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Quantum quench dynamics in the transverse field Ising model at nonzero temperatures
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The recently discovered dynamical phase transition denotes nonanalytic behavior in the real-time evolution
of quantum systems in the thermodynamic limit, and it has been shown to occur in different systems at zero
temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this paper, we extend the analysis to nonzero
temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum
quench in the transverse field Ising model. Although the quantitative behavior at nonzero temperatures still
displays features derived from the zero-temperature nonanalyticities, it is shown that in this model dynamical
phase transitions do not exist if T > 0. This is a consequence of the system being initialized in a thermal state.
Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a
global quench or to obtain the change of the equilibrium free-energy density.
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I. INTRODUCTION

Recent experimental advances in studying closed quantum
systems using cold atomic gases in optical lattices have spurred
interest and activity in the field of nonequilibrium dynamics
[1–3]. The experiments benefit from both the high controllabil-
ity and time resolution of these systems and the possibility to
realize different initial states. With this experimental setup at
hand, we can now address fundamental questions of quantum
many-body physics concerning thermalization and the influ-
ence of integrability. The simplest procedure to drive a system
into nonequilibrium is a quantum quench, i.e., a sudden change
of the Hamiltonian H (g) with only short-range interactions to
H (g′), where g denotes the altered parameter, e.g., the change
of an external magnetic field. Having prepared the system with
respect to the original Hamiltonian H (g) (often in the ground
state), the unitary time evolution with the quenched Hamilto-
nian is nontrivial since it starts with a nonthermal superposition
of eigenstates. For a more general ramp protocol λ, the set of
system parameters at the specific time t is denoted by λt .

To study quench dynamics, one can analyze an exper-
imentally tractable quantity: the performed work. Unlike
equilibrium quantities such as the free energy, the inclusive
work W given by the difference of two consecutive energy
measurements, i.e.,

W = Eλτ

m − Eλ0
n ,

is well-defined in nonequilibrium [4]. Here, λτ and λ0 denote
the system parameters at the respective times of the energy
measurements, which yielded the eigenvalues En and Em in
their instantaneous eigenbasis. At nonzero temperature, the
work depends not only on the entire ramp protocol λ, but
also on the initial distribution of states, and therefore it is
a stochastic variable with a probability distribution. For this
function, which is known as the work distribution function
(WDF), important theorems describing the fluctuations have
been found, namely the famous Jarzynski equality and its
generalization, the Tasaki-Crooks relation [5]. However, due to
the fragility of quantum systems toward the environment and a
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potential collapse of the wave function, the theorems have been
mostly studied and tested for classical microscopic systems,
e.g., the stretched RNA experiment [6–8]. It was only very
recently that An et al. verified the quantum Jarzynski equality
with a trapped-ion system [9].

In this work, we calculate the work distribution function
for different global ramp protocols and test the Tasaki-Crooks
relation, thereby predicting the equilibrium quantity, i.e.,
the change of the free-energy density of the corresponding
equilibrium states. Another motivation to study the work
distribution function arises when a double quench protocol
has been implemented (sketched in Fig. 1). It denotes a
quench where the initial and final Hamiltonian are identical
while the time evolution is governed by H (g′), i.e., with a
changed parameter g → g′. In this case, the Loschmidt echo
defined as L(t) = |G(t)|2 is intrinsically contained in the work
distribution function at T = 0. Here, the overlap or return
probability amplitude

G(t) = 〈ψ |e−iH (g′)t |ψ〉 (1)

represents the probability amplitude to recover the initial state
|ψ〉 after the quench. In principle, the initial state can be any
state, but it is often chosen to be the ground state [10]. In other
words, the Loschmidt echo measures how much the system is
affected by the perturbing quench. At the same time, however,
the echo represents the probability density that no work is
performed on the system during the double quench, since the
final and the initial state are identical. The work distribution
function can therefore be regarded as a generalization of the
Loschmidt echo, since it also contains the realizations that
the system ends up in a different (excited) state and energy is
added or extracted [11].

As a consequence of the aforementioned close relation, the
work distribution function shares the features of the Loschmidt
echo, such as the newly discovered dynamical phase transition
(DPT), which describes nonanalytic behavior in the time
evolution (cf. Sec. III C) [10]. This phenomenon was first
observed studying the Loschmidt echo at T = 0, but it was also
shown to appear naturally in the work distribution function by
Heyl et al. Since the initial paper, the DPT has been the focus
of numerous studies that showed that this phenomenon also
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FIG. 1. Sketch of a double quench: At t = 0 the parameter g is
quenched to g′ such that the Hamiltonian H (g′) governs the nontrivial
time evolution. At t the system is quenched back.

emerges in nonintegrable models [12,13], and which treated
the conditions under which they occur [14,15]. Other advances
addressed the question of how one can further classify a DPT
and how it arises in the context of DMFT [16]. Moreover, it
was analyzed how local contributions affect the dynamical free
energy and therefore the DPT [17], while other works revealed
a connection of the DPT to the order parameter dynamics in
systems with broken-symmetry phases [18]. Due to the close
analogy to equilibrium phase transitions, a recent development
also deals with questions of universality and scaling [19].

