃2i−1 − m̃2i), (18a)

mi ≈ − 1
2 (ñ2i−1 − ñ2i) + 1

2 (m̃2i−1 + m̃2i), (18b)

where we have disregarded terms of the order |m|2 and |m̃|2
and higher.

For small-angle spatial variations in the continuum fields,
we use the gradient approximation to find the field values
for ñ and m̃ at the center of each unit cell: ñi+1/2 ≈ ñi +
(�/4)∂zñi and m̃i+1/2 ≈ m̃i + (�/4)∂zm̃i , where �/2 = d

is the nearest-neighbor distance and ñ(m̃)i+1/2 represents the
Néel (canting) field at the midpoint between the spins Si and
Si+1. Inserting these lowest-order gradient approximations
into Eqs. (18) results in a one-to-one relationship between
the continuum fields of the Hamiltonian approach and Hal-
dane’s parametrization. Correspondingly, the mapping be-
tween the two different representations reduces to n → −ñ +
(�/4)∂zm̃ + O(|m̃|2) and m → m̃ − (�/4)∂zñ + O(|m̃|2).

It is critically important that the continuum fields ñ and m̃
of Haldane’s mapping are not identical to the staggered and
magnetization fields n and m used in this work. By inserting
the mapping between the two parametrizations into the energy
functional in Eq. (8) and keeping only terms of the order |m̃|2
in the exchange approximation, we find the continuum limit
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energy functional of Haldane’s mapping:

HHal(ñ,∂zñ,m̃) = a

2
|m̃|2 + A

2
|∂zñ|2 − Kz

2
(ñ · ẑ)2. (19)

This result conclusively shows that the parity-breaking ex-
change term in Eq. (8), which is a result of the procedure
of breaking the lattice into spin pairs, vanishes after a
suitable transformation of the continuum fields, e.g., m →
m̃ − (�/4)∂zñ. In other words, when applying Haldane’s
mapping procedure, the parity-breaking exchange term does
not appear in the energy functional. An overall requirement,
however, is that the physics remains the same, including the
existence of the intrinsic magnetization.

Although the Hamiltonian approach used in this work and
Haldane’s mapping are both valid continuum representations
of spin systems with antiferromagnetic exchange coupling,
a crucial difference exists for the physical interpretations of
the continuum fields, which are not equivalent in the two
representations. The equilibrium value of the canting field m̃ of
Haldane’s mapping vanishes, also when ñ is inhomogeneous.
Therefore, m̃ represents the dynamic magnetization induced
by temporal variations of the order parameter ñ and not the
total magnetization. Consequently, the coupled equations of
motion for ñ and m̃ are not of the same form as Eqs. (12)
and (13). In particular, the expression for the canting field
m̃ ∼ ˙̃n × ñ, which is analogous to Eq. (14), does not include
a term proportional to the gradient of ñ. This fact may be
an important reason why the intrinsic magnetization is easily
missed in models based on Haldane’s mapping.

In the Hamiltonian approach, on the other hand, m can
be interpreted as a magnetization density in the sense that
the total accumulated spin (both intrinsic and dynamical) of
the AFM can be found from integration, M/S = ∫

m dV . For
antiferromagnetic textures, this integral is generally nonzero
even for static spin systems. Although the canting field m̃ in
Haldane’s mapping does not include the intrinsic contribution
to the magnetization density, the total spin can instead be
found from the relation M/S ≈ ∑2N

i=1[(−1)i ñ(zi) + m̃(zi)].
The intrinsic magnetization can be identified as arising from
the first terms in the sum. For a slowly varying ñ in, e.g., the
ẑ direction,

∑2N
i=1(−1)i ñ(zi) · ẑ ≈ [ñz(z1) − ñz(z2N )]/2 [44],

which is generally nonzero for textured AFMs. In the following
analysis, we continue using the Hamiltonian approach, in
which the continuum field m is interpreted as the total
magnetization density.

E. Antiferromagnetic spin waves and spin current

To study small harmonic excitations from a homogeneous
AFM, we construct the effective equation of motion for the
staggered vector field n by combining Eqs. (12a) and (12b)
while retaining the constraint |n|2 = 1:

n × (n̈ × n) = 1

ρ2
n × [(aA − L2)∇2n + aKz(n · ẑ)ẑ] × n.

