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Energy leakage in partially measured scattering matrices of disordered media
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We investigate energy leakage induced by incomplete measurements of the scattering matrices of complex
media. Owing to the limited numerical apertures of an optical system, it is experimentally challenging to access
theoretically predicted perfect transmission channels in the diffusive regime. By conducting numerical simulations
on scattering matrices, we demonstrate that energy leakage contributed from uncollected transmission in the
transmission matrices provides an energy transmission that is more enhanced than that predicted by measurement.
On the other hand, energy leakage originating from the uncollected reflection in the partial measurement of a
reflection matrix strongly suppresses the energy transmission through a zero-reflection channel, restricting the
transmission enhancement to no more than a fivefold enhancement in limited optical systems. Our study provides
useful insights into the effective control of energy delivery through scattering media and its ultimate limitation
in practical schemes.
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I. INTRODUCTION

Recently, the active control of light transport through
complex media by shaping an impinging wave front has
been demonstrated, and has attracted significant interest [1–4].
Such phenomena, governed by the interference of multiply
scattered waves, can be well formulated with a scattering
matrix (SM). An SM describes a linear relationship between
input and output complex fields. An SM consists of two
transmission matrices (TM) and two reflection matrices (RM),
and considers illumination from both sides. Because an SM
contains full optical information about light transport through
a turbid medium, it has been exploited in various studies,
including image reconstruction through a scattering layer [5], a
multimode fiber [6], a spectrometer [7], biophotonics [4,8–12],
plasmonic control [13], near-field control [14,15], lasers [16],
photoacoustics [17], and photovoltaic systems [18].

One of the most important questions in wave phenomena
in turbid media concerns energy transport. Theoretically, the
existence of perfect transmission channels, also known as open
channels, has been predicted even in highly scattering me-
dia, by the Dorokhov-Mello-Pereyra-Kumar (DMPK) equa-
tion [19,20] in the context of random matrix theory [21,22].
The transmission eigenvalues of ideal TMs or RMs follow a
bimodal distribution when wave propagation is in the diffusive
regime, which indicates the existence of perfect transmission
channels regardless of sample thicknesses.

Although the prediction of the open channel dates back
several decades, attempts to enhance energy delivery through
turbid media via open channels have not been fully explored in
experimental conditions. Recently, several works have demon-
strated enhancements of energy delivery [23,24]. However, the
demonstrated enhancements were far below the theoretically
expected ones, mainly due to the limited number of optical
modes for measurements and controls. More recently, it was
shown that the limited numerical apertures (NAs) of lenses
in optical systems prevent them from accessing information
about open channels, and thus enhanced energy delivery
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through turbid media will be significantly limited [25,26]. Al-
though the accessible information in experimental conditions
has been well described, uncollected information, which is
beyond the capability of a measurement system, and its effect
on energy transmission, have not been previously considered.

Recently, several methods have been developed to enhance
energy delivery via reflection measurements [27,28]. However,
transmission was restricted to only approximately threefold
enhancements in these studies. In addition, the ultimate limit
of the enhancement was not clarified, particularly in relation
to practical experimental conditions. Importantly, controlling
energy transmission by monitoring reflected fields also has
potential for biomedical applications because it does not
require an invasive scheme.

Here, we investigate energy leakage which originates from
partial measurements of a SM, using numerical simulations.
When a TM or RM of a medium is completely measured,
incident energy can be fully delivered to the output side of the
medium by employing open channels. We show that when a
TM or RM is incompletely measured due to the limited NA,
significant energy will be coupled out beyond the NA of the
optical experimental systems. This energy leakage provides
enhanced energy delivery in the transmission geometry, and
manifests strong suppression of energy transmission in the
reflection geometry. The presented concept of the energy
leakage can clearly explain the deviation between experimental
results and the theoretical expectation, and also provide
the practical limitations of energy transmission in actively
controlled light transport through turbid media.