The purpose of this paper is to investigate the quench
dynamics for single and double quench protocols of the
transverse field Ising model at nonzero temperature, i.e., the
effect of the initial state being not the ground state but a
thermal state. In addition to the analysis of the corresponding
rate functions and the application and verification of the
Tasaki-Crooks-Jarzynski theorem, we study whether the DPT
survives the change to nonzero temperatures. The procedure
starts with the analytic calculation of the characteristic function
of work, which can then be transformed to the work distribution
function by applying the Gärtner-Ellis theorem, as explained
in Sec. II. In Sec. III, we briefly introduce the model, i.e.,
the transverse field Ising model in one dimension, and how
it is solved. We then display the actual calculation of the
characteristic function of work for both the single and the
double quench protocol. The results for the rate functions of
the work distribution functions are displayed and discussed
in Sec. IV. Finally, the previous results are used to verify
the Tasaki-Crooks theorem for a global quench for the
implemented system at nonzero temperature. In addition, we
demonstrate how the relation can serve as a powerful tool
to either determine a change in the free-energy density or to
relate different parts of the entire work distribution function in
Sec. V.

II. THE CHARACTERISTIC FUNCTION OF WORK

Since work is a stochastic variable in microscopic systems,
it is necessary to consider its probability density function,
the so-called work distribution function. If the principle
of microreversibility holds, i.e., if the Hamiltonian is time
reversal invariant at any time t , the only remaining ingredient
for the formal definition of the work distribution function
is the initial probability distribution of states p0

n (e.g., the
canonical distribution) [5,20]. Having defined the probability
to transition from state n into m (also called conditional
probability) pm|n, which depends on the ramp protocol λ, the
work distribution function is given as the product of the two

probabilities and reads

p[W ; λ] =
∑
m,n

δ
(
W − (

Eλτ

m − Eλ0
n

))
pm|n[λ]p0

n. (2)

The square brackets emphasize the functional dependence
on the ramp protocol λ. For complicated ramp protocols,
the calculation of the WDF can be cumbersome because the
eigenbasis changes during the quench. While some generic
protocols have been studied [21], the expression simplifies
significantly for single or double quenches.

Instead of directly calculating the WDF in Eq. (2), it is
often easier to first determine its generating function, the
characteristic function of work G[u; λ], defined as the Fourier
transform

G[u; λ] =
∫

dW eiuWp[W ; λ] (3)

with u ∈ C. With u = iR, R ∈ R, the work distribution
function then results from a saddle-point approximation of
the inverse Laplace transformation of G(R). This is achieved
by the Gärtner-Ellis theorem in the context of large deviation
theory, as explained in Sec. IV.

The reason to focus on this procedure is the possibility to
analytically calculate the characteristic function of work. It was
shown by Talkner et al. [4] that G[u; λ] can be written as a time-
ordered correlation function of exponentiated Hamiltonians as

G[u; λ] = 〈
eiuHH

τ (λτ )e−iuH (λ0)
〉

= 1

Z(λ0)
Tr

(
eiuHH

τ (λτ )e−(iu+β)H (λ0)
)
. (4)

Here, HH
t (λt ) = U

†
t,0[λ]H (λt )Ut,0[λ] denotes the Hamiltonian

in the Heisenberg picture at time t . The unitary operator Ut,0[λ]
is the usual time evolution operator, which depends on the ramp
protocol.

For a single quench, the equation above can be simplified
further, since H (t < 0) = H (g) and H (t � 0) = H (g′) with-
out any time evolution. It follows that

G(u) = 1

Z(g)
Tr

(
eiuH (g′)e−(iu+β)H (g)

)
. (5)

At zero temperature, the difference of the ground-state energies
Wmin = E0(g′) − E0(g) is the minimal work that can be
measured. It is therefore convenient to shift the scale such
that Wmin = 0 and p(W < 0) = 0. To be able to compare the
T > 0 results to the T = 0 case, we make the same adjustment
for the nonzero temperature calculations.

When the ramp protocol is chosen to have a double quench
form, Eq. (4) yields

G(u,t) = 〈U †
t,0(g′)eiuH (g)Ut,0(g′)e−iuH (g)〉

= 1

Z(g)
Tr

(
eitH (g′)eiuH (g)e−itH (g′)e−(iu+β)H (g)

)
, (6)

because the unitary time evolution is now determined by the
quenched Hamiltonian. As the quenches we consider describe
global quenches, i.e., every single site is affected, the measured
work will grow extensively with system size N . The quantity
that remains finite is therefore the intensive work density
w = W/N , which changes the definition of the characteristic
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function of work in Eq. (3) to

G(u) =
∫

dw eiuwNp(w) = 〈eiuwN 〉. (7)

III. THE TRANSVERSE FIELD ISING MODEL

The model that is studied is the exactly solvable trans-
verse field Ising model in one dimension given by the
Hamiltonian

H (g) = −1

2

N−1∑
l=1

σ z
l σ z

l+1 + g

2

N∑
l=1

σx
l (8)

with periodic boundary conditions (PBCs). It describes a
lattice with N spin-1/2 particles that experience next-neighbor
interaction with an overall external magnetic field proportional
to g. The system features a quantum phase transition at
the critical magnetic field g = gc = 1. This point separates
the quantum paramagnetically ordered phase (g > 1) from the
regime where ferromagnetic ordering occurs (g < 1). To solve
the model, the Hamiltonian is mapped to a fermionic model via
a Jordan-Wigner transformation [22,23], which leads to a form
in which the Hamiltonian is split into different independent
momentum sectors such that H = ∑

