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Average-atom interatomic potential for random alloys
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EPFL, STI-IGM, Laboratory for Multiscale Mechanics Modeling, CH-1015 Lausanne, Switzerland

(Received 18 September 2015; revised manuscript received 7 January 2016; published 11 March 2016)

An average-atom (A-atom) embedded-atom-method potential for random multicomponent alloys at any
composition is derived analytically and validated by comparing A-atom and true random alloys bulk and defect
properties, in model Fe-Ni-Cr systems. The A-atom can be mixed with the individual alloying-element potentials,
thus enabling computation of defect/defect interactions. Its use provides quantitative insight into the physical
role of the fluctuations, and has many applications, such as in atomistic/continuum modeling of random alloys
and the development of new potentials with controlled properties.
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I. INTRODUCTION

Atomistic simulations using semiempirical potentials play a
key role in uncovering mechanisms of deformation, diffusion,
and phase transformation/growth in many materials [1–5].
In understanding the mechanical properties of metals, these
atomistic simulations are particularly valuable because the be-
havior is controlled by interactions among defects, especially
the interaction of dislocations with other defects like solutes,
grain boundaries, precipitates, other dislocations, or cracks that
involves scales often not reachable by ab initio methods. Most
metals used in applications are multicomponent alloys, often
nondilute, which present additional complexity. Molecular
dynamics (MD) or Monte Carlo simulations require accurate
interatomic potentials, and developing robust potentials remain
a major challenge [6–19], particularly for many-component
alloys. Furthermore, in nondilute alloys, fluctuations in local
atomic chemical environments make the analysis of important
defect/defect interactions difficult and ill-defined. These local
chemical fluctuations can, moreover, control some crucial
properties of the alloy, such as the plastic flow stress. Separat-
ing the effects of overall composition from local fluctuations,
and assessing which properties are controlled by fluctuations
and which are not, requires additional tools and concepts.

To address the atomistic modeling of random alloys at
arbitrary composition, we study in this article the concept of an
“average-atom” (A-atom) interatomic potential. We consider
random alloys, i.e. systems where there is random occupa-
tion of the constituent atoms among arbitrary (nonlattice)
sites. Starting from a known set of embedded atom method
(EAM) interatomic potentials for the multicomponent alloy
system, we perform an analytic average over all possible
random occupations of the atomic sites at the overall alloy
composition and thereby define a single-atom average-atom
potential meant to capture the average properties of the real
disordered alloy. This concept was originally introduced by
Smith et al. [20] and then applied to a few specific problems,
such as reverse-engineering interatomic potentials using bulk
properties from experiments [20,21], modeling equilibrium
segregation around defects [22,23], and studies of average
dislocation core structures [24,25]. Careful comparison of the
method with true random alloys EAM results has not been
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done, so no assessment of its range of validity exists. Due to
increasing computational power, the approach has been largely
superseded by direct studies on true random configurations
of alloys. Thus, features of the A-atom approach that remain
useful and important for current research have never previously
been identified.

In this paper we re-derive and carefully validate the A-atom
EAM potential concept for studies of bulk and defects proper-
ties, and highlight a number of the important but unrecognized
features of the method. In particular, we demonstrate that the
A-atom potential can be combined with any of the original
atom potential, enabling study of the complex “average”
defect/defect interactions that are nearly impossible to extract
from direct simulations on explicit random alloys at high
concentration. As computational metallurgy enters a new
phase of mechanistic and predictive modeling in realistic
alloys, applications of the A-atom potential to study a wide
range of defects and mechanical properties in multicomponent
random alloys, such as high entropy alloys and austenitic
stainless steels for instance, will increase rapidly.

II. PRE-AVERAGING PROCEDURE

A. Effective medium for the random alloy

The basis theoretical framework strongly resembles
effective-medium, virtual crystal approximation (VCA) and
coherent potential approximation (CPA) approaches to alloys
within electronic structure theory [26–33]. We consider an
N -component alloy, with average concentration cX of each
alloying element X, with

∑N
X=1 cX = 1. A configuration of

the alloy consists of a set of atomic sites {i} occupied by
individual atoms, as denoted by site occupation variables sX

i ,
with sX

i = 1 if a type-X atom sits in i site and 0 otherwise.
Within the embedded atom method (EAM) [6], the energy of
a given configuration is