II. PRINCIPLES OF ENERGY LEAKAGE

The energy leakage resulting from the partial measurement
of an SM are illustrated in Fig. 1. Before proceeding, we
define a measure f to be the fraction of experimentally
accessible optical modes in the total number of optical modes
of a scattering medium [26]. Here, f is formulated as f =
(NA/n)2, where NA and n denote the NA of an objective lens
and the refractive index of a surrounding medium, respectively.
For simplicity, we also assume that the NAs of illumination
and collection are the same. Although f is defined by NA,
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FIG. 1. Open channels and energy leakage in various experimental schemes. (a) Complete measurement of a TM allows access to perfect
transmission, τ = 1. (b) When a TM is partially measured, transmission through the maximal transport channel τmax is significantly decreased,
although the total transmitted energy through the turbid media Tf is high, τmax < Tf < 1. This is because some energy is coupled out to energy
leakage, even though it is not collected by the detection lens (the shaded area). (c) Similarly, a complete measurement of an RM enables the full
transmission of incident energy through the perfect zero-reflection channel, i.e., τ = 0. (d) Partial measurement of an RM produces significant
light loss through energy leakage, and transmittance via the zero-reflection channel is severely suppressed.

f can be understood as the fraction of the controlled and
measured information in a more general sense. For example,
on a point-to-point basis, f is defined as the fraction of the
controlled points over the total resolvable modes.

In an ideal situation, f = 1 [Fig. 1(a)], a TM can be
perfectly measured; and all existing optical modes in turbid
media can be fully accessed with their transmission response.
Then, an incident wave field can be coupled into a perfect open
channel, by using a spatial light modulator, for example, and
all input energy can be fully transmitted to the output side, i.e.,
transmittance τ = 1.

When a TM is partially measured due to the limited NA,
f < 1 [Fig. 1(b)], complete access to an ideal open channel is
impossible. In this case, the maximal transport channel has a
transmittance smaller than unity, τmax < 1 [25,26]. Nonethe-
less, there exists transmitted but uncollected energy Tleakage,f ,
which is referred to as energy leakage. The energy leakage
can contribute to the enhanced energy delivery depending on
applications, even though it is not directly collected by the
objective lens.

Similarly, a perfect measurement of an RM enables the
transfer of full incident energy through a scattering medium
via a zero-reflection channel [Fig. 1(c)]. When light absorption
is absent, an open channel in the TM corresponds to a
zero-reflection channel acquired from the RM. In the case
of a partial measurement of an RM, f < 1, a zero-reflection
channel still exists. However, the zero-reflection channel does
not guarantee that the reflection beyond the NA of an objective
lens vanishes. This uncollected reflection Rf corresponds
to energy leakage in the reflection geometry. The energy

leakage of an RM suppresses energy transmission through
a zero-reflection channel.

III. NUMERICAL SIMULATIONS ON
SCATTERING MATRICES

To quantitatively analyze the effects of energy leakage
on light transmission through turbid media, we numerically
simulated SMs and investigated the energy transport via
energy leakage. The set of SMs of scattering media in the
diffusive regime is obtained based on an approach used in
disordered metallic systems [29]. The simulation assumes a
scattering medium as a multilayer of weakly scattering thin
slices. Each slice consists of two sublayers: a free-space
propagation layer in which the phase is accumulated and a
scattering layer in which actual scattering events occur. In
the free-space propagation layers of the input and output
interfaces of the medium, the reflection matrices are set to
a null matrix, assuming no internal reflection. By changing
the number of slices, SMs with various optical thicknesses are
obtained. In our simulation, the numbers of input and output
modes were both set to be n = 4096. The optical thickness is
L/ls = 30, where L is the physical thickness of the scattering
medium and ls is the mean free path of light scattering. A
simulated SM is decomposed into two TMs and two RMs as
follows:

S =
[
r t

t ′ r ′
]
. (1)
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FIG. 2. (a) Amplitude and (b) phase of a simulated TM. (c) Amplitude and (d) phase maps corresponding to a representative input mode
(white rectangular area). (e) Amplitude and (f) phase of a simulated RM. (g) Amplitude and (h) phase maps corresponding to a representative
mode (white rectangular area).

Here we consider only one-sided illumination onto the
sample, so our scope is restricted to r and t .

A simulated TM and RM are shown in Fig. 2. The
amplitude [Fig. 2(a)] and phase part [Fig. 3(a)] of the TM show
uncorrelated random complex entities. The first column of the
matrix, which corresponds to the output field response to a
single input wave function, is represented in a two-dimensional
(2D) spatial map with the amplitude [Fig. 2(c)] and the phase
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FIG. 3. Energy transmission through the maximal transport chan-
nel τmax (red dashed line) and the total transmitted energy Tf (red
solid line) as a function of f . The deviations between Tf and τmax

correspond to the energy leakage (orange shaded area). The gray solid
line represents the mean transmittance 〈Tf 〉. Inset: The enhancement
factor Tf /〈Tf 〉 as a function of f .

part [Fig. 2(d)]. Similarly, the amplitude [Fig. 2(e)] and phase
part [Fig. 2(f)] of the RM and the representative 2D field map in
amplitude [Fig. 2(g)] and in phase [Fig. 2(h)] exhibit random
properties. The mean reflectance of the RM is significantly
greater than that of the TM, which is the signature of a highly
diffusive regime.