0<k<π Hk with

Hk = (c†k c−k)

(
g − cos k −i sin k

i sin k −(g − cos k)

)(
ck

c
†
−k

)
. (9)

The momentum index k is set by the PBC to be k = 2π
N

m,
m ∈ Z. An additional constant term is ignored, since it does not
affect the physics. The matrix is diagonalized by a fermionic
Bogoliubov transformation

(
ck

c
†
−k

)
=

(
cos θ i sin θ

i sin θ cos θ

)(
ηk

η
†
−k

)
(10)

with tan 2θ = sin k/(g − cos k) to yield

H =
∑

0<k<π

εk(g)(η†
kηk − η−kη

†
−k) (11)

with the dispersion relation εk(g) =
√

(g − cos k)2 + sin2 k.
From Eq. (11), one learns that each sub-Hilbert space

describes a three-level system consisting of the lowest state
without any fermions |0k〉 and energy −εk(g); a twofold-
degenerate singly occupied state |1±k〉 with one fermion with
momentum k or −k, respectively, and zero energy; and a
fully occupied state |2k〉 containing both fermions and energy
εk(g).

The Bogoliubov transformation can also be used to cal-
culate the quenches. Depending on the system parameter,
the eigenbasis changes over the course of the ramp protocol
such that one needs to translate the new eigenstates in terms
of the previous eigenstates. Due to momentum conservation,
the singly occupied eigenstates do not change, whereas the
unoccupied and fully occupied states transform via a linear

superposition according to

|0k(g)〉 = (cos φk + i sin φkη
†
k(g′)η†

−k(g′)) |0k(g′)〉, (12)

|2k(g)〉 = (i sin φk + cos φkη
†
k(g′)η†

−k(g′)) |0k(g′)〉, (13)

where φk denotes the Bogoliubov angle φk = θ (g) − θ (g′).

A. Single quench

The method to calculate the WDF for a single quench uses
the characteristic function of work in Eq. (5). Exploiting the
simple k-sector form of the Hamiltonian, one finds for the
single quench that

G(u) = 1

Z(g)
Tr

(
e
iu

∑
0<k<π

Hk(g′)
e
−(iu+β)

∑
0<k<π

Hk(g))

= 1

Z(g)

∏
0<k<π

Trk
(
eiuHk (g′)e−(iu+β)Hk (g)

)
, (14)

where the partial trace Trk only runs over the four eigenstates
|ik〉 of a k-sector. The last step that rearranges the different Hk

becomes possible because [Hk(g),Hk′(g′)] = 0 if k �= k′. With
Z(g) = Tr e−βH (g) = ∏

0<k<π Trk e−βHk (g), one obtains

G(u) =
∏

0<k<π

1

Zk(g)

∑
ik

e−(iu+β)Eik
(g)

× 〈ik(g)|eiuHk(g′)|ik(g)〉. (15)

One way to calculate the explicit form of the equation above
is to express the quenched basis states in terms of the original
ones via Eqs. (12) and (13). Since the singly occupied states
with zero energy do not change, 〈1±k(g)|eiuHk(g′)|1±k(g)〉 = 1.
For the remaining two states, one finds

〈0k(g)|eiuHk(g′)|0k(g)〉 = cos[uεk(g′)]

− i cos(2φk) sin[uεk(g′)], (16)

〈2k(g)|eiuHk(g′)|2k(g)〉 = cos[uεk(g′)]

+ i cos(2φk) sin[uεk(g′)] (17)

such that eventually

G(u) =
∏

0<k<π

Gk(u)

with

Gk(u) =
[

1 + cosh[(iu + β)εk(g)] cos[uεk(g′)]
1 + cosh[βεk(g)]

−i
sinh[(iu + β)εk(g)] cos(2φk) sin[uεk(g′)]

1 + cosh[βεk(g)]

]
(18)

with the partition function for a single mode Zk(g) =∑
ik

e−βEik
(g) = 2{1 + cosh[βεk(g)]}.

B. Double quench

The characteristic function for the double quench pro-
tocol is calculated in a similar manner, since a double
quench consists of two single quenches and a unitary time
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evolution for time t in between. However, this makes it necessary to translate the basis states twice, and one finally evaluates
Eq. (6) to result in G(u,t) = ∏

0<k<π Gk(u,t) with

Gk(u,t) = 1 + cosh [βεk(g)](cos2[tεk(g′)] + cos2(2φk) sin2[tεk(g′)]) + sin2(2φk) sin2[tεk(g′)] cosh [(2iu + β)εk(g)]

1 + cosh[βεk(g)]
. (19)

C. The dynamical phase transition at T = 0

In the previous sections, it was shown how the work
distribution function is related to the characteristic function
of work for a general complex u and how it can be calculated
for the one-dimensional transverse field Ising model. To see
how the DPT appears in the work distribution function, one
first has to understand the connection to the Loschmidt echo.

