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Floquet thermalization: Symmetries and random matrix ensembles
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We investigate the role of symmetries in determining the random matrix class describing quantum
thermalization in a periodically driven many-body quantum system. Using a combination of analytical arguments
and numerical exact diagonalization, we establish that a periodically driven “Floquet” system can be in a different
random matrix class from the instantaneous Hamiltonian. A periodically driven system can thermalize even when
the instantaneous Hamiltonian is integrable. A Floquet system that thermalizes in general can display integrable
behavior at commensurate driving frequencies. When the instantaneous Hamiltonian and the Floquet operator
both thermalize, the Floquet problem can be in the unitary class while the instantaneous Hamiltonian is always
in the orthogonal class, and vice versa. We extract general principles regarding when a Floquet problem can
thermalize to a different symmetry class from the instantaneous Hamiltonian. A (finite-sized) Floquet system can
even display crossovers between different random matrix classes as a function of driving frequency.
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The quantum statistical mechanics of well-isolated many-
body quantum systems is drawing intense interest, driven in
part by recent experimental advances in the construction,
control, and measurement of such systems [1,2]. One key
question involves whether—and how—such well-isolated
quantum systems can thermalize. The eigenstate thermaliza-
tion hypothesis (ETH) [3–5] plays a central role in these
discussions. For systems with eigenstates that obey the ETH,
every (ETH obeying) many-body eigenstate is individually
in thermal equilibrium, in the sense that for a macroscopic
system prepared in that eigenstate, the reduced density matrix
for a small subregion equals the thermal density matrix, at a
temperature set by the energy density in the eigenstate. These
ideas have also been applied to periodically driven “Floquet”
systems [6–8], which lack a conserved energy. In the absence
of any conserved quantities, there arises a version of the
ETH in which the reduced density matrix for a subregion is
proportional to the unit matrix, i.e., thermalization to “infinite
temperatures.” Such periodically driven “Floquet” systems
provide a particularly clean playground for investigations of
quantum thermalization, and they have inspired much recent
work [9–14]. One question that has not been asked, however,
is whether all thermalizing Floquet systems are the same, or if
there exist sharply distinct infinite temperature phases.

Random matrix theory [15] provides an independent and
complementary approach to understanding thermalization. For
systems that do thermalize, random matrix theory predicts that
quantities such as eigenvalue statistics and level correlation
functions should be governed by the relevant random-matrix
ensemble—either one of the three traditional Wigner-Dyson
ensembles, or, in the presence of particle-hole symmetry, the
generalized Altland-Zirnbauer ensembles [16]. Two Floquet
systems described by distinct random matrix ensembles are
in sharply distinct phases, even if both are at “infinite
temperature.” However, the role of symmetries in determining
the relevant random matrix ensemble for a Floquet system has
not been explored.

In this paper, we explore the role of symmetries in Floquet
thermalization. We ask the following: when a Floquet system
thermalizes, can we determine the relevant random matrix en-
semble by examining the symmetries of the (time-dependent)
Hamiltonian? We establish by analytical arguments and
numerical exact diagonalization that the answer to the above
question is no. The Floquet problem can thermalize, displaying
random matrix statistics, even when the instantaneous Hamil-
tonian is always trivially integrable. A thermalizing Floquet
system can also display an emergent integrability at certain
commensurate driving frequencies. Even when the Floquet
problem and the instantaneous Hamiltonian both thermalize,
they can be in different thermalizing phases. In particular,
the Floquet problem can be governed by the (circular)
unitary ensemble even when the instantaneous Hamiltonian is
governed by the (Gaussian) orthogonal ensemble at all times,
and vice versa. We discuss under what situations the Floquet
problem and the instantaneous Hamiltonian can thermalize
to different symmetry classes. The Floquet problem can also
display crossovers between orthogonal and unitary regimes as
a function of driving frequency (in addition to the well-known
crossovers between thermalizing and localized regimes).

We restrict our discussion to orthogonal and unitary
ensembles, leaving extensions to the symplectic and Altland-
Zirnbauer classes to future work. Our results are obtained by
working with “bang-bang” models, where the Hamiltonian is
toggled between two discrete forms, since these provide the
simplest realization of a Floquet system. However, we believe
the conclusions to be generic. Our work is focused on level
statistics as diagnostics of the random matrix class. We note
also that unlike most work in the field, our calculations are
not restricted to states in the middle of the spectrum. Indeed,
we have included states near the band edge by correcting for
the varying density of states, using a normalization procedure
introduced in [17].