(20)
The parity-breaking exchange term leads to the renormaliza-
tion of the exchange stiffness A → A∗ = (A − L2/a) = A/2
but otherwise leaves the equation of motion (20) invariant in
linear response [48]. The topological term in Eq. (15) has no
effect on the effective equations of motion for n, as expected.

Insertion of a small harmonic excitation from the ground
state in time and space n(r,t) → ẑ + δn⊥ exp [i(ωt − k · r)]
into Eq. (20) results in the usual “relativistic” antiferromag-
netic dispersion relation

ω2 = 1

ρ2
[aA∗k2 + aKz], (21)

where k = |k|. In the isotropic limit Kz → 0, which results in
the familiar linear dispersion

ωi = ck, (22)

where c = NDSJ�/(2�) is the spin-wave phase velocity. For
� = 2d/

√
D, where d is the nearest-neighbor distance, and

for hypercubic lattices, where ND = 2D, Eq. (22) agrees with
Eqs. (13) and (20) in the semiclassical treatment in Ref. [39],
as well as with Holstein-Primakoff calculations [49,50] and
Haldane’s D = 1 result [25]. We note that the parity-breaking
term (∼L) does not lead to an anisotropic dispersion relation,
such as the term in Lifshitz and Pitaevskii [41]. On the contrary,
the inclusion of such a term is important to arrive at the correct
dispersion relation in the classical continuum limit.

The intrinsic magnetic moment of antiferromagnetic tex-
tures will necessarily influence how spin currents in inhomo-
geneous AFMs are described. A continuity equation for the
spin angular momentum transfer in the AFM caused by the
exchange interaction can be constructed from Eq. (12b) as
ρṁ + ∑

i ∂iJs,i = 0. The spin current polarized along i is

Js,i = A∗∂in × n − ρL

a
ṅ, (23)

where we have used Eq. (14) to eliminate m. Equation (23)
explicitly shows that a time-varying antiferromagnetic texture
is equivalent to spin angular momentum transfer, a relationship
that can be missed by models for the staggered dynamics
that disregard the intrinsic magnetization. This result may
have implications for antiferromagnetic spin pumping from
textures [12] because the collective motion of the antiferro-
magnetic order parameter is equivalent to a current of spin
angular momentum. In one-dimensional textures, ρL/a =
S�d, thus indicating that textures that oscillate at frequency
T −1 produce a spin-current corresponding approximately
to a single spin moving one lattice spacing per period of
oscillation T .

F. Consequences for staggered dynamics

In effective models for the dynamics of the staggered vector
field n, the magnetization field m plays the role of a slave
variable that follows the temporal and spatial evolution of n.
When no external forces couple directly to the intrinsic spin
in the AFM, the parity-breaking term in the energy functional
(∼L) only leads to a renormalization of the exchange stiffness
and has no other effect on the dynamic equations. However,
we show in the following that by including external magnetic
fields or spin-polarized currents, the dynamics of the anti-
ferromagnetic order parameter can also be altered indirectly
through the excitation of the magnetization density field m.

The spin-transfer torque on ferromagnetic textures is nor-
mally considered a second-order effect in AFMs when acting
only on the small magnetization m(t) induced by the time
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variation of the staggered field ṅ. If AFMs also exhibit intrinsic
magnetization, the spin-transfer torque from spin-polarized
currents on the magnetization m may become more important.
However, because the magnetization is first order in the
spatial variation of the staggered field m ∼ ∂in, the Berger
spin-transfer torques [Eqs. (5) and (6) in Ref. [51]] are of the
order

√
K/J smaller than the driving forces acting directly

on textures in the staggered field, first identified in Ref. [16].
In this case, the intrinsic magnetization of AFMs leads to
higher-order corrections to the current-induced torques that
couple directly to the staggered field. In antiferromagnetic thin
films with strong surface anisotropy or in special cases in which
a strained geometry suppresses the torques on the staggered
field, the Berger torques on the textured magnetization could
become important. We will not discuss the effects of spin-
polarized currents any further in the following.