E
({

sX
i

}) =
∑
i,X

sX
i FX(ρi) + 1

2

∑
i,j �= i

X,Y

V XY
ij sX

i sY
j , (1)

with
ρi =

∑
j �=i,X

sX
j ρX

ij , (2)

where sums are over all atomic sites and X,Y indicate
the different individual atom types. As usual, V XY

ij is the
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pairwise interaction between atoms X and Y and FX(ρi) is
the embedding energy for atom X at site i, with the local
electron density ρi at site i generated by atoms surrounding
site i. For a given set of atomic positions {i}, the average energy
of the configuration is obtained by averaging over all possible
site occupations consistent with the overall alloy composition.
Since FX(ρi) is independent of the chemical occupation at site
i and since the occupations in sites i and j are uncorrelated
in the random solid solution, the average energy can be
written as

〈E0〉 =
∑
i,X

cX〈FX(ρi)〉 + 1

2

∑
i,j �= i

X,Y

V XY
ij cXcY , (3)

where 〈sX
i 〉 = cX. We then perform a Taylor expansion

〈FX(ρi)〉 = 〈FX(ρ̄i)〉 + O(ρi − ρ̄i)2 around the average elec-
tron density ρ̄i , in which the first order term vanishes
since 〈(ρi − ρ̄i)〉 = 0. Neglecting second and higher-order
terms [34], which is the only approximation, the average
energy is

〈E0〉 =
∑

i

F A(ρ̄i) + 1

2

∑

i,j �= i

V AA
ij , (4)

with FA(ρ̄i) =
∑
X

cXFX(ρ̄i),

V AA
ij =

∑
X,Y

cXcY V XY
ij , ρ̄i =

∑
j �=i

∑
X

cXρX
ij , (5)

where A denotes an average-atom having embedding function
FA and self-pair-interaction V AA

ij . The A-atom interatomic
potential of Eq. (4) has exactly the EAM form for the potential
energy of an elemental atom [35], and so the A-atom is now a
new atomic species that embeds the average properties of the
random alloy. Note that all local fluctuations are averaged out
analytically, and that the average is performed on any arbitrary
set of atomic sites. The above derivation equally applies to the
Finnis-Sinclair [7] and second moment approximation [8], and
could be extended to modified EAM potentials [17,18].

B. Constituent substitutional impurity

The A-atom EAM potential can further be used in combina-
tion with the individual alloying elements {X} in simulations,
as if the A-atom is a new species. We can then compute, using
standard definitions, the average properties of a substitutional
“solute” atom of type X0 in the A-atom host matrix, where X0

is any of the constituent alloying elements. These properties
require computing the average energy change when a solute X0

is added to the random alloy. In a true random alloy, the energy
change for atom X0 is computed by replacing one other atom
type Y by an X0 atom, computing the total energy change,
repeating this procedure over many other atoms Y in the
structure, and then averaging these energies (see Appendix 3).
This process can be performed analytically as follows. For a
random configuration described by occupation variables {sX

i }
and having energy E({sX

i }), the atom at site k is replaced by
a type-X0 atom, so that its occupation variables become s̃X

k .

The associated energy change is

�E =
∑
X

(
s̃X
k − sX

k

)
FX(ρk) +

∑
i �= k

X,Y

V XY
ki sY

i

(
s̃X
k − sX

k

)
. (6)

Averaging Eq. (6) over all possible atomic occupation con-
figurations, using the Taylor expansion for the FX and the
identities 〈sX

i 〉 = cX for all i and 〈s̃X
k 〉 = 1 if X = X0 and 0

otherwise, the average energy change is

〈�E〉 =
⎡
⎣FX0 (ρ̄k) +

∑
i �=k

V
X0A
ki

⎤
⎦−

⎡
⎣FA(ρ̄k) +

∑
i �=k

V AA
ki

⎤
⎦,

(7)
with

V
X0A
ki =

∑
Y

cY V
X0Y
ki . (8)

Here V
X0A
ki is the pairwise interaction between X0 and A atoms.

Equation (7) is identical to the result obtained by introducing
an atom X0 into site k of the A-atom EAM material, and is
again independent of the atomic configuration {i}. Discussion
of the many advantages of the A-atom potential is relegated to
Sec. IV.