We focus on a simple model based on a chain of N spins-
1/2 with periodic boundary conditions. The instantaneous
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Hamiltonian is the generic anisotropic Heisenberg Hamilto-
nian with a random field,

H ({Jα},{hα}) =
∑

α=x,y,z

[
Jα

N∑
i=1

Sα
i Sα

i+1

]

+
∑

α=x,y,z

[
hα

N∑
i=1

cα,iS
α
i

]
, (1)

where Sα
i = 1

2σα
i and where σα is a Pauli matrix. The

coefficients cα,i are uncorrelated and chosen according to a
uniform distribution within the interval [−1,1]. The amplitude
of the random field is set through the hα . This model exhibits
various level statistics depending on the parameters {Jα} and
{hα}. Setting all parameters to zero except Jz and hz leads
to a trivially integrable model. If we now take Jx = Jy =
Jz = 1 and hx = hy = 0, hz = h, then we obtain the spin
half Heisenberg model with random z fields, which is a
workhorse of studies of many-body localization (MBL). This
model displays a many-body localized phase (with Poisson
level statistics) for large h � 3.5, and a thermalizing phase
[with Gaussian orthogonal ensemble (GOE) level statistics in
a sector with fixed total Sz] for small h [18]. Note that the level
statistics are GOE even though the time-reversal symmetry is
broken by the field because of the presence of a disguised
antiunitary symmetry, made up of time reversal and a rotation
by π of all spins about the x axis, which leaves the Hamiltonian
unchanged. Similarly, if we allow two components of the
field to be nonzero (e.g., hx �= 0, hy �= 0, and hz = 0), then
too the level statistics are described by the GOE for small
fields when the system thermalizes. The relevant antiunitary
symmetry is now time reversal plus a π rotation about the z

axis (i.e., Sx → Sx , Sy → Sy , and Sz → −Sz), which leaves
the Hamiltonian unchanged [19,20]. Once all three fields are
nonzero, however, there is no longer any such antiunitary
symmetry, and the level statistics in the thermalizing phase
are described by the Gaussian unitary ensemble (GUE).

The Hamiltonian of Eq. (1) is the building block of our
“bang-bang” model. We focus on the two-bang case, which is
the simplest possible structure for a Floquet problem. The time-
dependent τ -periodic Hamiltonian H2bangs(t) is defined as

H2 bangs

(
0 < t <

τ

2

)
= H1 = H ({Jα,1},{hα,1}),

(2)

H2 bangs

(
τ

2
< t < τ

)
= H2 = H ({Jα,2},{hα,2}),

where {Jα,1} and {hα,1} ({Jα,2} and {hα,2}) set the H2bangs(t)
when 0 < (t mod τ ) < τ

2 [ τ
2 < (t mod τ ) < τ ]. Note that the

random coefficients cα,i are identical for H1 and H2. The time
evolution operator corresponding to Hamiltonian evolution
over τ is

U (τ ) = exp(−iH1τ/2) exp(−iH2τ/2). (3)

Our goal is to explore the connection between the statistics
of the eigenvalues eiλn of U (τ ) and the level statistics of
the time-dependent instantaneous Hamiltonian H. We note
that the Floquet operator is governed by circular rather than
Gaussian ensembles [15].

To numerically probe the level statistics, we compute the
ratio of adjacent gaps. For a sorted spectrum {λn; λn � λn+1},
the ratio of adjacent gaps is defined as

rn = min(λn − λn−1,λn+1 − λn)

max(λn − λn−1,λn+1 − λn)
. (4)

Depending on the level statistics, the average ratio r of adjacent
gaps is r � 0.530 for the orthogonal ensemble [9], r � 0.60
for the unitary ensemble [9], and r � 0.386 for a Poisson
spectrum [18]. Since we are restricted to moderate matrix
sizes, we also average r over different samples, denoting by
〈r〉 the corresponding ensemble-averaged value.

As a warmup, let us consider the situation in which both H1

and H2 are integrable by using Jx,1 = Jz,2 = 1, hx,1 = hz,2 =
h, and all the other parameters being zero, i.e.,

H1 =
N∑

i=1

Sx
i Sx

i+1 + hcx,iS
x
i , (5)

H2 =
N∑

i=1

Sz
i S

z
i+1 + hcz,iS

z
i . (6)