Instead, we focus on the effect of an external magnetic
field H that couples directly to the intrinsic magnetization
of antiferromagnetic textures. To illustrate this phenomenon,
we add the Zeeman interaction to the free-energy density
HH = H − ργ (H · m), where γ is the gyromagnetic ratio.
The external magnetic field induces a small magnetic moment
density in the AFM, and the magnetization field m is altered
according to

m = ρ

a
ṅ × n − L

a
∂in + γρ

a
n × (H × n), (24)

where the cross products enforce the constraint n · m = 0.
Inserting this result in the Lagrangian gives the effective
Lagrangian density for an AFM under the influence of an
external magnetic field H:

LH = ρ2

2a
(ṅ − γ H × n)2 − A∗

2

∑
i

(∂in)2

+Kz

2
(n · ẑ)2 + ρL

a

∑
i

∂in · (n × ṅ)

−γρL

a

∑
i

H · ∂in. (25)

This Lagrangian density agrees with that proposed in Ref. [48],
with the exception of the second to last topological term
and the last term, which couples the external magnetic field
and textures in the antiferromagnetic order. In the following,
we show how this coupling between magnetic fields and the
gradient of the staggered field allows the movement of domain
walls in AFMs to be controlled by spatially varying magnetic
fields. This result has not been reported previously.

Utilizing the method of collective coordinates [15,52],
we assume that the temporal dependence of the staggered
vector field n(r,t) is held by a set of coordinates {aj (t)}
that describe the time evolution of textures in the AFM,
such that n(r,{aj (t)}). In this case, the time derivative of the
staggered field can be written as ṅ = ∑

j ȧj ∂aj
n. We earlier

demonstrated that in AFMs, the collective coordinates can be
viewed as quasiparticles with an effective mass reacting to
external forces and following Newton’s second law [15]. The

equation of motion for the collective mode aj is

Mij

(
äj + aα

ρ
ȧj

)
= F i, (26)

where Mij = (ρ2/a)
∫

dV (∂ai
n · ∂aj

n) is the effective mass,
α is the phenomenological Gilbert damping parameter for
AFMs, and F i are the forces that act on the collective
excitations. F i = F i

int + F i
ext can be split into the internal

exchange forces F i
int = ∂ai

H , which are derivatives of the free
energy with respect to the collective modes, and the external
forces F i

ext. We focus here on an external magnetic field as the
only external force that acts on the AFM, giving

F i
ext = ργ

a

∫
dV [ρḢ · (n × ∂ai

n) + L(∂ai
n · ∂iH)], (27)

where, in addition to the previously identified reactive force
on the collective coordinates in AFMs due to time-varying
magnetic fields [15], we now identify a new force induced
by a spatially inhomogeneous magnetic field. This force
will necessarily influence how antiferromagnetic textures are
excited by external magnetic fields.

III. DOMAIN-WALL DYNAMICS

In this section, we return to systems where the order
parameter varies along one dimension and discuss how the
intrinsic magnetization influences the motion and detection
of solitons in quasi-one-dimensional AFMs. Although the
texture is assumed to vary only along one direction, the nearest
neighbors to each spin may also exist along two (2D) or
three (3D) axes. Later, we show how a Néel domain wall
can be accelerated and controlled by a stationary and spatially
inhomogeneous magnetic field.

A. Antiferromagnetic domain walls

In one-dimensional spin chains, the spatial variation of the
staggered field n is constricted to the spin-chain axis ẑ. At
equilibrium, the time evolution of the staggered field and the
magnetization vanishes, ṅ = 0 and ṁ = 0, and Eq. (20) gives

n0 × [
A∗∂2

z n0 + Kz(n0 · ẑ)ẑ
] × n0 = 0. (28)

By introducing spherical coordinates for the
normalized staggered vector field as n0(z) =
[sin θ0 cos φ0, sin θ0 sin φ0, cos θ0], a series of solutions
for the above equation can be found from

∂zφ0 = 0, (29a)

∂2
z θ0 = 1

λ2
sin θ0 cos θ0, (29b)

where λ = √
A∗/Kz. The trivial solution to Eqs. (29)

is θ0(z,t) → 0, which corresponds to a homogeneous
AFM where all the spins are polarized along the posi-
tive/negative z direction. The excited state is given by θ0 =
2 arctan[exp(z/λ)], the Walker domain wall [53]. In this Néel
configuration, sin θ0 = ±sech(z/λ) and cos θ0 = ±tanh(z/λ),
which ensures that n2

