
PHYSICAL REVIEW B 93, 104402 (2016)

Phase diagram of the chiral magnet Cr1/3NbS2 in a magnetic field
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We construct the phase diagram of the chiral magnet Cr1/3NbS2 in a dc magnetic field (Hdc) using ac magnetic
susceptibility measurements. At Hdc = 0, the ac response at the transition from the helical magnetic (HM) state to
the paramagnetic (PM) state consists of a giant third-order harmonic component (M3ω) and a first-order harmonic
component (M1ω). By applying Hdc perpendicular to the c axis, the HM state is transformed to the chiral soliton
lattice (CSL) state, which is a superlattice tuned by Hdc. The above giant M3ω is markedly suppressed at small
Hdc. The CSL state is found to consist of CSL-1, with dominant helical texture and a poor ferromagnetic array,
and CSL-2, with a large ferromagnetic array. The transition between CSL-1 and the PM state causes a linear
magnetic response, the dominant component of which is the in-phase M1ω. With increasing temperature, CSL-2
is transformed into the forced ferromagnetic (FFM) state, and ultimately the PM state is reached. The transition
between CSL-2 and the FFM state consists of a large M3ω and large out-of-phase M1ω as well as in-phase M1ω.
The transition between the FMM and PM states also yields a linear magnetic response, like the CSL-1–PM-state
transition. Five typical magnetic dynamics in the transitions among the HM state, CSL-1, CSL-2, FFM state, and
PM state were identified according to the equivalent dynamical motion equation of a nonlinear spring model.

DOI: 10.1103/PhysRevB.93.104402

I. INTRODUCTION

A magnet with crystallographic chirality (a chiral magnet)
allows the asymmetric Dzyaloshinskii-Moriya (D-M) interac-
tion, which stabilizes either left-handed or right-handed helical
magnetic (HM) structures owing to competition with the
exchange interaction [1,2]. In an HM structure with uniform
helicity, spin modulation propagates along the chiral axis,
so the phase is coherent over a long range. In these chiral
magnets, the magnetic state can be manipulated by applying a
dc magnetic field (Hdc) perpendicular to the chiral axis. With
increasing Hdc, a periodic array of domain walls (DWs), called
the chiral soliton lattice (CSL), is stabilized [3,4]. The CLS
was first proposed by Dzyaloshinskii [3]. This coherent state at
finite Hdc is a type of superlattice structure, the length of which
can be tuned by varying the magnitude of Hdc [5,6]. Initially,
it was theoretically proposed that the transition between
the CSL state and the paramagnetic (PM) state exhibits a
characteristic cusp in the magnetization (M) measured as
a function of temperature (T ) [4], and below the magnetic
ordering temperature Tc, the characteristic rapid growth of M

with increasing Hdc suggests a remarkable increase in one
unit length of the superlattice [4]. In 1983, indeed, the latter
feature had already been observed in a typical chiral magnet,
Cr1/3NbS2, with a helicity length at Hdc = 0 of 48 nm [7]. In
2012, there was an impressive experiment in which an actual
image of the CSL state was observed using Lorenz microscopy,
and the diffraction image obtained by small-angle electron
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diffraction also supported the existence of the CSL state [8].
Much progress has been made recently in understanding the
CSL.

In terms of crystallography, in Cr1/3NbS2, Cr3+ ions
are inserted between hexagonal NbS2 layers. Insertion of
Cr3+ does not allow inversion symmetry, so the compound
crystallizes as the noncentrosymmetric hexagonal space group
P 6322 [7,9–12]. The electronic transport and magnetic
properties depend on how Cr3+ is inserted between the
NbS2 layers [12–14]. The magnetism originates mainly from
Cr3+ inserted into octahedral holes, and electronic transport
mainly arises from Nb occupying two inequivalent sites. The
magnetism originating in Cr is structurally correlated with
the metallic properties originating in Nb via distortion of
the CrS6 octahedron. The ab plane forms the magnetically
easy plane. Various exchange interaction paths along both
the intraplane and interplane directions have been suggested
theoretically [11]. Furthermore, according to the Lorenz
microscopy experiment, a ferromagnetic network develops
on the ab plane [8]. A decrease in the magnetic ordering
temperature Tc under hydrostatic pressure was observed via
an ac magnetic susceptibility measurement [12,15], and this
behavior is related to the decrease in the distortion of the CrS6