IV. ENERGY LEAKAGE IN THE PARTIALLY MEASURED
TRANMISSION MATRICES

Using the simulated SMs, we first studied the energy
transport in the measurement of the TM. When measured with
an optical system with f , only a fraction of an ideal TM t

can be accessed, and this measurable TM tf has m input and
output modes, where m = f n. In our numerical simulation,
tf can be obtained by taking an m × m submatrix of the full
TM t . Then, the eigenvalue decomposition is applied to t

†
f tf

in order to find the maximal transport channel,

t
†
f tf = Uf �f Vf , (2)

where Vf = [ν1ν1 · · · νm] contains transmission eigenvectors.
Let τmax ,f and νmax ,f be the maximum eigenvalue and its

corresponding eigenvector. It is noteworthy that this maximal
transport eigenvector is not the same as the open channel
acquired from the full matrix. In a real experiment, the
actual input field vector is formulated as the normalized
n-dimensional vector whose m components are equal to νmax ,f

and the remaining n-m components are zero,

Emax,f = 1√|vmax,f | [vmax,f 0 · · · 0]. (3)

Then, we define the total transmitted energy Tf as follows,

Tf = |tEmax,f |2. (4)
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Here we assumed that the total transmitted energy is measured
with an ideal objective lens with f = 1, although the TM
is partially measured. The mean transmittance 〈T 〉f of the
medium is defined as the transmitted energy for a plane wave
illumination If :

If = 1√
m

[1 · · · 1 0 · · · 0], (5)

and

〈T 〉f = |tIf |2. (6)

The numerically simulated energy transported by the
maximal eigenchannel and the energy leakage are shown in
Fig. 3(a). The mean transmittance of the scattering medium
is 0.0818 ± 0.0085 for the entire range of f ; hence it has
no dependence on f . When a sample is illuminated with
the maximal transport channel, the delivered energy, which
is equal to the maximum eigenvalue τmax ,f , linearly decreases
with f . This maximum eigenvalue is the quantity that is
experimentally measured. Interestingly, the total transmitted
energy Tf , including the energy transmitted by both the
maximal transport channel and the energy leakage, is larger
than the maximal eigenvalue. This shows that the actual
energy transport is more enhanced than one can expect from
the measurement. For example, a predicted transmission is
0.5038 ± 0.0293 in a measurement with f = 0.5. However,
the actual total transmittance is 0.6845 ± 0.0152, which is
35% enhanced over the predicted value.

We also compared our simulated results with reported
values from previous experimental reports. In an experiment
on the maximal energy transport [23], the mean transmittance
was about 0.079, taking into account the limited collection
angle. This value is coincident with the mean transmittance
0.0818 of our simulated TM. In Ref. [23], the optical system
had f = 0.1 and the maximal eigenvalue was approximately
equal to 0.031. This value is compatible with our simulated
result of 0.072 ± 0.0086, where the smaller eigenvalue in the
experiment can be explained by the fact that the illumination
NA was smaller than the collection NA. According to our
simulated result, total transmittance of 0.246 would have been
achieved rather than 0.031 if they had collected energy leakage
as well as optical modes transmitted through the objective lens.

In our previous study [26], a TM was experimentally
measured with f = 0.65 and the maximum eigenvalue was
reported to be 0.65, which is consistent with our simulated
values of 0.6546 ± 0.0279. If the maximal transport channel
had been exploited, the total transmittance of 0.7827 ± 0.0210
could have been obtained, which provides significantly en-
hanced light transmission.

In experimental realizations of maximal transport channels,
the practically important quantity is the enhancement of
delivered energy over the mean transmittance. Since the mean
transmittance is constant over f , the trend of the enhancement
factor, defined as Tf /〈Tf 〉, follows the curve shape of the total
transmitted energy (Fig. 3, inset). The enhancement factor
increases linearly with f , reaching approximately 12. Because
the maximal eigenvalue is a universal quantity [30], a higher
enhancement factor can be obtained with thicker samples with
smaller mean transmittance.