0 = 1. λ is the half-width of the domain
wall. Inserting the results from the Heisenberg model, we
find that the domain-wall half-width λ = d

√
J/K is given
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FIG. 3. Sketch of the intrinsic magnetization m(z) (red) (not to
scale) of one-dimensional (a) Néel and (b) Bloch (not used in the
calculations) domain walls in the order parameter n(z) (green). The
equilibrium magnetization profile was calculated from Eq. (14). We
note that the magnetization is so small that in a one-dimensional
system, the domain-wall spin must be treated quantum mechanically.
However, for higher-dimensional extended systems, the total spin
of domain walls could be of appreciable size because the intrinsic
magnetization is additive in the perpendicular directions.

by a competition between the exchange and anisotropy energy
scales, as expected.

The intrinsic magnetization associated with the antiferro-
magnetic domain wall at equilibrium is given by Eq. (14) when
ṅ = 0:

m0 = −L

a
∂zn0 = ± d

2λ

⎡
⎢⎣

sech(z/λ) tanh(z/λ) cos φ0

sech(z/λ) tanh(z/λ) sin φ0

−sech2(z/λ)

⎤
⎥⎦, (30)

where the sign determines whether the Néel domain wall
is head-to-head or tail-to-tail. The magnetization profile of
a head-to-head Néel domain wall and the profile of an
antiferromagnetic Bloch domain wall are presented in Fig. 3.
The total magnetic moment in the z direction contained in a
head-to-head domain wall configuration is [20,21]

Mdw
z = S

d

∫
dz(m0 · ẑ) = S. (31)

This result demonstrates that domain walls in the antifer-
romagnetic order induce a finite magnetization proportional
to the spatial derivative of the staggered field and that
the direction of the magnetization depends crucially on the
boundary conditions of the AFM, e.g., in the case of the Néel
wall whether it is head-to-head or tail-to-tail. This result is
intuitively easy to appreciate: because both edge spins (at an α

and β site) point in the same direction, the 180◦ twist turns the
homogeneous spinless AFM into a spin-S object. The domain
wall is a nonlinear excitation of the homogeneous AFM and
carries the spin S. The creation of a domain wall can therefore
be interpreted as a twisting of the homogeneous spinless AFM
into a configuration with a finite spin S that is located around
the domain-wall center.

A consequence of the intrinsic magnetization of domain
walls in one-dimensional spin chains is that for AFMs with
half-integer S, the ground state, which is doubly degenerate,

occurs for stationary domain walls [21,37] and not for
precessing domain walls, as predicted in Ref. [25]. Another
consequence is that the motion of domain walls in AFMs is
equivalent to spin angular momentum transfer, as confirmed
by Eq. (23). The identification of antiferromagnetic domain
walls as single-spin carriers may become important for future
applications in antiferromagnetic spintronics.

B. Domain-wall motion

We consider a (slowly) moving tail-to-tail domain-wall pro-
file n[z,an(t)] corresponding to the dynamic soliton solution
θ (z,t) → 2 arctan(exp{[z − rw(t)]/λ}) and φ(t) → φw(t). The
domain-wall shape is assumed to be rigid, so that the temporal
dynamics is held by the collective coordinates {an(t)} →
{φw(t),rw(t)}, the domain-wall tilt angle with respect to the x-z
plane, and the position of the domain-wall center, respectively.
Dissipation in AFMs is typically added in a phenomenological
manner [13,18] and is naturally incorporated in the collective
coordinate approach [15]. We add to the system a spatially
varying magnetic field in the ẑ direction, H = {0,0,Hz(z)}.
To the lowest order in the small external field and the
velocities φ̇w and ṙw, we find that φ̈w vanishes (although a
constant precession φ̇w �= 0 is allowed in one-dimensional
easy-axis systems) and that the domain-wall center coordinate
is accelerated according to

r̈w + aα

ρ
ṙw = − γL

πρλ
H int

z , (32)

where α is the dimensionless Gilbert damping parameter of
the AFM. Depending on the spatial profile of the magnetic
field in the vicinity of the domain wall, the center coordinate
will feel a force. The integrated magnetic field contribution is

