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Low-density phases of *He monolayers adsorbed on graphite
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Quantum Monte Carlo simulations at zero temperature of a *He monolayer adsorbed on graphite, either clean
or preplated with *He, unexpectedly point to a gas-liquid phase transition at a very low areal density of the order

o2 . . . . R

of 0.01 A . This result stems from an essentially unbiased calculation of the ground-state energy for an infinite,
defect-free substrate, which interacts with He atoms via a realistic potential, whereas the interaction between two
He atoms includes two- and three-body terms. The sensitivity of the gas-liquid coexistence region on the model

Hamiltonian employed is discussed.
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I. INTRODUCTION

Thin films of either isotope of He adsorbed on substrates
have been widely studied experimentally as close realizations
of ideal, strictly two-dimensional (2D) quantum systems with
a coupling strength tunable by varying the coverage. For
example, specific heat and magnetization measurements on
the first and second adlayers of *He on graphite give very
similar results [ 1-3], structural differences between successive
monolayers notwithstanding. Thus these layers are deemed
to provide a close realization of the 2D model, allowing
one to obtain experimentally estimates of such fundamental
properties of 2D Fermi liquid as the effective mass and
spin susceptibility. Likewise, the superfluid transition of a
“He liquid adlayer has been predicted [4] and observed
[5-8] to adhere rather closely to the 2D (Kosterlitz-Thouless)
paradigm [9].

Figure 1 shows the zero-temperature equations of state
(energy per particle E versus density p) of 2D “He, *He,
and a fictitious bosonic version of spin-zero >He, computed in
this work as described below. The results are in agreement with
those of previous, comparable calculations [10-15], with only
minimal differences arising from the use of slightly different
interatomic potentials. As one can see, “He features a self-

bound liquid phase of equilibrium density pg = 0.044 10%72,
below which the system forms puddles; on the other hand, *He
remains in a homogeneous fluid phase from the crystallization
density all the way down to the ideal gas limit. The difference
between *He and “He arises because of the higher kinetic
energy of *He, which is due in part to its lighter mass, and
in part to Fermi statistics—the latter being at the root of
the qualitatively different shape of the E(p) curve for *He,
compared to that for *He and bosonic spin-zero *He, also a
self-bound liquid.

Although no liquid phase of *He exists in purely 2D, there
are reasons to expect that it may in quasi-2D, i.e., in a thin
film adsorbed on a suitable substrate. This is because adatoms
experience two distinct effects which favor the formation
of a liquid phase of *He (and enhance the stability of that
of *He), compared to the strictly 2D case. The first is
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quantum delocalization in the direction perpendicular to the
substrate, which acts to soften the hard-core repulsion of the
helium interatomic potential at short distances; the second is
substrate corrugation, which effectively increases the mass of
the Helium atoms.

For example, on weakly attractive substrates such as those
of alkali metals, where delocalization is significant and whose
corrugation can be regarded as negligible, on account of
the relatively large equilibrium distance of the atoms from
the surface, He has been predicted [16] to undergo a phase
transition between a gas and a thermodynamically stable
(albeit not self-bound) liquid, signalled by a local minimum in
the equation of state E(p).

The stability of the liquid phase weakens for increasingly
attractive substrates, suggesting that *He may not condense
into a stable liquid on a substrate as strong as graphite. On
the other hand, as adatoms move closer to the surface, the
enhancement of their effective mass arising from substrate
corrugation may again underlie a thermodynamically stable
liquid phase. More generally, the existence of a gas-liquid
transition of a quasi-2D adsorbed *He film hinges on the
interplay of a number of subtle, substrate-dependent effects.

Although the phase diagram of helium adsorbed on graphite
has been extensively investigated experimentally, there is no
general consensus about the existence of one or more fluid
phases, even in the first *He adlayer. The prevailing opinion
has been that *He should form a 2D gas at low coverage,
directly crystallizing into a registered solid as coverage is
increased; however, there exist conflicting theoretical predic-
tions [11,12,17,18] and the lack of data at sufficiently low
temperatures and coverage to provide a definitive experimental
answer [19]. The issue has received renewed consideration
after a recent measurement of the specific heat, whose
linear dependence on the density at very low coverages has
been interpreted in terms of puddles of self-bound liquid.
Interestingly, similar results were reported for the first, second
and third adlayers of *He on graphite [20].