V. ENERGY LEAKAGE IN THE PARTIALLY MEASURED
REFLECTION MATRICES

Next, we examined the role of energy leakage in the
reflection geometry. Similar to the case of a TM, a zero-
reflection channel is retrieved from an m × m partial RM rf ,
where m = f n. To find an open channel of rf , the eigenvalue
decomposition is applied to r

†
f rf ,

r
†
f rf = Pf �f Qf , (7)

where Qf = [q1q2 · · · qm] contains reflection eigenvectors.
For the minimum eigenvalue τmin ,f and the corresponding
zero-reflection eigenvector qmin ,f , the input field vector in an
experiment is given as

Emin ,f = 1√|qmin ,f | [qmin ,f 0 . . . 0]. (8)

Then, the energy loss Rf through the energy leakage and
the total transmitted energy Tf is calculated as

Rf = |rEmin ,f |2, (9)

Tf = 1 − Rf − τmin. (10)

The mean transmittance of the media is defined in the same
way as in the case of the transmission geometry.

Compared to the transmission case, there are two distinctive
characteristics in the energy leakage in an RM: (1) The zero-
reflection channel always exists regardless of f [31], and we
can assume τmin is zero, and (2) energy leakage Rf in an RM
is defined as uncollected reflected light beyond the limit of
the NA, and thus the energy leakage suppresses the energy
transmission, as seen in Eq. (10).

The total transmitted energy Tf corresponding to the
illumination via a zero-reflection channel as a function of f is
plotted in Fig. 4(a). Notably, when f is slightly below unity,
energy transmission via a zero-reflection mode decreases
significantly. For example, the transmittance is only 0.2275 ±
0.0401 even with f = 0.8. Here f = 0.8 corresponds to an
objective lens with NA = 0.9. Furthermore, the transmittance
becomes smaller than 0.2 when f < 0.7. This result indicates
that it is crucial to measure the full RM to exploit open
channels in the reflection geometry. In our recent experimental
work [31], an RM was measured with f = 0.25. Although
the zero-reflection channel was observed in the acquired
RM, the expected total transmitted energy would be only
0.113 ± 0.0117, according to the current result.

Similar to the TM case, the enhancement of the energy as a
function of f follows the same trends with the total transmitted
energy in the reflection geometry [Fig. 4(b)]. The enhancement
factors are less than 4, except when f = 1, suggesting the
predicament of the experimental realization of exploiting open
channels. This limited controllability is also found in recent
experiments [27,28].

To compare the presented work with recent experimental
work, we analyzed the expected transmission considering
the experimental setups used. In Ref. [27], the illumina-
tion NA (fI = 0.2) and the collection NA (fC = 1.0) were
different. Similarly, the setup in Ref. [28] had mismatched
NAs (fI = 0.64, fC = 1.0). Owing to the assumption of the
symmetry between illumination and collection NAs in our
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FIG. 4. Energy transmission through the zero-reflection channels
Tf (red line) with significant energy loss due to the energy leakage
(orange shaded area). In the reflection geometry, τmax = 1, regardless
of a fraction number f . Gray solid line represents the mean
transmittance 〈Tf 〉. Inset: The enhancement factor Tf /〈Tf 〉 as a
function of f .

simulation, we took the geometric mean fmean = √
fIfC .

Then the experimental conditions in Refs. [27,28] correspond
to fmean = 0.44 and 0.8, respectively. The experimentally
observed enhancement factors are indicated in Fig. 4(c) and
both values are well matched with our numerical simulation.

VI. THE EFFECTS OF SCATTERING STRENGTH

In order to study the effect of the scattering strength of
a scattering medium, we finally investigated the dependence
of the energy leakage on optical thickness. We simulated
scattering media with three different thicknesses: L/ls = 30,
50, and 70. Governed by Ohm’s law in the diffusive limit [32],
the mean transmittance of scattering media is inversely pro-
portional to the sample thickness. The total transmitted energy
for maximal energy transport channels in the TM is shown as
a function of f [Fig. 5(a)]. It is observed that the energy
transmission decreases as the optical thickness increases.
This result indicates that the energy transport through energy
leakage is governed by the mean transmittance of the scattering
medium. In the RM, the energy transmission is more strongly
prohibited as the sample thickness increases [Fig. 5(b)].