One way follows a similar path as the derivation by Heyl
et al. in their original paper [10]. Motivated by the similarity
between the canonical partition function of an equilibrium
system Z(β) = Tr e−βH and the Loschmidt overlap, they
studied the boundary partition function

Z(z) = 〈ψ0|e−zH |ψ0〉 (20)

with z ∈ C and |ψ0〉 denoting the ground state. This expression
represents the Loschmidt overlap when z = it , i.e., on the
imaginary axis. Due to exponential scaling with system size,
this quantity takes on a large deviation form Z(z) ∼ e−Nf (z) in
the thermodynamic limit such that one defines the free-energy
density

f (z) = − lim
N→∞

1

N
ln Z(z), (21)

where N is the system size. Analogously to equilibrium phase
transitions where nonanalytic behavior of the free-energy
density results from zeros of the partition function in the
complex temperature plane, Heyl et al. showed that a similar
phenomenon occurs when analyzing the dynamics of the
Loschmidt overlap. In the thermodynamic limit, the zeros of
the boundary partition function, the so-called Fisher zeros,
coalesce into lines, which cross the time axis under certain
conditions [10]. This leads to nonanalytic behavior in the
free-energy density, which is just the rate function of the
Loschmidt overlap at critical times t∗n with

t∗n = π

Ek∗ (g′)

(
n + 1

2

)
, n = 0,1,2, . . . , (22)

where the dispersion relation is given by Ek(g) and k∗ is
determined by cos k∗ = (1 + gg′)/(g + g′). The close analogy
to equilibrium phase transitions inspired the authors to call
this phenomenon the dynamical phase transition. In the
Introduction, we argued that the Loschmidt echo can be
identified with the work distribution function for a double
quench where no work is performed on the system, i.e.,
p(w = 0). Therefore, the DPT also appears as nonanalytic
behavior in the corresponding rate function r(w,t) of the work
distribution function [10].

Another way to recognize the close relation between the
Loschmidt echo and the work distribution function is to
analyze the characteristic function of work G(u). If, for
example, one considers a single quench that requires two
energy measurements in order to determine the work, then

the corresponding characteristic function of work is given by
Eq. (5). Taking the zero-temperature limit β → ∞ reduces the
trace over all states to a single term with the ground state, such
that one ends up with

G(u) = 〈ψ0|eiu[H (g′)−E0(g)]|ψ0〉. (23)

It readily follows with u = t that G(t) = G(t)∗, where the
energy scale of H (g′) has been shifted by the constant ground-
state energy E0(g) [11]. This shift is a remnant of the definition
of the work distribution function in Eq. (2), where Eλ0

n was not
set to 0 for n = 0.

As the work distribution function treats all possible
measurement outcomes, it is more difficult to relate the
general double quench WDF to the Loschmidt echo. From
the previous considerations, one assumes a connection to
the case in which no work is performed (W = 0) in the
zero-temperature limit. The easiest way to establish the link
is to start with the general WDF in Eq. (2) where the time
evolution is contained within the transition probability pm|n,
and to perform the zero-temperature limit β → ∞ (λτ =
λ0 = g). The limit simplifies the initial distribution of states
p0

n = δn0, where only the ground state (n = 0) survives. With
pm|n = | 〈Em(g)|e−iH (g′)t |En(g)〉 |2, this finally yields

p(W,t) =
∑
m

δ(W − [Em(g) − E0(g)])

× |〈Em(g)|e−iH (g′)t |E0(g)〉|2. (24)

For W = 0, the equation further reduces to the Loschmidt echo
L(t) demonstrating the close relation of the two quantities.
Therefore, we expect that any nonanalytic behavior in the rate
function of L(t) can be found by studying the dynamics of the
rate function of the work distribution function.

IV. THE WORK DISTRIBUTION FUNCTION

In the preceding section, the characteristic function of work
was calculated for both the single and double quench. Now, in
the last step, one needs to calculate the WDF. Similar to the
boundary partition function, the work distribution function
p(w) is expected to show large deviation behavior, i.e.,
p(w) ∝ e−Nr(w), with some non-negative rate function r(w)
[24]. Besides giving the mean value w̄, where r(w̄) = 0 and
thus p(w̄) is maximal, the rate function provides additional
information about fluctuations in its tails. The underlying the-
ory, namely the large deviation theory, is therefore sometimes
regarded as an extension of the law of large numbers and the
central limit theorem [25]. To calculate the rate function of the
WDF via the characteristic function of work, one applies the
Gärtner-Ellis theorem as explained in the following [25].
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FIG. 2. Sketch of the Legendre-Fenchel (LF) transformation for
the negative scaled cumulant generating function c(R) for a single
or double quench in the transverse field Ising model. At Rh and Rl ,
c(R) takes on a linear form with slope wh or wl , respectively. These
slopes and their positions determine the interval with finite values, as
depicted on the right.

Setting u = iR, R ∈ R in Eq. (7), one can define the
negative scaled cumulant generating function of w,

c(R) = − lim
N→∞

1

N
ln G(R) (25)

in analogy to the free-energy density in Eq. (21). If c(R)
exists, G(R) is said to obey a large deviation principle, i.e.,
G(R) ∝ e−Nc(R), with a rate function c(R) [25]. Moreover, it
follows that c(R) is always concave and continuous inside the
relevant domain of definition. The function c(R) simplifies
significantly, because G(R) splits into products over k. Thus,

c(R) = − lim
N→∞

ln
∏

0<k<π

Gk(R)

= − lim
N→∞

∑
0<k<π

ln Gk(R)

= −
∫ π

0

dk

2π
ln Gk(R). (26)

Having showed the existence of c(R), the Gärtner-Ellis
theorem states that, if c(R) is differentiable with respect to
R, the probability distribution p(w) also takes on the large
deviation form. The corresponding rate function r(w) is then
obtained by a Legendre-Fenchel transformation [25] via

r(w) = − inf
R∈R

[wR − c(R)]. (27)

Here, the infimum is evaluated within the domain of definition
of c(R), which includes R = ±∞.