H int
z =

∫
dz

[
sech

(
z − rw

λ

)
tanh

(
z − rw

λ

)
Hz(z)

]
, (33)

where any noneven profile Hz(z) around the domain-wall
center coordinate rw gives rise to a finite acceleration of
the domain wall. A homogeneous magnetic field does not
accelerate the domain wall. In the steady state, the domain-wall
velocity saturates at ṙw = γLH int

z /(πaαλ). We note that the
domain-wall velocity depends on the spatial distribution of the
external magnetic field. This dependence opens up the possibil-
ity that nanoscale magnetic probes can accurately control the
position of domain walls in, e.g., antiferromagnetic nanowires.
In particular, a spatially constricted magnetic field can act
as a potential well for the domain wall. In two-dimensional
antiferromagnetic thin films, a spatially concentrated magnetic
probe may attract spins from the edges of the AFM to form
vortex states (see Sec. V).

IV. NUMERICAL RESULTS

To conceptually test the effect of a spatially inhomogeneous
magnetic field on the dynamics of an antiferromagnetic
domain wall, we have conducted numerical simulations of
generalized versions of Eqs. (12a) and (12b) in which we
have phenomenologically included dissipation as in Ref. [13].
We write the equations of motion in dimensionless form by
scaling the time axis by t̃ = ρ/Kz and the spatial axis by
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FIG. 4. (a) Magnetic field strength as a function of distance
along the spin chain. The magnetic field has a constant gradient of
approximately 0.4 mT per lattice constant. (b) Time evolution of an
antiferromagnetic domain wall moved by the magnetic field gradient.
For clarity, only the region z ε[−25,25] is shown. The domain wall
slows down due to the finite dissipation when it reaches the region
of the homogeneous external field. The maximum magnetic field
strength is H max ≈ 10 mT, and the Gilbert damping constant is set to
α = 0.01.

the nearest-neighbor distance d. We solve the dimensionless
equations of motion using the numerical method of lines with
an adaptive time control. The system size is z ε[−500,500]
with the boundary conditions that nz(−500) = −1 and
nz(500) = 1.

Although domain walls in insulating AFMs, such as
NiO, are approximately 100 nm wide [29], we consider
here the much shorter and more technologically important
domain walls observed in antiferromagnetic Fe monolayers
on W(001) [27], for which the geometric anisotropy is
considerably larger. In such systems, the domain-wall widths
are only a few lattice spacings and the intrinsic magnetization
is therefore relatively more important. For spin- 1

2 particles, for
which the anisotropy energy per atom is 2.4 meV [54], the
time unit t̃ ≈ 1 ps, the velocity unit ṽ = d/t̃ ≈ 300 ms−1, and
the external field unit h̃ = ργ/Kz ≈ 0.3 T.

Figure 4 presents the motion of a domain-wall with
half-width λ = 4d due to a constant magnetic field gradient.
Because the domain-wall spin in this particular Néel domain
wall is −S, the wall drifts toward lower magnetic fields
to minimize its energy. The domain wall quickly reaches
a steady-state velocity of approximately 50 ms−1. Figure 5
presents how spatially concentrated magnetic fields can control
and pin the position of the domain wall. By switching the
pinning potential from the left to the right side of the domain
wall, the position of the wall can be accurately controlled. The
velocity of the center coordinate reaches more than 100 ms−1,
and the transition from the left to the right pinning potential
occurs in less than 100 ps.
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FIG. 5. (a) Magnetic field potential wells as a function of distance
along the spin chain. (b) Time evolution of an antiferromagnetic
domain wall controlled by the magnetic field potential wells. At t = 0,
the domain wall is attracted toward a potential well at z− = −10 due
to a spatially concentrated magnetic field in the ẑ direction with
the spatial profile Hz = H0sech[(z − z−)/10]ẑ. In the time interval
t = 140 → 160, the potential well to the left is turned off, and a
similar magnetic field-induced potential well is turned on to the right
at z+ = 10.

V. HIGHER-DIMENSIONAL EXTENDED SYSTEMS

In this section, we discuss the possible experimental
consequences for higher-dimensional textured systems, which
typically extend in one or two perpendicular directions to the
texture gradient axis. In such systems, the intrinsic magne-
tization can add up to a macroscopic number that is much
larger than the spin on one atomic site. We also discuss the
intrinsic magnetization of vortex states of the staggered order,
which are two-dimensional analogs of the domain wall in the
one-dimensional spin chain. At the end, we briefly discuss the
effects of pinning sites on the domain-wall dynamics.