III. AVERAGE-ATOM VERSUS TRUE RANDOM ALLOYS

To be useful, the A-atom potential must be quantitatively
accurate, which requires testing over a wide range of true
random alloy properties. The averaging process eliminates
the local variations in chemical occupations and the related
local lattice relaxations that exist in the true random alloy,
and so energies and forces in the A-atom material will only
be approximate. Optimized structures and energies might
thus differ between the A-atom and true random alloys.
Here we consider properties ranging from the bulk properties
of the crystalline material to various defect structures and
energies. As a model material we use the fcc Fe-Ni-Cr ternary
system, described with an EAM potential [36]. This allows
a systematic comparison between true random alloys and
their A-atom counterparts, and thus the accuracy of this
Fe-Ni-Cr potential for any real alloy is irrelevant. We will
often focus on Fe(1−x)/2Ni(1−x)/2Crx alloys for different x

values because our studies reveal that the Cr content controls
many important property variations. All molecular statics
computations reported here use standard methods executed
within the open-source code LAMMPS [37].

A. Random alloy properties

We first briefly mention comparisons for bulk properties.
The lattice parameters a0 and cohesive energies Ecoh vs Cr
content x for different fcc Fe(1−x)/2Ni(1−x)/2Crx materials,
as computed for the A-atom and true random alloys (using
30 × 30 × 30 fcc unit cells), are shown in Figs. 1(a) and 1(b).
Agreement is excellent (<2%). The shear elastic constants
C44 and C ′ = (C11 − C12)/2 of the Fe-Ni-Cr ternary system
over the entire composition range are provided in Figs. 2(a)
and 2(b), along with the absolute differences between A-atom
and true random alloys (from Ref. [36], calculations performed
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FIG. 1. Properties of Fe(1−x)/2Ni(1−x)/2Crx alloys vs Cr content
x: (a) lattice parameter a0, (b) cohesive energies Ecoh, (c) surface
energies σ001 and σ111, (d) solute energies Esol

X0
, and (e) solute misfit

volumes �VX0 , measured in A-atom (red) and true random (blue)
alloys.

on 5 × 5 × 5 fcc unit cells). The agreement is again very
good, with typical accuracy of ∼3% but occasionally larger
differences (in any case, differences are <5% for C44, and
<15% for C ′) which may be, in part, due to fluctuations in the
finite-size random alloys themselves.

We now consider planar defects, which involve additional
atomic relaxations compared to the bulk. Planar defect
energies, such as surface and stacking fault energies, are
relevant for fracture and dislocation structure/plasticity for
instance [38,39]. Figure 1(c) shows the surface energies σ001

and σ111 of the (001) and (111) planes, respectively, for the A-
atom and true random materials for the Fe(1−x)/2Ni(1−x)/2Crx
alloys (see Appendix 1 for simulation details). Excellent
agreement is obtained (<1%). Figure 2(c) shows the intrinsic
stacking fault energies γISF across the full range of Fe-Ni-Cr
compositions as computed using the A-atom potential along
with the absolute differences relative to the true random
alloys. The absolute differences are typically small, less than
10 mJ/m2. Relative differences can be larger, ≈15%, since γISF

itself is at least an order of magnitude smaller than the surface
energies. Furthermore, overall trends with alloy composition
are captured very well.

FIG. 2. Shear elastic constants (a) C44 and (b) C ′ = (C11 −
C12)/2, and (c) intrinsic stacking fault energy γISF, as computed
with the A-atom potential (left), along with the absolute differences
relative to the true random alloys [36] (right), versus composition of
the Fe-Ni-Cr ternary alloys. The dark blue point in �C ′ has the value
−10.4 GPa.

We next consider the dislocation, a line defect. We
study the glissile {111}(110) edge dislocation responsible
for plasticity in fcc materials, which dissociates into two
Shockley partials separated by an intrinsic stacking fault. The
equilibrium separation distance deq between the partials should
be accurately described [38] by the A-atom, since it accurately
predicts the elastic constants and the stacking fault energy.
Using standard techniques, we insert an initially dissociated
dislocation into each Fe(1−x)/2Ni(1−x)/2Crx A-atom material,
relax the structure, and measure deq. This procedure is repeated
for the true alloys, starting from the partial separation measured
in the A-atom materials (see Appendix 2). After relaxation,
the partial dislocations in the random alloys glide small
distances and adopt wavy configurations, both due to local
compositional/structural fluctuations that interact with the
dislocation stress field. As shown in Fig. 3, the average partial
dissociation distances in the true random alloys, averaged over
20 different realizations at each composition, match well with
those predicted by the A-atom materials for x = 0.4 and 0.5
but deviate somewhat for lower x. The local fluctuations along
the line defect in the true random alloy exert forces on the
dislocation line that cause deviations relative to the A-atom
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FIG. 3. Dislocation structures and splitting distances deq of
an edge dislocation in Fe(1−x)/2Ni(1−x)/2Crx alloys vs x, in true
random (top) and A-atom (bottom) materials. Coloring corresponds
to common neighbor analysis [41]: white and violet atoms are
associated with the partial cores, and red atoms with the stacking
fault. Uncertainty among different realizations in the true random
alloys is ≈ ±5 Å.