In Fig. 2, a sketch of the LF transformation is depicted
to show how the shape of c(R) determines the properties
of r(w). Despite the precise quantitative behavior, one can
already deduce several generic features of r(w) by analyzing
c(R). In the region where c(R) is strictly concave, i.e., not even
linear, there is a duality between the two related functions that
transforms the slope w̃ of c(R) at position R̃ into the slope R̃ of
r(w) at position w̃ and vice versa [25]. It follows that a function
c(R), which is strictly concave on the entire axis, would lead
to a rate function that is not confined to some interval, because
the positive and negative slopes are unbounded. While this can
be the case for a free bosonic field theory [24], we expect a
different behavior for the transverse field Ising model, as we
will see shortly.

If the negative scaled cumulant generating function c(R)
has a linear asymptotic behavior, it is not strictly concave
and the duality does not hold anymore. Let us assume that
the slopes of c(R) are bounded and have a maximal and
minimal value, which are already reached for finite R as
sketched in Fig. 2. Then, the LF transformation yields for the
linear parts a negative infimum value that is infinite such that
p(w > wh) = p(w < wl) = 0. Moreover, the rate function of
the WDF will be finite at the boundaries as the linear behavior
is not only asymptotically reached, but is reached for some
finite R. Summing up, the expectation is to observe a rate
function that has a similar shape to the sketch in Fig. 2 on the
right.

Having explained how the shape of the rate function and its
corresponding negative scaled cumulant generating function
are mathematically related via the LF transformation, we
still lack a physical motivation for why the rate function
r(w) should look as it is depicted. Indeed, there has to
be a minimum and a maximum in the work density due
to the fermionic properties of the system. Let us consider,
for example, a first measurement where all k-sectors are in
the highest state, i.e., the doubly occupied state, while a
second measurement shows no sector is occupied. Then, the
difference of the two measurements will represent the maximal
energy that can be extracted from the system and therefore
be the minimal possible work density. More energy cannot
be extracted because there are no further fermions that could be
excited initially. An analogous argument holds for the maximal
work density.

In the following analysis, the rate functions for the single
and double quench protocols are studied in detail. The results
are obtained by numerically computing both the Legendre-
Fenchel transformation in Eq. (27) and its argument, i.e., the
integral in Eq. (26) over the analytic expression in Eqs. (18)
or (19). The explicit time dependence that appears when
considering the double quench protocol translates into a
time-dependent c(R,t) and finally r(w,t).

A. Rate function for the single quench

The first part of the analysis concentrates on studying the
single quench protocol. At T = 0, the minimal measurable
work density is the difference of the ground-state energy
densities of H (g) and H (g′) given by  = ε0(g′) − ε0(g) with

ε0(g) = E0(g)

N
= − 1

N

∑
0<k<π

εk(g)
N→∞= − 1

2π

∫ π

0
dk εk(g)

= −1 + g

π
Ell2

(
4g

(1 + g)2

)
, (28)

and Ell2(x) denotes the elliptic integral of the second kind.
Shifting w by  ensures that w = 0 corresponds to the smallest
accessible work measurement such that p(w < 0) = 0. For the
following analysis of the rate function at T > 0, this energy
shift is always included to be able to compare the results.

First of all, one has to check for the differentiability of
c(R) such that the Gärtner-Ellis theorem is applicable. Since
the argument of the logarithm of the respective integrand in
Eq. (26) given by Eq. (18) is an analytic function without roots
or poles if T > 0, this is valid.
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FIG. 3. Negative scaled cumulant generating function c(R) of a
single quench from g = 0.5 to g′ = 2 at different inverse temperatures
β. All functions at different nonzero temperature share an identical
asymptotic behavior for R → ∞ or R → −∞, respectively. It
follows that the corresponding rate function is confined to an interval
on the work density axis, as expected. When the temperature is
very low, plateaus are created that become more pronounced with
decreasing temperature until the zero-temperature limit (blue) shows
an asymptote with vanishing slope for R � R̃. This ensures that
p(w < 0) = 0.

The negative scaled cumulant generating function c(R) for
different inverse temperatures β is depicted in Fig. 3. Studying
this function, we can already deduce its main features using
the previous considerations. Except for the zero-temperature
case, where the right asymptote has a slope equal to zero,
the asymptotes of c(R) at any other temperature share a
common negative slope. This behavior is responsible for
the rate function at T = 0 to be confined to values w � 0.
On the left side, however, all temperatures have the same
positive slope for R � 0. The analytical method to study the
asymptotic behavior is the analysis of Eq. (26) for R → ±∞.
One finds that for T > 0,

c(R) ∼
{

2ε0(g)R + C∞ for R → ∞,

−2ε0(g′)R + C−∞ for R → −∞ (29)

with constants C±∞ and (negative) ground-state energy
densities ε0(g) and ε0(g′). This directly translates into an
identical upper bound for all rate functions r(w) with any
finite temperature and a common negative lower bound for
all temperatures T > 0 (see Figs. 4 and 5). Consequently, it
follows that at nonzero temperature,

p(w) = 0 for w < 2ε0(g) and w > −2ε0(g′).