As can be observed in Fig. 1, the Floquet problem
thermalizes to the orthogonal ensemble for any value of τ , as
long as the random fields h are weak enough. Thermalization
is governed by the orthogonal ensemble because the Floquet
operator (3) is invariant under the antiunitary symmetry Sx →
Sx , Sy → Sy , and Sz → −Sz as discussed above. Note that the
Floquet problem can thermalize even though the instantaneous
Hamiltonian is always integrable, because the constants of
motion of the instantaneous Hamiltonian change over time, and
nested commutators [H1,H2], [H1,[H2,H1]], . . . generate ever
higher-order spin terms (unlike [21], where commutators only
renormalize coefficients in a quadratic boson Hamiltonian)
such that the Floquet Hamiltonian does not have an extensive
number of local constants of motion. This is reminiscent of
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FIG. 1. Average ratio of adjacent gaps for the Floquet unitary
of the two bang-models where H1 and H2 are given by Eqs. (5)
and (6). The calculations were done for N = 10 spins and various
amplitudes of the random field h. 〈r〉 has been averaged over 200
samples. Inset: Results for the same model at larger τ , showing an
emergent integrability at commensurate frequencies τ = 4nπ . While
we only show the data for h = 0.5, the results are identical at least
up to h = 6.0.
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single-particle quantum chaos problems involving two inte-
grable Hamiltonians but leading to quantum chaotic behavior
[22–24]. The major difference here is that our system would
exhibit this feature even without an average over disorder.

For large fields, the model displays a many-body localized
phase in the high-frequency limit, diagnosed by Poisson level
statistics. However, the system always thermalizes below
a (field-dependent) critical frequency, which is the generic
behavior for Floquet systems with an MBL phase [25,26]
and is related to the increasingly nonlocal response to time-
dependent local perturbations [27].

Note the existence of a dip in 〈r〉 at a field-strength-
dependent value of τ ≈ 2 [28]. In brief, the dip occurs when
the Floquet zone width first becomes comparable to the
many-body bandwidth (such that states start getting “folded”
into the principal Floquet zone) and seems to be a universal
signature of the weakened level repulsion between states
that have and have not been reconstructed by the resulting
many-body resonances.

Finally, note that the model discussed above actually
displays integrable behavior at a discrete set of frequencies
τ = 4nπ (integer n). This emergent integrability illustrates
the special behavior that can arise in Floquet problems at
commensurate frequencies [28].

We now discuss situations in which the instantaneous
Hamiltonian and the Floquet problem are both thermalizing,
and we discuss the (lack of) any relation between the relevant
symmetry classes for thermalization. We begin by pointing
out that the Floquet problem can thermalize to the circular
unitary ensemble (CUE) for all τ even when the instantaneous
Hamiltonian always thermalizes to the orthogonal class. This
can be achieved, e.g., in a model with

H1 =
N∑

i=1

Si · Si+1 + h

(
cx,iS

x
i + 1

2
cy,iS

y

i

)
, (7)

H2 =
N∑

i=1

Si · Si+1 + h

(
1

2
cy,iS

y

i + cz,iS
z
i

)
. (8)

The instantaneous Hamiltonian only ever has a field along
two axes, is thus invariant under an appropriate antiunitary
transformation, and thus at weak disorder thermalizes to
the orthogonal ensemble 〈r〉 ≈ 0.53. In contrast, the Floquet
problem involves fields along all three axes, and it is not
invariant under any such antiunitary transformation, and thus
it thermalizes to the unitary ensemble (Fig. 2), at least for
weak fields. For stronger fields, there exists a localized phase
with Poisson statistics for high driving frequencies, which
gives way to a thermalizing phase in the CUE class for low
frequencies. We can understand thermalization of the Floquet
problem to the unitary class as follows: in the model discussed
above, for H1 the relevant antiunitary symmetry is the improper
rotation Sz → −Sz, whereas for H2 it is Sx → −Sx . However,
since H1 and H2 have different antiunitary symmetries, there
is no antiunitary symmetry for U (τ ). We believe that this
result—that the Floquet Hamiltonian can be CUE even if
the instantaneous Hamiltonian is GOE if the antiunitary
symmetries change over time—is general, and not particular
to two-bang models.
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FIG. 2. 〈r〉 value for the Floquet unitary operator of the two bang-
models where H1 and H2 are GOE and given by Eqs. (7) and (8). The
calculations were done for N = 11 (solid lines) and N = 10 (dashed
lines) spins and various amplitudes of the random field h. 〈r〉 has
been averaged over 300 samples.