A. Antiferromagnetic vortex states

For D = 2 and in quasi-two-dimensional systems, such
as antiferromagnetic thin films, nontrivial topological objects
such as vortices [55] can form due to DM fields or external
pinning. Figure 6 shows the intrinsic magnetization m(x,y)
associated with the spatially inhomogeneous staggered vector
field of such a two-dimensional object. The magnetization
profile is calculated from Eq. (14). We note that the intrinsic
spin of the vortex structure can be interpreted as a twisting
of the spins in the homogeneous spinless AFM induced by
spin rotations on the corners into a state with a finite spin
located around the vortex core. The staggered vector field
n(x,y) of this type of vortex structure is rotationally invariant
around the vortex core along an axis normal to the x-y plane.
The underlying spin structure, however, is not rotationally
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FIG. 6. (a) Sketch of a two-dimensional antiferromagnetic vortex
structure in the staggered order parameter n(x,y) (blue vector field).
The portions of the staggered field pointing in the perpendicular
direction close to the vortex core have been omitted for clarity. (b)
The resulting magnetization density profile m(x,y) (red vector field,
not to scale) of the vortex state, calculated from Eq. (14). This intrinsic
magnetization can be interpreted as a rearrangement of the spins on
the corners so that the center of the vortex structure acquires a finite
spin. (c) A simplified sketch of a vortex structure with six spins
along each edge ordered in centered squared unit cells with α (blue
arrows) and β (red arrows) sites. Although the vortex structure in
the continuous staggered field appears invariant under the rotation
of an arbitrary angle around the vortex core, the underlying spin
structure is only invariant under axis inversion [x̂,ŷ] → [−x̂, − ŷ].
The total integrated spin of the vortex structure is S, such as for the
one-dimensional domain wall. The direction of this intrinsic spin is
determined by the boundary conditions of the AFM.

invariant, which is captured by the finite magnetization density
m(x,y) of the vortex. The total spin of the vortex is S, as in the
case of a domain wall, and the direction of the intrinsic spin
depends crucially on the boundary conditions of the AFM, e.g.,
induced via exchange bias pinning to ferromagnetic neighbors.

The topological term in the effective Lagrangian den-
sity (15) for the staggered vector field n can possibly indirectly
influence the dynamics of two-dimensional objects in the
order parameter such as vortices or skyrmions. However,
the complex two-dimensional dynamics of such topological
objects is beyond the scope of this paper and will not be
discussed further.

B. Extended domain walls in 2D and 3D

Because the intrinsic spin of one-dimensional domain walls
and two-dimensional vortices totals no more than the spin on a
single atomic lattice site S, it is unlikely that the intrinsic mag-
netization associated with these antiferromagnetic textures can
be reliably detected in the near future. Furthermore, to predict
the correct excitation scheme of antiferromagnetic solitons,
the intrinsic spin must be treated quantum mechanically
because quantum fluctuations become important [21]. In
higher-dimensional systems such as thin films or bulk AFMs,
however, domain walls are not purely one-dimensional objects.

x

y

x

y

(a) (b)
n(x,y) m(x,y)

y

FIG. 7. (a) Sketch of a domain wall in the staggered order
parameter n(x,y) (blue vector field) in a two-dimensional AFM,
e.g., a nanostrip. The domain-wall configuration is repeated in the
perpendicular direction. (b) The magnetization vector field m(z,y)
(red vector field, not to scale) calculated from Eq. (14). Each spin
chain along the horizontal direction will contribute the spin Sx̂ to the
total spin of the two-dimensional domain-wall structure.

Although the order parameter can be defined as varying along
one axis only, the nearest neighbors of each spin can exist along
two (2D) or three (3D) perpendicular axes. In such systems, the
intrinsic magnetization of the domain wall accumulates over
the total number of spin chains that constitute the domain-wall
structure. An example of the intrinsic magnetization of such
an extended domain-wall structure in, e.g., a nanostrip is
presented in Fig. 7.