octahedron [12]. In single crystals, enhancement of the muon
spin precession frequency is observed below approximately
50 K, suggesting a low-temperature change in the magnetic
structure [16]. Furthermore, the magnetotransport is known to
depend on spin orientation below approximately 50 K [17].

Let us review the CSL state in Cr1/3NbS2. At a finite
Hdc below a critical field Hc for the forced ferromagnetic
(FFM) state at T = 0 K, the CSL state is transformed to the
FFM state with increasing T , and ultimately the PM state is
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reached. A phase diagram based on these phase transitions
has been constructed from both an M-Hdc measurement [14]
and a magnetoresistance (R) measurement [18]. The M-Hdc

measurement reveals the boundary between the CSL and
the FFM and suggests that the CSL consists of two regions
depending on whether dM/dHdc is nearly a constant [14]. On
the other hand, the kink or peak in R indicates the CSL-FFM
transition, and anomalies in dR/dT indicate the FFM-PM
transition [18]. These phase (region) diagrams are not perfectly
consistent with each other. Herein, when we consider the
spatial uniformity of the spin phase, both the HM and FFM
states have a coherent spin phase over infinite spatial scale. In
the CSL state, however, the spatial scale between DWs changes
as a function of Hdc, so the scale of the ferromagnetic spin
alignment between DWs changes. Thus, the spatial uniformity
of the spin phase decreases dramatically at around zero field,
and then it systematically approaches infinity with increasing
Hdc. The above change in the spin phase uniformity should
be responsible for any effect on the sensitivity against an ac
magnetic field Hac, and in particular it would be detected in
the ac magnetic response of the magnetic domains. In this
paper, a series of precise phase boundaries is investigated using
ac magnetic susceptibility measurements, and the magnetic
dynamics on the boundaries is analyzed according to a method
of magnetic diagnostics developed by studying the helical
magnet MnP [19]. The physical knowledge obtained there
would be helpful for understanding the physical properties of
the CSL in more detail.

II. EXPERIMENTAL PROCEDURES

A single crystal of Cr1/3NbS2 was synthesized by a proce-
dure described elsewhere [8]. The ac magnetic response (Mnω)
was observed using a superconducting quantum interference
device (SQUID) magnetometer (Quantum Design) equipped
with an ac measurement option. The frequency f of Hac was
0.1–500 Hz, and the amplitude h was 2.0 or 3.9 Oe. Hac was
applied parallel to the easy plane (ab plane, i.e., Hac ⊥ c),
and its direction was parallel to the direction of Hdc. Thus,
Hac modifies the helical structure and the CSL state along the
direction perpendicular to the chiral axis. In the measurement
at zero Hdc, the residual Hdc was reduced to a level sufficiently
below Earth’s field.

Herein, we briefly review the harmonic magnetic responses
under Hac = h sin ωt . M as a function of time (t), M(t), is
expanded as follows:

M(t) = M1ω sin(ωt + θ1ω) + M2ω sin(2ωt + θ2ω)

+M3ω sin(3ωt + θ3ω) + · · ·, (1)

where ω = 2πf is the angular frequency, Mnω (where n is an
integer) represents the nth-harmonic component, and θnω (< 0)
is the phase delay of each Mnω against Hac. For instance, M ′

1ω= M1ω cos θ1ω, M ′′
1ω = −M1ω sin θ1ω, M ′

2ω = M2ω cos θ2ω, and
M ′

3ω = M3ω cos θ3ω. The large M2ω signal reflects the existence
of spontaneous magnetization. The anomaly in M3ω reflects
the formation of magnetic domains; the long-range magnetic
order is accompanied by a large phase change, and the glassy
state due to frustration between the magnetic moments of the
magnetic domains does not have a large phase change [20–25].