In this work, we use quantum Monte Carlo simulations to
calculate with high accuracy the T = 0 low-density equation
of state (EOS) of *He on graphite (G), and on graphite
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FIG. 1. Ground-state energy per atom E(p) of 2D *He (solid
line), “He (dashed line), and fictitious mass-3 bosonic Helium (dotted
line). The global minima for *He and mass-3 bosons locate the
equilibrium densities of the self-bound liquid phases, respectively
0.044 and 0.020 Afz. For *He, there is neither self-bound liquid nor
gas-liquid phase transition.

preplated with a solid monolayer of “He (G4He). In both
cases, the compressibility becomes negative in a small density
region, implying a pressure-induced phase transition between
a finite-density gas and a liquid.

This result falls short of providing a direct, unambiguous
quantitative confirmation of the findings of Ref. [20], which
is to be expected given the limitations of the (still relatively
simplified) theoretical model utilized here. Nevertheless, it
clearly lends support to the idea that a stable liquid phase may
exist, one which in the case of G is crucially underlain by the
substrate corrugation. The reminder of this article is organized
as follows: in Sec. II, we describe the mathematical model and
the computational methodology utilized in this work; Secs. I11
and IV are devoted to a thorough illustration of our results,
and in particular, in Sec. IV, we offer specific, quantitative
details, for the purpose of facilitating the task of others who
may wish to reproduce our results. We outline our conclusions
and prospects for further studies in Sec. V.

II. MODELS AND METHOD

We consider a system of N *He atoms in the presence of
a planar substrate, enclosed in a cell of sides L,, L, and L,
with periodic boundary conditions. The quantum-mechanical
many-body Hamiltonian is the following:

N N
H=-1) VI + V(R +) U, M

i=l1 i=l1

where A = 8.0417 KA_Z, R = {ry, ... ,ry}arethe coordinates
of the *He atoms, V(R) is the He-He interaction, and U (r) is
the He-substrate interaction. The areal density of the system
is defined as p = N /(L. L), with the z axis perpendicular to
the substrate. As we aim to model the system as realistically
as possible, in V(R), we include the highly accurate, first-
principles SAPT2 pair potential [21] and the Axilrod-Teller-
Muto three-body potential [22,23], which at low density is by
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far the most important term beyond pair-wise interactions [24].
Concerning the He-substrate interaction U(r), for ‘He directly
adsorbed on G we use the anisotropic potential of Carlos
and Cole [25] (CC), which accounts for substrate corrugation
and has been adopted in most computational studies of *He
adsorbed on graphite [26-29]. For *He adsorbed on G4He
instead, we derive an effective potential which is significanltly
weaker than for G and only depends on the z component of
r. Since the procedure is somewhat elaborate, we defer its
discussion to Sec. IV to avoid diverting from the main results
of this work.

The ground-state energy of the model Hamiltonian (1)
is calculated by means of fixed-node diffusion Monte Carlo
(FNDMC) [30-32], a widely used quantum Monte Carlo
technique which gives very accurate energy upper bounds
by projecting the lowest-energy fermion eigenstate of the
Hamiltonian with the same nodes as a trial wave function W.
Specifically, FNDMC simulates the imaginary-time evolution
of the system in configuration space through a branching
random walk of a large (ideally infinite) number of walkers,
subjected to the constraint that the nodes of W never be
crossed. Beside (i) the finite size of the system, FNDMC
is subject to errors from (ii) the time discretization of the
random walk, (iii) the finite number of walkers, and (iv)
the fixed-node constraint. The errors due to (i)—(iii) can be
estimated varying the number of particles, the time step,
and the number of walkers, and eliminated by extrapolation
whenever deemed non-negligible. The only uncontrolled error,
namely the fixed-node approximation, depends on the nodal
structure of W.

The trial many-body wave functions used in this work have
the Jastrow-Slater form W = exp(—U)D4D,. The Jastrow
factor U = U + U, + U; contains standard two- and three-
body correlations between Helium atoms [33], as well as
one-body Helium-substrate correlations:

Ur=) )+ e(ri—t),
i ij

Uy =) ulry), )
i<j

Us = Zf(rij)(l‘i —rj)- Zé(m)(ri —r).
J# i

The second term in U; is a radial correlation between each
helium atom and an array of sites placed at positions t;, shifted
by an amount d above each carbon atom of the graphite surface.
It is used only for the corrugated substrate.

In the Slater determinant for a-spin atoms, namely, D, =
det(e~"k4;), the one-particle orbitals are plane waves with the
N /2 smallest wave vectors of the form (2nn/L,,2nrm/L,)
and the 2D coordinates

Q=5+ n(sins; =), )
I#]

with s; = (x;,y;), include backflow correlations [33] in the
nodal structure of V. Based on a comparison between fixed-
node and nominally exact transient estimate (TE) results [15]
for strictly 2D *He, backflow wave functions are expected to
be very accurate, at least at low density.
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FIG. 2. Pair correlation function g(s) at p = 0.020 f‘:z for *He
adsorbed on G (solid line) and G4He (dashed line), and for strictly 2D
3He (dotted line). The statistical error is smaller than the thickness
of the lines.