In other words, it is possible that negative work can be
measured if T > 0, although being highly improbable for very
low temperatures. Microscopically, this can be realized by a
quench where many initially excited k-sectors end up in states
with lower energy, thus extracting energy from the system.
This does not violate the second law of thermodynamics, since
the mean value w̄ where r(w̄) = 0 is always larger than 0.
The limits in Eq. (29) show that the prequench parameter
g determines the lower bound, while the postquench value
g′ determines the upper bound. This can be understood as
follows: If, for example, the system begins in the highest
excited state (all k-sectors are doubly occupied), the energy
density is given as εh(g) = −ε0(g). To measure the minimal
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−1 −0.5 0 0.5 1 1.5 2

∞∞

r(
w

)

w

β = 0.1
β = 1
β = ∞

FIG. 4. The rate function r(w) of the work distribution function
for a single quench from g = 0.5 to g′ = 2 at different inverse
temperatures β. For nonzero temperatures, the rate function is finite
within some interval determined by the ground-state energy densities
of the pre- and postquench Hamiltonian. For larger or smaller
work densities, the rate function is infinite (black lines) such that
the corresponding work distribution function vanishes. The T = 0
(β = ∞, blue line) case shows a peculiarity: The rate function is
already infinite for w < 0, such that p(w < 0) = 0. This results
from the fact that initially only the ground state of the prequench
Hamiltonian is occupied.

work, one needs to extract maximal energy from the system,
which can be achieved by quenching the system to the ground
state of the postquench Hamiltonian with energy ε0(g′). The
difference (including the energy shift by subtracting ) yields
wmin = ε0(g′) − [−ε0(g)] −  = 2ε0(g). An analogous ex-
planation holds for the upper bound.

B. Rate function for the double quench

In the mentioned work about the DPT, Heyl et al. computed
the rate function of the work distribution function for a
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FIG. 5. Zoom into Fig. 4 showing the rate function r(w) of the
work distribution function for a single quench from g = 0.5 to g′ = 2
at different inverse temperatures β. In addition to the previous data,
the curve for β = 10 has been added to demonstrate the steep ascent of
the rate function for low temperatures. One notices that the difference
between the low-temperature and zero-temperature results is already
too small to be adequately resolved.
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double quench at zero temperature and showed that the DPT
is intrinsically included in this quantity [10]. In this way,
interpreting the Loschmidt echo as the probability density that
zero work is performed, the work distribution function can
be regarded as a generalization of the Loschmidt echo. Their
study also used the Gärtner-Ellis theorem to compute the rate
function r(w,t) by transforming the corresponding negative
scaled cumulant generating function c(R,t) via a Legendre-
Fenchel transformation as explained earlier. For R = ∞, the
latter quantity shows nonanalyticities for quenches across the
QCP gc = 1 at the critical times t∗n = t∗(n + 1

2 ), n = 0,1,2 . . .

and momentum k∗. This behavior extends to the rate function if
w = 0, thus rendering r(w = 0,t) nonanalytic. Now, a similar
procedure will be used to investigate whether a DPT can also
occur at nonzero temperatures by analyzing the corresponding
negative scaled cumulant generating function c(R,t). If this
function features nonanalytic behavior, it will continue to the
LF-transformed version, i.e., the rate function. As for the single
quench, one therefore studies the argument of the logarithm in
the integrand in Eq. (26) given by Eq. (19) for possible roots
when u = iR with R ∈ R ∪ {−∞,∞}. However, in contrast to
the T = 0 case, we will now show that the integrand is always
analytic no matter what quench parameters are considered.
This can be seen by examining the denominator and numerator
in Eq. (19) more closely. For β < ∞ (T > 0), both are strictly
positive since only positive terms are added. The canonical
distribution of initial states represented by the cosh[βEk(g)]
terms inhibits the existence of roots in any form. In fact,
the expression is everywhere analytic as in the single quench
case for T > 0. It follows that nonanalyticities and therefore
dynamical phase transitions as in the understanding of Heyl
et al. cannot occur under any conditions if T > 0 in the
transverse field Ising model. To clarify this difference and
to compare to the zero-temperature results, we now study the
integrand at the critical times t∗n and critical momentum k∗.
For this mode, 2φk∗ = π/2 and the argument of the logarithm
in the integrand becomes

Gk∗ (R,t∗n ) = 1 + cosh[(−2R + β)εk∗(g)]

1 + cosh[βεk∗ (g)]
. (30)

This term can only vanish in the zero-temperature limit β →
∞,

lim
β→∞

Gk∗(R,t∗n ) = e−2Rεk∗ (g) (31)

for R → ∞. Since this is the argument of the logarithm in the
integrand, this exactly recovers the appearance of nonanalytic
behavior as shown in Ref. [10]. However, for any nonzero
temperature, the right-hand side of Eq. (30) cannot be zero
and therefore DPTs in the sense of Heyl et al. are not possible.
The asymptotic behavior of c(R,t) is again determined by
the ground-state energy densities of the initial and final
Hamiltonian, which are identical for a double quench, i.e.,
H (g), such that

c(R,t) ∼
{

2ε0(g)R + C∞ for R → ∞,

−2ε0(g)R + C−∞ for R → −∞.
(32)