Thus, magnetic diagnostics using mainly M3ω can be valid for
the study of the complex magnetic properties [19,26–31]. The
quantity M3ω/M1ω is called the Klirr factor, and it represents
the ratio of the strain in the periodic curve of M(t) [19,32].
The harmonic magnetic response, Mnω, was evaluated via
the spectral analysis of the time-dependent SQUID voltage,
which is proportional to the magnetic flux detected by the
detection coil. The obtained M(t) data can also be analyzed
via the ac hysteresis curve M(Hac) [19]. For reference, M ′′

1ω is
proportional to the area of the M(Hac) hysteresis [19].

III. EXPERIMENTAL RESULTS

A. At zero dc field

Figure 1 shows the temperature dependence of the in-phase
M ′

1ω (a), out-of-phase M ′′
1ω (b), and amplitude M3ω (c) for

Cr1/3NbS2 at zero Hdc under an ac field with h = 2.0 Oe and
f = 0.1–500 Hz. First, M ′

1ω has an anomaly at Tc = 128 K.
At around T = 126–127 K, M ′′

1ω exhibits a sharp anomaly,
where M ′′

1ω/M ′
1ω ∼ 10%. For reference, M2ω shows just a

small anomaly of M2ω/M1ω = 0.2%, whereas the anomaly in
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FIG. 1. Temperature dependence of ac magnetic responses (a)
M ′

1ω, (b) M ′′
1ω, and (c) M3ω for Cr1/3NbS2 at Hdc = 0 under an ac field

with h = 2.0 Oe and f = 0.1–500 Hz. Both Hdc and Hac are applied
perpendicular to the c axis. A series of ac responses corresponds to the
magnetic response [A] in Fig. 8. Red dotted lines, which represent the
temperature with the maximum M ′

1ω in the low-frequency limit, are
guides for the eyes. Arrows in (a), (b), and (c) indicate the direction
of the shift for M ′

1ω, M ′′
1ω, and M3ω, respectively.
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FIG. 2. Temperature dependence of ac magnetic responses (a)
M ′

1ω, (b) M ′′
1ω, and (c) M3ω for Cr1/3NbS2 under an ac field with

h = 3.9 Oe and f = 1 Hz for Hdc = 0, 10, 20, and 50 Oe. A series
of ac responses corresponds to the magnetic response near [A] in
Fig. 8. Red dotted lines, which represent the temperature with the
maximum M ′

1ω at Hdc = 0, are guides for the eyes. Arrows in (a), (b),
and (c) indicate the direction of the change in M ′

1ω, M ′′
1ω, and M3ω,

respectively.

M3ω observed at T = 129 K is approximately on the order
of 8% of M1ω. The Klirr factor, M3ω/M1ω, increases as the
amplitude of Hac increases, reaching 10.8% at h = 3.9 Oe
(see Fig. 2). The Klirr factor depends sensitively on the crystal
quality and decreases in poorly crystalline samples with lower
Tc. To our knowledge, the Klirr factor at the 10% level is
one of the largest Klirr factors observed to date [19,29,30],
suggesting that the M(t) response is quite distorted. Thus, the
magnetic dynamics at around Tc indicates intrinsic magnetic
nonlinearity.

Given the phenomenological evidence, a large magnetic
nonlinearity is often observed near Tc in the crystal group
allowing the D-M interaction (including locally permitted D-M
vectors as well as a uniform D-M vector over the entire crystal).
The present case is consistent with this framework, so we are
confident that the present measurement detects the magnetic

response of the macroscopic chiral spin coherence over the
entire crystal. The anomaly in M3ω shifts slightly toward the
low-temperature side as the frequency of Hac increases, as seen
in Fig. 1(c). A series of h and f dependencies indicates that
the giant nonlinear magnetic response is quite steady in the
considered region of f � 500 Hz.