material, even though the two materials have essentially equal
average material properties. This demonstrates the role of
the fluctuations in controlling the very detailed dislocation
configuration. More important is the glide stress. Although
not shown, the glide stresses in the A-atom materials are
very low (<10 MPa), as expected for elemental fcc metals
(e.g., Al, Ni, Cu). In contrast, the glide stresses in the true
random alloys are very large (∼200–500 MPa, depending
on dislocation line length and random sample), due to the
interactions of the dislocation with the local chemical and
structural fluctuations in the true random alloy. Thus, the
plastic flow stress is controlled by fluctuations and cannot be
modeled using the A-atom material; the mechanistic origins
of the strengthening in the true random alloys are discussed
elsewhere [40].

B. Constituent “solute” properties

We now investigate the accuracy of the mixing of A-atoms
with true atoms to compute real atom “solute” properties
in the alloy. Specifically, we compute the solute energies
�Esol

X0
and misfit volumes �VX0 for X0 = Fe, Cr, Ni in the

Fe(1−x)/2Ni(1−x)/2Crx alloys. Simulation details for compu-
tations in the true random alloys are given in Appendix 3.
Figures 1(d) and 1(e) show �Esol

X0
and �VX0 as computed for

the A-atom and the true random alloys. The accuracy of the
A-atom approach is consistently very good, particularly with
the values being quite small in absolute terms.

Finally, we showcase properties that are extremely difficult
to measure in true random alloys: the average interaction
energy between a constituent solute atom X0 and structural de-
fects. We first consider the interaction energy Eint

X0−d between
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FIG. 4. (a) Interaction energies Eint
X0−d between solutes X0 = Fe,

Ni, and Cr with an edge dislocation measured in the Fe33Ni33Cr33 A-
atom material. The � symbol indicates the left partial and the
dashed line the stacking fault trace in the glide plane. (b) Interaction
energies Eint

X0−γ between solutes and stacking fault vs x for all
Fe(1−x)/2Ni(1−x)/2Crx A-atom alloys.

an X0 atom and an edge dislocation in the multicomponent
alloy, as a function of the position of the X0 atom. In
the true random alloy, the dislocation position itself is not
unique because it adjusts to the local fluctuations (see Fig. 3).
So, when replacing one other atom type Y by an X0, the
dislocation adjusts locally; computing Eint

X0−d in a true random
alloy is thus not clearly defined and is also subject to
large fluctuations. Using the A-atom potential, however, the
average interaction energy at a given position relative to the
well-defined, straight, dissociated dislocation in the A-atom
material is easily computable. Figure 4(a) shows Eint

X0−d for
X0 = Fe, Ni, and Cr in the fcc Fe33Ni33Cr33 alloy at a
wide range of substitutional atomic positions around one
of the partial dislocation cores. Fe and Ni have repulsive
interaction energies just below the partial dislocation, where
the dislocation pressure is tensile, consistent with negative
misfit volumes [Fig. 1(e)], while Cr shows the opposite
behavior. All of these interaction energies are responsible for
the high plastic flow strength measured in the true random
alloys [40], and vary with alloy composition. To demonstrate
the role of overall composition, we compute the interaction
energies of solutes with the intrinsic stacking fault Eint

X0−γ for
the Fe(1−x)/2Ni(1−x)/2Crx A-atom alloys, and for X0 located in
the second plane above the fault plane. Figure 4(b) shows
that the Eint

X0−γ vary strongly with composition, with the
Cr interaction changing from attractive to repulsive with
increasing Cr content x, for instance. In true random alloys, the
replacement procedure necessary to compute Eint

X0−γ involves
subtraction of two similar energies with large fluctuations,
making the determination of the interaction energy inaccurate
unless thousands of simulations are run. The A-atom approach
is thus the only way to measure defect/defect interactions
accurately, while also being highly efficient and applicable
to any multicomponent system.
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IV. DISCUSSION

Having derived the A-atom potential and carefully com-
pared its properties to those of true random alloys, we now
highlight some of its important features and applications.