In bulk AFMs with domain structures in the order pa-
rameter, the intrinsic magnetization forms planes along the
domain boundaries. The total spin of these magnetization
planes can be of appreciable size. In addition, for synthetic
antiferromagnetic superlattices, in which the magnetization of
each single ferromagnetic layer is much larger than S, the
intrinsic magnetization associated with magnetic textures is
accordingly larger and may be detectable [38].

C. Effect of pinning sites on domain-wall dynamics

Pinning sites for domain walls can arise from impurities or
crystal defects in the underlying lattice of AFMs. Although
several studies have found that pinning effects in AFMs are
small [56–58], dislocations and impurities diffuse the effects
on a single spin. In quasi-one-dimensional spin chains, the
introduction of a single impurity atom can be enough to destroy
long-ranged antiferromagnetic order and domain-wall con-
figurations. From such a perspective, the scenario studied in
Sec. IV requires a perfect spin chain in strictly one-dimensional
systems. However, because three-dimensional domain bound-
aries are typically sums of many one-dimensional spin chains,
we expect the effects of pinning from impurities to be sig-
nificantly smaller for domain-wall systems that extend in the
perpendicular directions than for one-dimensional spin chains.

VI. CONCLUSION

Starting from the discrete Heisenberg Hamiltonian
with antiferromagnetic exchange coupling and easy-axis
anisotropy, we have rederived the continuum limit of the
free-energy functional in the exchange approximation and
conclusively shown that textures in the antiferromagnetic
order exhibit intrinsic magnetization. In recent effective
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models for the dynamics of the antiferromagnetic order
parameter, this intrinsic magnetization has been mostly
disregarded. By comparing the Hamiltonian approach that
we apply in this paper with a commonly used alternative
parametrization procedure called Haldane’s mapping, we have
shown that the continuum fields of the two parametrization
procedures have crucially different physical interpretations.
As a result, the intrinsic magnetization can be easily missed
in continuum models based on Haldane’s mapping.

We have demonstrated that parity-breaking terms in the
energy functional influence the dynamics of textured AFMs
affected by external forces that couple directly to the intrinsic
magnetization. For extended domain walls in 2D/3D, the in-
fluence of the intrinsic magnetization on the texture dynamics
goes beyond that of the quantum effects observed for one-
dimensional spin chains. By utilizing the method of collective
coordinates, we have shown that a spatially inhomogeneous
magnetic field represents a reactive force on antiferromagnetic
textures and can move a domain wall in an antiferromagnetic
nanowire. This effect is directly linked to the intrinsic
magnetization of the domain wall. Numerical simulations of
the coupled equations of motion for the staggered field and the
magnetization field confirmed that a spatially inhomogeneous
magnetic field can act as a potential well for the domain wall.
Finally, we have discussed how the intrinsic magnetization
of antiferromagnetic textures, which for one-dimensional
domain walls are not larger than the spin on one atomic
site, can be experimentally exploited in 2D and 3D. In such
higher-dimensional real systems the intrinsic magnetization
accumulates in the perpendicular directions and the total spin
can, therefore, be of appreciable size and may be detectable.
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APPENDIX: ENERGY FUNCTIONAL FOR D > 1

In this Appendix, we expand our calculation of the free-
energy functional of AFMs to two and three dimensions
to disclose the form of the parity-breaking term in higher
dimensions. For D = 2, we use the centered rectangular unit
cell, with two sublattices within each unit cell. Starting with
Eq. (1), we now assume that α and β are two-dimensional
vectors and that the coordinate pair {i,j} unambiguously
defines all antiferromagnetic unit cells. Next, we define

mi,j = Si,j
α + Si,j

β

2S
, (A1a)

li,j = Si,j
α − Si,j

β

2S
, (A1b)

Si,j
α = S(mi,j + li,j ), (A1c)

Si,j

β = S(mi,j − li,j ), (A1d)

where we must take into account the equivalence of inter-
changing li → −li , such as in the one-dimensional derivation.
The Heisenberg Hamiltonian can be written as a sum over
antiferromagnetic unit cells in the perpendicular i and j

directions

H2D = JS2
N−1,N−1∑

i,j

(mi,j − li,j )[(mi,j + li,j )

+ (mi+1,j + li+1,j ) + (mi,j+1 + li,j+1)