A few materials with ferromagnetic interaction and D-M
vectors often have large Klirr factors (at the 10% level) at
zero dc field [19,29,30]. In the future, when similar studies
of typical helical magnetic systems are conducted, one could
provide a typical value of the Klirr factor for typical helical
magnets; however, we suppose that the Klirr factor for a
monoaxial D-M vector system such as Cr1/3NbS2 would be
much larger than that for a multiaxial D-M vector system such
as MnSi.

B. At finite dc field

Theoretically, under a finite Hdc applied perpendicular to
the chiral axis, the HM structure is transformed to the CSL
state. Figures 2 and 3 show M ′

1ω (a), M ′′
1ω (b), and M3ω (c)

under an ac field with h = 3.9 Oe and f = 1 Hz for Hdc =
0–50 Oe (Fig. 2) and 0.2–2.2 kOe (Fig. 3). As seen in Fig. 2(c),
the giant M3ω decreases dramatically with increasing Hdc, and,
when Hdc exceeds a few tens of oersteds, M3ω disappears.
However, M3ω reappears at Hdc � 1 kOe [Fig. 3(c)].

Figure 3(a) indicates that the anomaly in M ′
1ω is split, and

the splitting becomes more prominent with increasing Hdc.
The anomaly in M ′

1ω on the high-temperature side [M ′
1ω (HT)]

shifts slightly toward higher temperatures with increasing Hdc,
and the magnitude gradually decreases. However, for Hdc �
1.4 kOe, the anomaly changes very little in magnitude. On the
other hand, the anomaly in M ′

1ω on the low-temperature side
[M ′

1ω (LT)] shifts remarkably toward lower temperatures with
increasing Hdc, and the change in the magnitude is temporarily
enhanced but later suppressed. Next, Fig. 3(b) indicates that
the anomaly in M ′′

1ω follows that in M ′
1ω (LT), and the Hdc

dependence of M ′′
1ω is consistent with that of M ′

1ω (LT). Thus,
the anomaly in M ′

1ω (LT) is accompanied by energy loss in
the domain dynamics under Hac, whereas that of M ′

1ω (HT)
responds linearly without energy loss. This M ′

1ω (HT) appears
on the boundary between the FFM and PM states without M3ω.
However, M3ω reappears on the curve that accompanies both
M ′

1ω (LT) and M ′′
1ω (LT) after the temporary disappearance at

Hdc = 0.02–0.6 kOe. This attractive curve is consistent with
the boundary between the CSL and FFM states.

Figures 4–6 show the frequency dependence of the ac
magnetic responses M ′

1ω, M ′′
1ω, and M3ω for Cr1/3NbS2 at

Hdc = 0.2, 1.0, and 1.6 kOe, respectively. These frequency
dependencies show that the intrinsic nature of the magnetic
dynamics at Hdc = 0.2 and 1.0 kOe does not change
greatly with f and is similar to steady behavior observed
at Hdc = 0. Indeed, the dynamics at Hdc = 0.2 kOe
is not accompanied by M3ω, whereas that at Hdc =
1.0 kOe is. Their magnetic origins differ from each other,
whereas the magnetic dynamics in both cases is steady against
the change in f . This rigidness is also seen in M ′

1ω (HT) at
Hdc = 1.6 kOe [Fig. 6(a)]. Thus, the magnetic dynamics, the
high-temperature side of which consists of the PM state, is
rigid against Hac. However, M ′

1ω (LT) at Hdc = 1.6 kOe is
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FIG. 3. Temperature dependence of ac magnetic responses (a)
M ′