All the radial functions u, &, n, f, and g are parametrized
as linear combinations of powers of their argument. The
coefficients, a couple of negative exponents, and the shift d,
for a total of about 30 variational parameters, are optimized
using correlated sampling [34]. The FNDMC energies utilized
in the results presented in the Sec. III include corrections for all
sizable sources of bias, including an estimate of the fixed-node
error [15,35], as explained in detail in Sec. IV.

III. RESULTS

The structural properties of *He adsorbed either on G or on
G4He suggest a close similarity between the adsorbate and the
strictly 2D system. The vertically integrated pair correlation
function g(s), where s = \/x2 + y2, is shown in Fig. 2. For G,
apart from the oscillations induced by the surface corrugation,
g(s) is hardly distinguishable from the 2D case. In particular,
the steep rise starting at s ~ 2 A, which defines the excluded
area around each particle induced by the short-range He-He
repulsion, is nearly identical for G and 2D.

This is consistent with the quasi-2D character of the film.
The normalized density profile p(z) = p(z)/ f dz p(z), with
p(z) = [ dx dy p(x,y.z), is shown in Fig. 3.

On a substrate, two Helium atoms can approach the same
(x,y) coordinates if their distance along z is larger than the
excluded volume radius of about 2 A. This effectively results
in a softening of the short-range repulsion with respect to the
bare interparticle potential. However, as shown in Fig. 3, for
G the full extent of the density profile barely reaches 2 A, thus
leaving little room for delocalization to soften significantly the
short-range repulsive part of the two-body He-He potential, in
turn reducing the size of the correlation hole in g(s).

For G4He, apart from the obvious shift of the peak position
to the second adlayer (the first one being occupied by the “He
solid), the density profile is almost twice as broad as for G, on
account of the shallower He-substrate potential shown in the
inset of Fig. 3. Nonetheless, G4He is still a relatively strong
substrate, in fact slightly stronger than Mg [16] resulting in a
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FIG. 3. Normalized density profile 5(z) for *He adsorbed on G
(solid line) and G4He (dashed line). The data refer to an areal density
p = 0.020 A_z, but p(z) is nearly independent of p. The statistical
error is smaller than the thickness of the lines. The inset shows
the *He—substrate potential for G (lateral average of the anisotropic
potential, solid line) and G4He (dashed line).

narrower p(z), a wider correlation hole in g(s), and a deeper
He-substrate potential, albeit not by a large amount.

InRef. [16], a series of substrates were studied, the strongest
being Mg. A local minimum was found in the EOS of *He
adsorbed on weak alkali metal substrates, but not on Mg, so
that none is expected on the even stronger G4He or G. This is
indeed the case, as shown in the inset of Fig. 4. However, in a
computer simulation of a system of finite size, the occurrence
of a gas-liquid phase transition in a given range range of
density is also signalled by a negative value of du/dp, where
wu(p) = E(p) + p (dE(p)/dp) is the chemical potential. This
is a weaker condition than the presence of a local minimum of

E(p).
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FIG. 4. Derivative of the chemical potential with respect to the
density for 3He adsorbed on G (solid line) and G4He (dashed line),
and for strictly 2D *He (dotted line). Negative values signal instability
to phase separation into a gas and a liquid phase For G and G4He,
but not for 2D. Downward (upward) arrows indicate the boundaries
of the coexistence region for G (G4He). The inset shows the EOS
(energy per particle vs density).
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TABLE I. Location ppi, and value pu; . of the minimum of
the derivative of the chemical potential with respect to the density,
liquefaction density pp and vaporization density py of *He adsorbed
on G and G4He. Statistical errors on the last digit(s) are given in
parenthesis.

o —2 02 o —2 o —2
Pmin (A7) iy (KAT) pL(A ) pv (A
G 0.0099(3) —0.89(25) 0.0067(6) 0.0133(7)
G4He 0.0104(1) —0.65(11) 0.0074(2) 0.0137(4)

From a polynomial fit to the FNDMC energies calculated
at several densities with statistical errors of 1.5 mK or less, we
obtain the quantity du/dp, shown in Fig. 4. It is clearly seen
to change sign for both G and G4He in a small density interval
around 0.01 A.

Having determined that a phase transition occurs on both
G and G4He substrates (for the models considered), we locate
the coexistence region by searching each EOS for two points
on either side of the interval of negative du/dp with the
same pressure and chemical potential. The results are listed in
Table 1.