Similarly as before, it follows that p(w) = 0 everywhere
except for 2ε0(g) � w � −2ε0(g).
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FIG. 6. Rate function r(w,t) for a double quench from g = 0.5
to g′ = 2 and back to g after time t at inverse temperature β =
10 in a color-coded form. The dashed line depicts the expectation
value of the performed work, i.e., where r(w,t) = 0. In contrast to
the zero-temperature version of this plot, the work density plane
is extended to negative work densities. This results from the initial
canonical distribution of states, i.e., the inclusion of excited states,
such that energy is extracted from the system when the final state
is energetically lower than the initial one. However, in contrast to
positive work densities, the ascent of r(w,t) is much steeper for
w < 0 similar to the single quench in Fig. 5. The red areas around
t/t∗ = 0.5 and 1.5 are remnants of the dynamical phase transition
at T = 0, as can be seen in direct comparison and by analyzing the
constant work density cuts in Fig. 7.

Figure 6 shows the result for the rate function r(w,t)
of a double quench protocol across the QCP with identical
parameters as in Ref. [10], but for a low, nonzero temperature.
Comparing this result with its zero-temperature correspon-
dence shown in Fig. 2 in Ref. [10], one immediately notices the
general qualitative agreement in shape. The expectation value
where r(w,t) = 0 (indicated by the dashed line) continues to
be shifted toward higher work densities at times t∗1 = 0.5 and
t∗2 = 1.5, despite the absence of a DPT. The new feature is the
expected extension to negative work densities, which seem to
be not as heavily influenced by the DPT as the positive part and
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FIG. 7. Various cuts of the rate function plot in Fig. 6 for fixed
values of the work density w (w increases from top to bottom). While
the rate function of the Loschmidt echo (w = 0) at T = 0 features
DPTs visible as kinks, its nonzero temperature equivalent is perfectly
smooth. However, the DPT still heavily influences the behavior of the
rate function in the form of a shift to larger values of r(w,t).
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FIG. 8. Rate function r(w,t) for a double quench from g = 0.5
to g′ = 2 and back to g after time t at inverse temperature β =
1 in a color-coded form. The higher temperature leads to a flatter
behavior of the expectation value compared to β = 10, while the rate
functions for fixed times broaden and now almost equally extend to
negative w. In other words, the rate function of the work distribution
function becomes more symmetric with respect to the w = 0 axis
with increasing temperature. This is understood to be a result of the
initial canonical distribution where the energy levels become more
evenly populated as T grows.

display a steep ascent with decreasing w as in the single quench
case. It is possible that the large slope undermines the visible
effects of the DPT. Horizontal cuts of the plot for fixed values
w are depicted in Fig. 7. At zero temperature, the w = 0 line
represents the rate function of the Loschmidt echo and features
the DPT through kinks at the specified times t∗n . If T > 0, these
kinks cease to exist, as expected, and the rate function r(w =
0,t) is smooth. With increasing temperature, the effect of the
DPT at T = 0 diminishes, as can be seen in Fig. 8. A higher
temperature means that the canonical distribution is more
uniformly distributed such that the number of energy extraction
and insertion transitions equalizes. As a consequence, the rate
function becomes more symmetric around the expectation
value, which approaches the w = 0 line. The only visible
remnant of the DPT is the slightly shifted rate functions in the
vicinity of t/t∗ ≈ 0.25. In comparison to lower temperatures,
it appears that this area has also moved to earlier times.

V. THE TASAKI-CROOKS-JARZYNSKI THEOREM

In this section, we study the one-dimensional transverse
field Ising model in the context of a famous fluctuation relation,
namely the Tasaki-Crooks-Jarzynski relation. In general,
fluctuation theorems provide additional information about
the statistical properties of the physical quantity of interest
and become important whenever a statistical description is
needed for a complete characterization [5]. This is the case,
for example, when work measurements are considered due to
the initial distribution of states at a certain temperature. One
famous achievement in this context was certainly the Jarzynski
equality given by

〈e−βW 〉λ = e−βF (33)

in its quantum form for a ramp protocol λ, where the average
is taken with respect to the initial Gibbs distribution [26–28].
It means that the mean of exponentiated work values W of
many identical experiments equals the exponentiated change

of the free energy F of the corresponding equilibrium states.
The impact of this theorem relies on the fact that it also holds
for nonequilibrium work measurements. One can therefore
learn about the change of the free energy of the equilibrium
states even if the system is not in equilibrium during the work
measurements. A more general theorem including Eq. (33)
is the Tasaki-Crooks-Jarzynski relation, which relates the
work distribution functions of a quench process λ and its
time-inverted version λ̃ to the change of the equilibrium Gibbs
free energy F . It reads

p[w; λ]

p[−w,λ̃]
= eNβ(w−f ), (34)

where p[w; λ] denotes the work distribution function of the
work density w, N is the system size, and f = F/N is the
free-energy density [29–31].