We can also have a situation in which the instantaneous
Hamiltonian is always GUE but the Floquet problem is
governed by the circular orthogonal ensemble (COE). In a
two-bang model with equal length bangs, this happens if there
is an antiunitary symmetry that exchanges H1 and H2. In this
case, the antiunitary symmetry leaves U (τ ) unchanged, up to
a shift of τ/2 in the origin of time, even while it changes the
instantaneous Hamiltonian. A specific example is a model with
all the Jα = 1 and hα,1 = hx,2 = hz,2 = −hy,2 = h, wherein
the two Hamiltonians H1 and H2 are transformed into one
another by the improper rotation Sy → −Sy . This can be
seen to have COE level statistics (Fig. 3) even through the
instantaneous Hamiltonians are GUE (〈r〉 = 0.6). Again, we
believe this result to be general—even if the instantaneous
Hamiltonian is not invariant under any antiunitary symmetry,
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FIG. 3. The Floquet Hamiltonian of the two bang-models where
H1 and H2 transform into one another under an antiunitary trans-
formation, where the time spent evolving with H1 is τ (1/2 − ε) and
the evolution with H2 is performed during τ (1/2 + ε). We consider
both system sizes N = 11 spins (solid lines) and N = 10 (dashed
lines) spins. The black lines corresponds to the case ε = 0 while the
red lines are for ε = 0.05. The inset show the evolution of 〈r〉 when
changing ε for τ = 0.3 (black lines) and τ = 3.0 (red lines).
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FIG. 4. Average ratio of adjacent gaps for the Floquet Hamil-
tonian of the two bang-models [Eq. (2)] with all J = 1 and
(hx,1,hy,1,hz,1) = (0.5,0.5,0) and (hx,2,hy,2,hz,2) = (0, − 0.5,0.5)
for systems of N spins. 〈r〉 has been averaged over 200 samples.

if the Floquet operator is so invariant (up to a shift in
the origin of time) then the Floquet level statistics will be
COE. This may be useful numerically, since driven systems
with GUE instantaneous Hamiltonians may nevertheless be
represented by a completely real Floquet Hamiltonian HF =
−i
τ

ln U (τ ). Of course, this emergent antiunitary symmetry of
the stroboscopic time evolution operator can be broken by
applying H1 and H2 for unequal times τ (1/2 ± ε), in which
case the Floquet problem reverts to the unitary class (Fig. 3).

We now discuss situations in which the Floquet Hamil-
tonian displays transitions between random matrix classes
as a function of driving frequency. One model that does
this has all J = 1 and (hx,1,hy,1,hz,1) = (0.5,0.5,0) and
(hx,2,hy,2,hz,2) = (0, − 0.5,0.5). This has fields along all three
axes so in general it should be in the unitary class, but it
should have orthogonal statistics in the τ → 0 limit since
H1 + H2 has a vanishing field along the y axis. What we
see numerically (Fig. 4) is, however, much more striking.
There is a finite regime of frequencies τ < τc ≈ 1 over which
we observe orthogonal statistics, with unitary statistics not
setting in until τ � 2τc. If the dip in 〈r〉 is identified with the
onset of folding states into the principal Floquet zone, then

the “orthogonal regime” is presumably the regime when the
bandwidth is less than the Floquet zone width. The frequency
window over which this is true should shrink to zero in the
thermodynamic limit, since the bandwidth of an interacting
system is an extensive quantity. However, the shrinking of the
size of this window with system size is extremely slow (Fig. 4),
and thus an appreciable “orthogonal regime” may be seen in
modest-sized systems. It is interesting to note that resonances
between Floquet states in different zones (in an extended zone
scheme) are apparently essential to drive this U (τ ) from the
orthogonal to the unitary class.

Our numerical investigation of Floquet thermalization in
the orthogonal and unitary symmetry classes [28] reveals
the following general principles: (i) the Floquet problem can
thermalize, displaying random matrix statistics, even when the
instantaneous Hamiltonian is always integrable, if the instan-
taneous constants of motion change over time and if nested
commutators of unequal time instantaneous Hamiltonians
generate higher-order terms not present in the instantaneous
Hamiltonian. In this case, the Floquet problem can display
anomalous integrable behavior when the driving frequency is
commensurate with characteristic energy scales in the instan-
taneous integrable Hamiltonians. (ii) A thermalizing instanta-
neous Hamiltonian H (t) will be governed by the orthogonal
ensemble iff it is invariant under an antiunitary symmetry trans-
formation T (t). However, even if the instantaneous Hamil-
tonian is always governed by the orthogonal ensemble, the
Floquet problem can be in the unitary class iff the instantaneous
antiunitaryT (t) changes as a function of time. (iii) The Floquet
problem can be in the orthogonal class even if the instantaneous
Hamiltonian is in the unitary class if there exists an antiunitary
transformation that leaves the Floquet operator unchanged up
to a shift in the origin of time. (In a two-bang model this
happens if the antiunitary transformation exchanges H1 and
H2). (iv) There can arise crossovers between orthogonal and
unitary thermalization as a function of driving frequency. Our
results apply to the entire spectrum, not just the states in the
middle of the band. Extensions to other symmetry classes and
continuously time varying Hamiltonians are left to future work.
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