The enhancements of energy transmission show slightly
different characteristics in the TM and RM [Fig. 5(c)]. In the
TM case, the enhancement was larger for thicker samples.
This is due to the fact that the energy transmission through
the maximal transport channel is independent of the optical
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FIG. 5. (a) Total transmitted energy thorough maximal transport channels in TMs (solid lines) and the mean transmittance (dashed lines)
with various optical thicknesses. (b) Total transmitted energy through zero-reflection channels in RMs (solid lines) and the mean transmittance
(dashed lines) with various optical thicknesses (c) The enhancement factor in TMs (dashed-dotted lines) and RMs (solid lines).
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FIG. 6. (a) Total transmitted energy thorough maximal transport
channels in TMs (solid lines) and the mean transmittance (dashed
lines) with various ballistic absorption lengths. (b) Total transmitted
energy through zero-reflection channels in RMs (solid lines) and the
mean transmittance (dashed lines) with ballistic absorption lengths.

thickness [30], while the mean tranmittance decreases linearly
as the sample becomes thicker. In contrast, the enhancement
in the RM remains almost constant over the entire range of f ,
except near unity. This result implies that the energy leakage in
the RM is strongly correlated with the mean transmittance, so
that the energy transmission through a zero-reflection channel
is dominated by the mean transmittance, except when f = 1.

VII. THE EFFECTS OF ABSORPTION

In previouse discussions, we have exclusively considered
lossless scattering media. However, the absorption is not
strictly zero in actual experiments. For example, most bi-
ological tissues have the absorption coefficient two orders
of magnitude smaller than the scattering coefficients [33].
Recently, it has been studied that the presence of absorption
modifies the transmission eigenchannels and the enhancement
of the total transmission [34,35]. Hence it is important to
investigate the relation between absorption and energy leakage
to address experimental limitations.

In order to study the effect of absorption on the energy
leakage, we used modified scattering matrices to incorporate
uniform absorption inside media [36]. We simulated three
different scattering matrices with various ballistic absorption
lengths la = ∞, 120L, and 2L. The scattering mean free path
was set to ls = 0.03L for all three cases. For la = 120L, the
diffusive absorption length is ξa = √

ls la/2 = 1.44L, which is
in the weak absorption regime ξa > L. The case of la = 2L

(ξa = 0.17L) is in the strong absorption regime ξa < L.

The modification of the trasnmission statistics inside
the medium in the presence of absorption [34] shows an
insignificant effect on the energy leakage [Fig. 6]. The total
transmitted energy for maximal energy transport channels
in the TM is shown as a function of f [Fig. 6(a)]. There
is no significant difference between the zero absoprtion and
weak absorption cases. For the strongly absorbing media, the
mean transmittance and the total transmitted energy decrease
due to the energy loss through absorption. However, the
total transmitted energy decreases linearly with f , showing
a similar behavior with the lossless case. In the RM, there is
still no significant effect of absorption [Fig. 6(b)]. The energy
decrease mainly originates from the imperfect coupling at the
interfaces of the scattering medium.

VIII. CONCLUSIONS

In summary, we have shown that partial measurements
of SMs produce energy leakage, which contibutes to the
enhanced delivery in the TM and severe prohibition of energy
transfer in the RM. In particular, efficient energy transmission
is intrinsically restricted in a partially measured RM because
the minimal reflection channel is strongly mismatched with the
genuine open channel of the scattering media. The numerically
simulated results showed that it is extremely difficult to
achieve perfect transmission in the reflection geometry; an
approximate factor of 5 is the maximum achievable limit of
transmission enhancement in practical optical systems.

From a practical point of view, this work provides useful
insight into the optimal strategy to realize efficient energy
transfer through highly scattering media. In order to address
various experimental schemes, further studies are necessary,
including the relation between the imperfect coupling to open
channels and spatial profiles inside a medium [37], effects
of different geometry factors of scattering media [38] and
index mistmatch [39,40], or near-field propagation [14,15,41].
Our work can be extended to other optical regimes, such
as Anderson localization [42], absorbing [25,34,35,43] or
amplifying [44] scattering media. We also expect that further
consideration of various optical degrees, for example, the
time-resolved RMs [45], will provide a more efficient way
of transferring energy through scattering media.
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