1ω, (b) M ′′
1ω, and (c) M3ω for Cr1/3NbS2 under an ac field with h =

3.9 Oe and f = 1 Hz at Hdc = 0.2–2.2 kOe. Light blue dotted lines,
which represent the temperature with the maximum M ′

1ω at Hdc =
1.8 kOe, are guides for the eyes. Arrows in (a) indicate the anomaly
M ′

1ω (LT).

suppressed with increasing f , and this characteristic is also
observed in both M ′′

1ω and M3ω. The corresponding magnetic
dynamics is on the boundary between the CSL and FFM states.
These results tell us that there are experimentally two CSL
states depending on Hdc.

Indeed, we have measured the ac magnetic response under
zero dc field and some finite dc fields such as 0.2, 1.0, and
1.6 kOe, although we could not find any characteristic anomaly
at around 50 K. We think that it might be difficult to detect
any behavior related to the change in magnetic structure [16]
and/or the change in the stable spin orientation [17] by studying
the magnetic dynamics against an ac field of a few oersteds at
most.
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FIG. 4. Temperature dependence of ac magnetic response (a)
M ′

1ω, (b) M ′′
1ω, and (c) M3ω for Cr1/3NbS2 under an ac field with

h = 3.9 Oe and f = 1–300 Hz at Hdc = 0.2 kOe. A series of ac
responses corresponds to the magnetic response [B] in Fig. 8. Red
dotted lines, which represent the temperature with the maximum M ′

1ω,
are guides for the eyes. Arrows in (a) and (b) indicate the direction
of the change in M ′

1ω and M ′′
1ω, respectively.

C. Phase diagram

In this subsection, the phase diagram as a function of Hdc

and T is constructed. Thus, the M−Hdc curve as a function
of T was observed, and the result [Fig. 7(a)] is almost the
same as the data in the literature [7,8]. The critical field (Hc)
for the transition from the CSL state to the FFM state and
the upper limit of the magnetically linear region (HL) at T =
50 K are indicated by arrows. Indeed, the low Hdc region
does not exhibit perfect linearity. Thus, we define HL at the
value of which the change in dM/dHdc becomes prominent
[see Fig. 7(b)], where the value of HL was determined from
the data of d2M/dH 2

dc [see Fig. 7(c)]). Figure 8 presents the
(T , Hdc) coordinates at which the anomalies in M ′

1ω, M ′′
1ω,

and M3ω are observed. The temperature dependence of Hc

and HL is also summarized in Fig. 8, along with the above
information, in order to classify the CSL state into two regions
such as CSL-1 and CSl-2. Furthermore, the data of the phase
boundary determined by magnetoresistance measurements for
the microsample with Hc < 2 kOe [18] are also plotted there.
The phase boundaries obtained here include both information
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FIG. 5. Temperature dependence of ac magnetic response (a)
M ′

1ω, (b) M ′′
1ω, and (c) M3ω for Cr1/3NbS2 under an ac field with

h = 3.9 Oe and f = 1–300 Hz at Hdc = 1.0 kOe. A series of ac
responses corresponds to the magnetic response [C] in Fig. 8. Red
dotted lines, which represent the temperature with the maximum M ′

1ω,
are guides for the eyes. Arrows in (a) and (b) indicate the direction
of the change in M ′

1ω and M ′′
1ω, respectively.

from the magnetoresistance measurement [18] and that from
the magnetization curve [14].