A. Single quench

Rewriting Eq. (34) in terms of its rate functions of the
forward (F) and backward (B) quench produces a remarkable
result: the Tasaki-Crooks-Jarzynski relation naturally trans-
lates into a simple algebraic equation independent of the
system size N , namely

1

N
ln

(
pF(w)

pB(−w)

)
= rB(−w) − rF(w) = β(w − f ). (35)

This form offers an easy way to measure f , as already shown
in experiments [6–8]. According to the equation above, it is
even possible to “read off” the value for f in the plot that
is shown in Fig. 9. The result can be verified with an exact
calculation with the free-energy density,

f (g) = − 1

Nβ
ln Z(g) = − 1

Nβ

∏
0<k<π

{2 + 2 cosh [βEk(g)]}

= − 1

2πβ

∫ π

0
dk ln{2 + 2 cosh [βEk(g)]}. (36)
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FIG. 9. Rate functions r(w) for a single quench from g = 0.5 to
g′ = 2 (red dash-dotted line) and its time-reversed counterpart (red
dotted) at temperature β = 0.1. The difference of the rate functions
shows linear behavior (blue solid) and allows us to directly determine
f . The black vertical line (dashed) depicts the exact calculation
using Eq. (36).
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Within numerical accuracy, both methods show the expected
perfect agreement.

Beyond numerics, the Tasaki-Crooks-Jarzynski relation can
be verified exactly using the Fourier-transformed version of
Eq. (34) [5],

Z(g)GF(u) = Z(g′)GB(−u + iβ). (37)

On both sides, the partition function Z cancels with itself when
plugging in G(u) as in Eq. (14) such that only the products
over k remain. It follows that the equation above reduces to a
k-sector-like form. After dividing by 2 on both sides, it now
reads

1 + cosh[(iu + β)εk(g)] cos[uεk(g′)]

− i sinh[(iu + β)εk(g)] cos(2φk) sin[uεk(g′)]

= 1 + cosh{[i(−u + iβ) + β]εk(g′)} cos[(−u + iβ)εk(g)]

− i sinh{[i(−u + iβ) + β]εk(g′)} cos(−2φk)

× sin[(−u + iβ)εk(g)]. (38)

In the next step, one simply uses the trigonometric identities
cosh(±ix) = cos(x) and sinh(±ix) = sin(±x) with x ∈ C to
show that the right-hand side recovers the left-hand side. Note
that the minus sign in cos(−2φk), which results from the
backward protocol g′ → g, is canceled due to the symmetry
relation of the cos function.

B. Double quench

For the double quench, Eq. (34) simplifies immediately
because the forward and the backward quench are identical,
i.e., the protocol describes a cyclic process. Consequently,
F = 0 and the equation relates the region r(w � 0) to the
r(w < 0) part:

r(w) + βw = r(−w). (39)

It follows that knowing one part of the entire rate function
r(w,t) in Fig. 6 is sufficient, because the other part is
determined by it. In particular, the region where w < 0 and
the rate function strongly ascends is difficult to address
experimentally. With the help of Eq. (39), it would only be
necessary to measure the part where the work measurements
take on positive values. The numerical verification of the
Tasaki-Crooks-Jarzynski relation is shown in Fig. 10, where
the agreement between the left- and right-hand side of Eq. (39)
is displayed. Analogously to the single quench analysis, one
can verify the Tasaki-Crooks-Jarzynski theorem exactly via
its Fourier-transformed version. Due to the simple symmetric
form of the ramp protocol, the partition functions on the left
and right side of Eq. (37) are identical. One can therefore
immediately study the final form of the characteristic function
of work given in Eq. (19) and check whether it is identical
for u and −u + iβ. The only part where u appears is the cosh
term, and since

cosh [(2iu + β)εk(g)] = cosh{[2i(−u + iβ) + β]εk(g)},
(40)

the identity is shown.
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FIG. 10. Rate function r(−w) and r(w) + βw for a double
quench from g = 0.5 to g′ = 2 and the inverse temperature β = 2,
which are identical. From the Tasaki-Crooks-Jarzynski theorem, it
follows that both rate functions are related via the additional summand
βw, such that r(w � 0,t) determines r(−w,t) and vice versa.

VI. CONCLUSIONS

In this paper, we demonstrated analytically that DPTs in
the one-dimensional transverse field Ising model cannot occur
at nonzero temperatures due to the initial distribution of states
being thermal. To show this, we calculated the characteristic
function of work for the simple single and double quench
protocol. Due to the large deviation form of this function,
it was possible to compute the rate function of the work
distribution function via a Legendre-Fenchel transformation.
We elucidated how the quench parameters define the limits of
the rate function in the context of this transformation. Despite
the lack of nonanalyticities, the work distribution function
at T > 0 was shown to be continuously influenced by the
DPT at T = 0. In the quantitative study, we displayed how
this influence diminishes with increasing temperature and the
rate function changes accordingly. This observation in one
dimension can be contrasted with the results of Canovi et al.,
who found nonanalytic behavior even at nonzero temperatures
in the Falicov-Kimball model and the Hubbard model in
the dynamical mean-field limit (DMFT) [16]. We attribute
this difference to the generic behavior of low-dimensional
quantum models in which quantum fluctuations become more
pronounced and generically suppress nonanalytic behavior.

In the final section, we discussed and analytically verified
the Tasaki-Crooks-Jarzynski theorem for a global single and
double quench in the chosen system. Here, the numerical study
focused on the applicability of the Tasaki-Crooks-Jarzynski
relation for different practical purposes.
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