Since the configurational averaging in Eqs. (4), (5), and (7)
is done on an arbitrary set of atomic sites, using the A-atom po-
tential to study structural defects is fully justified, as shown in
Figs. 1(c), 2(c), and 3. Energy and forces are analytical for the
A-atom EAM potential, and thus studies of structural defects
present no specific difficulty. This is in contrast to electronic
structure CPA approaches to random alloys, where the loss of
lattice periodicity in the presence of defects is accompanied
by a loss of analyticity that complexifies and/or precludes the
solution of the coupled CPA equations [30,42,43].

In addition, Eq. (7) shows that it is possible to perform
calculations on systems that mix A-atoms with real constituent
atoms {X} to obtain solute quantities and interaction energies
between any solutes X0 in the set {X} and any structural
defects, in random multicomponent alloys at arbitrary compo-
sition, as shown in Figs. 1(d), 1(e), and 4. This provides a way
to understand how individual constituent elements behave, on
average, in the alloy material and how the behavior varies with
the overall alloy composition. This also forms a robust basis for
developing predictive models of alloy properties [40,44–46]:
the average alloy material is a natural reference state from
which one can compute all the necessary model parameters
using the A-atom potential alone or combined with the
elemental potentials.

As we mentioned before, the A-atom material has averaged
out all the local compositional and structural fluctuations of the
true random alloy. By comparing material properties computed
for the A-atom and true random alloys, those properties that are
controlled by the average and by the fluctuations, respectively,
are clearly identified. This is physically insightful and valuable
for understanding the mechanistic origin of a given material
property.

Next, let us state again that the A-atom potential is a new
EAM potential. Starting from a known set of potentials for
elements {X}, the A-atom potential for a targeted random
alloy is fully defined by Eqs. (5). This will have great benefits
in developing/benchmarking potentials for multicomponent
alloys, especially for modeling mechanical properties. Indeed,
the A-atom potential allows for fast and accurate sampling of
many bulk and defect properties for the whole compositional
space, which can be very large for some multicomponent
systems such as high entropy alloys [47,48]. Moreover, from
a known set of potentials, an infinite number of new potentials
can be generated and explored using the A-atom approach.
For instance, a family of potentials with controlled materials
properties can be created, in which only one property varies
while the other ones are held nearly fixed. This can permit
careful study of the role of individual material properties on
macroscopic behavior, e.g., the role of stacking fault energy
on the strength of nanocrystalline metals [5]. More subtle
is the fact that it can lead to better potentials for desired
elemental materials. Several pre-existing EAM potentials
for the same pure element can be combined with different
weights (as represented by the “concentrations”) to generate a
new potential with an improved description of the elemental
properties.

Finally, the A-atom potential should be useful in concurrent
multiscale modeling methods, extending atom/continuum
multiscale models such as the quasicontinuum [49–51] or
the coupled atomistic discrete-dislocation [52,53] models to
random alloys. Specifically, the A-atom potential can be used
efficiently and accurately to compute the material properties in
coarse-grained continuum regions using the Cauchy-Born rule,
with the compositional averaging performed automatically and
with the ability to refine the description down to the atomic
scale.

V. CONCLUSION

In summary, we have presented and validated the A-atom
potential as an efficient and elegant way to compute many
average properties of random alloys, including defect proper-
ties. In particular, we have demonstrated the valuable use of
the A-atom method in computing defect/defect interactions
that are essentially unobtainable by direct simulations on
random alloys. We have further identified a host of very useful
application concepts for the A-atom approach. In future work
we will report on specific applications to problems in plastic
flow stress, cross slip, and fracture of complex metal alloys, and
further show that the A-atom approach accurately captures the
finite-temperature thermodynamic properties of true random
alloys [54].
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APPENDIX: SIMULATION DETAILS
FOR DEFECT PROPERTIES

In this Appendix, important numerical details about the
calculation of defect properties into the true random alloys are
provided.