At Hdc = 0, the HM state is transformed to the PM state at
point A, where a giant M3ω of M3ω/M1ω � 0.1 (h = 3.9 Oe)
appears. Here coherent long-range helicity exists over the
entire crystal. However, a small Hdc applied perpendicular
to the chiral axis destroys this long-range helical coherence
and causes the CSL to appear, so the collapse of coherent
helicity is connected with the disappearance of M3ω. We
stress that point A is just the singularity. In the CSL state
under small Hdc (termed CSL-1), a helical array with 2π

rotation of the spin phase is richer than the ferromagnetic
array. In the M-Hdc curve, this CSL-1 region corresponds to
the region exhibiting linearity between M and Hdc. Indeed,
the HL value in Fig. 7 coincides with a point near C in
Fig. 8, where an anomaly in M ′

1ω splits into two anomalies.
This existence of a boundary in the CSL was not confirmed
in the magnetoresistance measurement, which detects the
electrical conductivity of the Nb and S atoms. At higher Hdc,
another CSL state, CSL-2, appears; its superlattice consists of
ferromagnetic arrays connected by a type of node constructed
by 2π rotation of the spin phase. As the temperature increases,
thermal fluctuation stabilizes the FMM state rather than the
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FIG. 6. Temperature dependence of ac magnetic response (a)
M ′

1ω, (b) M ′′
1ω, and M3ω for Cr1/3NbS2 under an ac field with

h = 3.9 Oe and f = 1–300 Hz at Hdc = 1.6 kOe. A series of ac
responses corresponds to the magnetic responses [D] and [E] in Fig. 8.
Red dotted lines, which represent the temperatures with the maximum
M ′

1ω at f = 1 Hz, are guides for the eyes.

CSL-2 state, and there a large M3ω reappears. Phase coherence
due to the ferromagnetic array rather than the helicity becomes
richer with increasing Hdc. It responds strongly to Hac, causing
hysteresis in M versus Hdc as well as in M versus Hac.
A further increase in the temperature transforms the FFM
state to the PM state. This change has also been observed
in the magnetoresistance measurement [18]. This FFM-PM
transition exhibits a nearly linear response, like the CSL-1–PM
transition, and was not observed in the M-Hdc measurements.
The transformation from CSL-1 to CSL-2 would be a type of
crossover, resulting in no anomaly in the ac response (e.g., the
low-temperature side of point C in Fig. 8). The straightness
from point C to point A in the phase diagram of Fig. 8 is
also seen in the Hdc-T phase diagram of MnSi, where the
phase boundary is in the high-temperature side of the skyrmion
phase [33,34]. The phase boundary presents the first-order
transition accompanying the tri-critical point [33,34]. The
phase boundary between CSL-1 and PM in Cr1/3NbS2, without
M3ω, can be the first-order transition.

In the next section, the magnetic dynamics at five represen-
tative points (A–E) in Fig. 8 is classified into several types,
according to the procedure described in Ref. [19].
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FIG. 7. Magnetization curve of Cr1/3NbS2 at T = 50, 80, 100,
110, 120, 125, 130, and 140 K (a), along with the first-order (b)
and the second-order differentiation (c) of M with the respect to the
dc field Hdc. In (a), broken lines represent the saturation moment
at each temperature (T � 120 K). In (a)–(c), some arrows present
the saturation field Hc and the upper limit of the linear response
(dM/dHdc ∼ const.) HL at T = 50 K. In (c), HL is defined as the
field above which d2M/dH 2

dc begins to increase.

IV. DISCUSSION

Replacing M as a function of t with M as a function of
Hac yields a picture of the dynamical magnetic hysteresis (ac
hysteresis hereafter), providing quantitative information on the
nonlinearity related to M3ω. Figure 9 shows M (Hac) for points
A–E in Fig. 8.