+ (mi+1,j+1 + li+1,j+1)]

−KS2
N,N∑
i,j

[
(mi,j + li,j )2

z + (mi,j − li,j )2
z

]
, (A2)

where we have disregarded a small energy contribution
from the edge spins like in Sec. II A. Equation (A2) is a
sum over the ND = 4 nearest-neighbor exchange couplings
and the anisotropy energies for each antiferromagnetic unit
cell. We use the identities 2mi,j mi+1,j = m2

i,j + m2
i+1,j −

(mi+1,j − mi,j )2 and (li,j mi+1,j − mi,j li+1,j ) = li,j (mi+1,j −
mi,j ) − mi,j (li+1,j − li,j ), etc., to rewrite Eq. (A2) to

H2D = NDJS2
N,N∑
i,j

(
m2

i,j − l2i,j
)

+ JS2

2

N−1,N−1∑
i,j

[(li+1,j − li,j )2 + (li,j+1 − li,j )2

+ (li+1,j+1 − li,j )2 − (mi+1,j − mi,j )2

− (mi,j+1 − mi,j )2 − (mi+1,j+1 − mi,j )2]

+ JS2
N−1,N−1∑

i,j

[mi,j (li+1,j + li,j+1 + li+1,j+1 − 3li,j )

− li,j (mi+1,j + mi,j+1 + mi+1,j+1 − 3mi,j )]

− 2KS2
N,N∑
i,j

(
m2

i,j,z + l2
i,j,z

)
. (A3)

To make the transition to the continuum limit, we define the
derivatives in the linear approximation

lim
|�i |→0

∑
i,j

(li+1,j − li,j ) ≈ 1

V

∫
[J (l)�i ]dV , (A4a)

lim
|�j |→0

∑
i,j

(li,j+1 − li,j ) ≈ 1

V

∫
[J (l)� j ]dV , (A4b)

lim
|�i(j )|→0

∑
i,j

(li+1,j+1 − li,j ) ≈ 1

V

∫
[J (l)�i + J (l)� j ]dV ,

(A4c)

where J (l) is the Jacobian matrix of the vector field l, �i( j )

is a vector between unit cells in the î(ĵ ) direction, and V is
the volume of the unit cell. For the centered squared unit cell,
|�i | = |� j | ≡ � and V = �2. We define similar derivatives
as in Eqs. (A4) for the magnetization field m.
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TVETEN, MÜLLER, LINDER, AND BRATAAS PHYSICAL REVIEW B 93, 104408 (2016)

The procedure is analogous when including a third dimen-
sion, e.g., for a body-centered-cubic unit cell, repeating the
above calculation with {i,j} → {i,j,k}. Apart from a constant
contribution, the resulting free-energy density for AFMs in
dimensions D > 1, defined here as H2(3)D = ∫

(dV/V )H2(3)D,
is given by

H2(3)D = JS2ND

{
2m2 + 1

2

∑
i

�2
i [(∂i l)2 − (∂im)2]

+ 1

4

∑
i �=j

�i�j (∂in · ∂j n − ∂im · ∂j m)

+ 1

2

∑
i

�i(m · ∂i l − l · ∂im)

}

−KS2[(l · ẑ)2 + (m · ẑ)2], (A5)

where we may define i and j to run over perpendicular direc-
tions {x,y,z}. The sum over first-order derivatives arises from
the relation J (l)� = ∑

i �i∂j (l), where � = {�i,�j ,�k}.

By considering squared or cubic lattices, � = 2d/
√

D and
d is the nearest-neighbor distance. We can express the free-
energy density in the exchange approximation |K| 
 |J | as

H2(3)D = a

2
m2 + A

2

⎡
⎣∑

i

(∂in)2 + 1

2

∑
i �=j

∂in · ∂j n

⎤
⎦

+L
∑

i

(m · ∂in) − Kz

2
(n · ẑ)2, (A6)

where a = 4NDJS2, A = ND�2JS2/2, L = ND�JS2, Kz =
2KS2, and ND is the number of nearest neighbors.

In antiferromagnetic materials in which the exchange
energy is anisotropic due to, e.g., more complicated unit cells,
Eq. (A6) can still be used, although in this case a, A, and L

must be treated as tensors.
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