1. Planar defects

Intrinsic stacking fault energies are computed using simula-
tion boxes of size x × y × z = 50 × 50 × 23 along the [101̄],
[12̄1], and [111] directions. Periodic boundary conditions are
applied along x and y directions, and free surface conditions
along the z direction. This simulation size is large enough
to both prevent any interaction between the fault and the
free surfaces, and to obtain a large enough sampling of the
random composition in the fault plane. Similar simulation size
(>300 000 atoms) and boundary conditions are used for the
surface energy calculations of the (001) and (111) planes.

2. Dislocations

The average dislocation configuration is extracted from true
random alloys as follows. Random distributions of atoms at the
targeted compositions are prepared on simulation boxes of size
202 × 36 × 125 along the [101̄], [12̄1], and [111] directions
(5 454 000 atoms). Then a {111}(110) edge dislocation is
introduced by adding an extra atomic plane that is spread over
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the expected equilibrium dissociation distance, as given in the
A-atom material. Periodic boundary conditions are applied
along x and y directions, and free surface conditions along
the z direction. Relaxation at 0 K is performed, and then the
average dissociation distance is measured by averaging over
20 different random realizations for each alloy composition.

3. Substitutional constituent solutes

Calculations of solution energies and misfit volumes are
performed on simulations of 6 × 6 × 6 fcc unit cells (864
atoms). We exemplify the exact computational procedure in
the true random alloys on the misfit volume calculation. The
average misfit volume of the X0 species �VX0 is computed
using a replacement procedure, where each atom of the random
atomic configuration is replaced by an X0-type atom, and the
associated relaxation volume �V n

X0
is measured (n ∈ [1,Ns]

labels the atomic sites here). A collection of measurements is
then obtained for each X0. This raw data set can be subdivided
into different data sets {�V

kY

X0
}, with kY ∈ [1,nY ], where

�V
kY

X0
corresponds to the relaxation volume resulting from

the replacement of a Y -type atom located in the kY site by an
X0-type atom, and nY = cY Ns with cY the concentration in Y

atoms. The average misfit volume of X0 can thus be written as

�VX0 = 1

Ns

Ns∑
n=1

�V n
X0

= 1

Ns

N∑
Y=1

nY∑
kY =1

�V
kY

X0

=
N∑

Y=1

cY �V X0/Y , (A1)

with �V X0/Y = 1
nY

∑nY

kY =1 �V
kY

X0
, and �V X0/X0 = 0. The re-

sulting misfit volumes satisfy the sum rule
∑N

X0=1 cX0�VX0 =
0. The computation of the average misfit volume of one

constituent element in the Fe33Ni33Cr33 alloy, with the 864
atoms simulation size, thus requires 576 calculations, whereas
the A-atom method requires only a single computation. The
computational benefit of the A-atom approach is obvious,
especially when the number of alloying components increases.

Note that the raw data set obtained from true random alloy
calculations shows fluctuations around the average value of
each misfit volume that can be rather important for some alloy
compositions. Large fluctuations of some point defect proper-
ties with the local chemical environment—without attempt to
reach the average property—have also been observed by some
authors by DFT calculations in concentrated alloys [55,56].

Attempts to obtain interaction energies between solutes
X0 = Fe, Ni, and Cr and a stacking fault Eint

X0−γ were made
for the equicomposition fcc Fe33Ni33Cr33 alloy. A random
distribution of atoms at the equicomposition is prepared on a
simulation box of size 50 × 50 × 23 along the [101̄], [12̄1],
and [111] directions that contains a stacking fault. For each
solute X0, 30 different Y in the atomic plane one plane above
the fault plane are successively replaced by an X0. This is
repeated for all {Y } �= X0 and the associated average energy is
computed. This does not permit a determination of Eint

X0−γ with
good precision: there are large fluctuations in energy among
the different individual measurements, and the final interaction
values are very small (lower than 8 meV for the equicom-
position alloy). Increasing the sampling to the same number
of replacements as for the misfit volume calculation did not
significantly improve the accuracy of the measurement. Thus,
instead of the one calculation needed per solute/stacking fault
interaction in the A-atom material, thousands of calculations
would be necessary to obtain only one solute/stacking fault in-
teraction in the true random alloy with an acceptable accuracy.
This is not a tractable approach to capture defect/defect inter-
actions over a range of alloy composition in multicomponent
alloys.
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