In the ac hysteresis measurement, some types of hysteresis
loops appear, the shape of which depends on the magnitude
of the nonlinearity as well as that of the damping. In the
previous study of MnP, we systematized the M(H ) loop using
the following equivalent mechanical equation for the magnetic
domain motion [19]:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x + ηx3 = F sin ωt, (2)

where x is the position of the material (here, a DW) with a
mass m connected to a spring with spring constant k [32].
Equation (2) is the familiar mechanical nonlinear spring

50 100 150
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2.5

H
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 [
kO

e]

T [K ]
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CSL -1

CSL -2
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PM
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[B]

[C]

[E]

[D]

FIG. 8. Phase (region) diagram of Cr1/3NbS2 under the dc
magnetic field Hdc. A series of anomalies observed in the ac magnetic
susceptibility measurements such as M ′

1ω (•, ◦), M ′′
1ω (�), and M3ω

(�) is plotted. The intensity of the M3ω anomaly is symbolized
by the size of the symbol. The characteristic changes detected
in the M-H curve of Fig. 7, characterized by Hc (�) and HL

(�), are presented, along with the data on the regional boundary
determined by magnetoresistance measurements for the microsample
with Hc < 2 kOe (light blue dotted curve and line) [18]. Dotted line
connecting the HL data (�) marks the crossover from the magnetically
linear region to the nonlinear region; we stress that it does not
represent the phase boundary. Each region is characterized as HM,
CSL-1, CSL-2, FFM, and PM, respectively. For Hdc = 0, 0.2, 1.0, and
1.6 kOe, there are five points, A–E, that exist on attractive boundaries
as A, HM → PM; B, CSL-1 → PM; C, CSL-2 → (FFM →) PM;
D, CSL-2 → FFM; E, FFM → PM. The magnetic hysteresis at each
point is analyzed in Fig. 9.

equation in the field of mechanics, termed the Duffing
equation. Recently, Kishine et al. have theoretically pointed
out that the dynamics of the weakly pinned CSL in a monoaxial
chiral helimagnet is described by the effective Lagrangian of
the modified Duffing oscillator model [35]. The first term on
the left-hand side of Eq. (2) represents the inertia of the DW.
The second term represents any damping, and γ denotes the
magnitude of the friction that originates in the eddy current
in a metal. The elasticity, characterized by k, is physically
related to a pinning effect, so ω0 = (k/m)1/2. In a magnetic
sense, ω0 should be connected to the predominant magnetic
anisotropy as well as defects and/or imperfections. Here, the
coefficient of the x3 term η represents the existence of multiple
spring constants depending on the region of displacement, and
it has a nonlinear effect in its narrow meaning, accompanied
by a change in the shape of the hysteresis loop. In the present
magnetic study, the term on the right-hand side, F sin ωt , is
replaced by the ac field, h sin ωt ; furthermore, x is replaced by
the magnetization M (more precisely, the deviation from the
magnetization in the equilibrium state). Indeed, Eq. (2) without
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FIG. 9. Ac magnetic hysteresis for five (T ,Hdc) points: A (128–
130 K, 0 kOe), B (128 K, 0.2 kOe), C (124 K, 1.0 kOe), D
(114 K, 1.6 kOe), and E (128 K, 1.6 kOe). In Table II, these magnetic
dynamics are classified by analyzing M vs Hac and M vs t according
to a procedure described elsewhere [19].

the ηx3 term cannot produce M3ω [19]. In the previous study
of MnP, we classified the typical responses into five groups,
as shown in Table I [19]; types 1 and 2 appear for η = 0, and
type 1 further requires γ = 0. As γ increases, the types are
transformed as 3 → 4 → 5.

We characterize the magnetic responses observed at five
(T , Hdc) points: A (128–130 K, 0 kOe), B (128 K, 0.2 kOe),

TABLE I. Typical ac response according to the procedure
proposed in Ref. [19].

Type M3ω/M1ω Hc/h M ′′
1ω/M ′

1ω γ η

1 0 0 0 0 0
2 0 �=0 �=0 �=0 0
3 <0.05 >0.5 �=0 �=0 �=0
4 �0.05 >0.1 �=0 �=0 �=0
5 �0.05 �0.1 ∼0 �=0 �=0

C (124 K, 1.0 kOe), D (114 K, 1.6 kOe), and E (128 K,
1.6 kOe) (see Table II). The characteristic ac hysteresis at A
appears only in a narrow region, suggesting a remarkable M3ω;
this ac response at A is of type 5. Point A is just the singularity
with the long-range order of helical spin phase. M3ω disappears
when Hdc is applied, and it reappears at Hdc � 1 kOe owing
to stabilization of CSL-2. The linear ac response at B [CSL-1
→ (FFM →) PM] is quite similar to that at E [FFM → PM].
Near C, the ac hysteresis starts to expand, and M3ω is enlarged;
this ac response at C is of type 3 close to type 2. The response
at D has a wide ac hysteresis, and M3ω is also large; this ac
response at D is of type 4, suggesting that the energy loss
against the change in Hac is prominent. Thus, the difference
between B and D suggests that the helicity-rich CSL-1
state differs from the ferromagnetic-array-rich CSL-2 state
in terms of the magnetic dynamics under Hac. Furthermore,
a series of magnetic responses following A → B → C →
E is rigid against Hac, resulting in little energy loss with
changing Hac.

The theory of the CSL is based entirely on the Ginzburg-
Landau formalism, in which the energy density does not
contain any source of discontinuous phase transitions [4]. The
hysteresis phenomena are concomitant with the discontinuous
(first-order) phase transition, which requires additional terms
(a third-order term with respect to the order parameter, for
example). Thus, the absence of hysteresis is fairly consistent
with the theory. Furthermore, there is not any theory which
well describes low-frequency collective dynamics in the CSL
phase. One approach to treating this problem is to take
account of low-frequency excitations around the CSL state,
which are analogous to DW oscillation over semimacroscopic
length scales. Clarification of this mechanism is an ongoing
issue.

TABLE II. Magnetic diagnostics for Cr1/3NbS2 under ac field
with h = 3.9 Oe and f = 1 Hz. The diagnostics is conducted for
five (T , Hdc) points: A (128–130 K, 0 kOe), B (128 K, 0.2 kOe), C
(124 K, 1.0 kOe), D (114 K, 1.6 kOe), and E (128 K, 1.6 kOe).

Object Transition M3ω/M1ω Hc/h Type

A HM → PM 0.11 <0.10 5
B CSL-1 → PM 0.00 0.03 2 close to 1
C CSL-2 → FFM → PM 0.02 0.09 3 close to 2
D CSL-2 → FFM 0.09 0.47 4
E FFM → PM 0.00 0.01 2 close to 1
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V. CONCLUSION

We constructed the phase (region) diagram of the chiral
magnet Cr1/3NbS2 as a function of T and Hdc using ac
magnetic susceptibility measurements of a single crystal. The
obtained phase (region) diagram includes physical information
from both the magnetoresistance and magnetization curve
measurements. In terms of the magnetic dynamics, the CSL
state is divided into two regions, the helicity-rich CSL-1 and
ferromagnetic-array-rich CSL-2. The transition from CSL-2
to the FFM state is accompanied by a nonlinear response and
a large energy loss, whereas that from the FFM state to the
PM state exhibits a linear magnetic response without any
energy loss. The transition from CSL-1 to the PM state has
qualitatively the same nature as the FFM-PM transition. We
stress that the largest M3ω appears at the HM-PM transition,
and Hdc suppresses M3ω in CSL-1. However, in CSL-2,
the development of the ferromagnetic array causes an M3ω

originating from the reappearance of the finite-range spin
coherence due to the ferromagnetic array. The reappearance of

a nonlinear contribution on the boundary between CSL-2 and
the FFM state surely originates from the magnetic superlattice
consisting of an adequate ferromagnetic array and periodic
spin helicity in CSL-2; the ferromagnetic array is locked on
the lattice via the spin helicity due to the D-M interaction. Thus,
the magnetic diagnostics on the phase boundaries reveals that
CSL-1 is a very light superlattice without energy loss against
the ac field, whereas CSL-2 is heavy, with hysteresis in the
M-Hdc curve.
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