Note that the coexistence regions are wider than the
intervals of negative compressibility. In the intervening left and
right density windows, the gas and liquid phases, respectively,
are metastable.

While the minimum of d it /dp for the 2D model has a clear
bearing on the location of the coexistence regions for both G
and G4He, the unexpectedly close similarity of the *He EOS
on the two substrates should be regarded as largely fortuitous.
Indeed, delocalization effects are different for G and G4He, but
the corrugation, which is significant for G and negligible for
G4He (see Sec. IV), happens to compensate nearly perfectly
for that difference.

We conclude this section by mentioning, in relation to
the tentative phase diagrams discussed in Ref. [18], that the
ground-state energy per “He atom in the /3 x +/3 solid
phase commensurate with G is found in this calculation to
be E(p) — E(0) = 0.62(1) K, much higher than in the gas or
liquid phases at coexistence.

IV. DETAILS OF THE CALCULATION

In this section, we discuss the sources of bias mentioned in
Sec. IT and the calculation of the interaction potential between
a *He atom and the G4He substrate employed in Sec. III.

A. Sources of bias
1. Finite size effects

All the results presented in Sec. III are based on FNDMC
simulations of systems of N = 183He atoms [36]. For the
2D system, the finite size error has been estimated from
simulations of larger systems. An example is shown in
Fig. 5(left) for p = 0.09 A™>. The filled symbols indicate
the FNDMC energies obtained as a function of N, with a
tail correction calculated assuming g(r) = 1 for r larger than
half the side of the simulation cell. The scatter of the data is
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FIG. 5. (Left) FNDMC energy per particle for 2D *He at p =
0.09 A~ as a function of the number of particles: raw data (filled
symbols) and values including the finite size correction of Eq. (4)
(empty symbols). The line is a constant fit to the size-corrected data.
(Right) FNDMC energy per particle for *He on G4He calculated
with N = 18 (upward triangles) or N = 42 (downward triangles) as
a function of density: raw data (filled symbols) and values including
the finite size correction taken from the strictly 2D system (empty
symbols). The lines are spline interpolations. In both panels, the
statistical errors are smaller than the symbol size.

strongly reduced by applying the correction [37]
E(00) — E(N) = a[Ty(00) — To(N)], “

where To(N) is the kinetic energy of a non-interacting system
of N particles and « is a fit parameter [38]; this correction
brings the data onto the empty symbols, which lie on a
smooth curve (in fact a constant to good accuracy), which
is our estimate of the energy in the thermodynamic limit.
Figure 5(right) shows that the 2D size correction applied to
the adsorbate on G4He (the less close to the 2D limit) gives
essentially indistinguishable results for N = 18 and 42. We
thus conclude that the size correction of Eq. (4) with the
value of o determined for the 2D case can be safely used for
the adsorbates as well. No significant finite size effects were
detected on the structural properties at the densities studied in
the present work.

2. Time step error

For both substrates, we performed simulations with several
values of the time step T spanning an order of magnitude.
We determined that the EOS E(p) — E(0) is not affected by
the time step error, within an accuracy of <1 mK, using t =
5 x 107*K~! for G4He and r = 10~* K~! for G. In particular,
this rather conservative choice for G is due to the apparent 7'/?
dependence of the energy [39], shown in Fig. 6. For G4He and
2D a much weaker, linear time step dependence is observed.

3. Population control bias

This has been shown to be a potentially serious, often
overlooked problem in DMC simulations [40—42]. For the
low densities and small systems considered here, however, the
error due to the finite number of walkers is not a concern. We
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FIG. 6. Dependence of the energy E on the time step  for *He
on G. The filled (empty) circles with error bars are FNDMC data, and

the solid (dotted) line is a fit in T!/2, for p = 0.005(0.020) A

used 6400 walkers, after verifying that this is far more than
enough to eliminate this source of bias within the accuracy of
the present calculations.

4. Fixed-node approximation

The FN error can be estimated from published TE results
for the 2D case. From Ref. [15], a quadratic dependence on
the density can be inferred, and Ref. [35] reports a FN error of

~0.046 K at p = 0.060 A using a trial function of quality
comparable to those used here. We thus add a correction
—0.046(p/p)* K to our FNDMC energies, for both the 2D
and the adsorbate systems.

5. Mixed estimators

For quantities other than the total energy, the “mixed”
estimators directly obtained [32] in DMC have a bias linear
in the error of the trial function. The structural properties
presented in this work are “extrapolated” estimators [32],
whose bias is quadratic in the error of the trial function. A small
difference between extrapolated and mixed estimators is often
considered as a qualitative indication of small residual bias.
With the trial functions used in this work, this difference is very
small for the pair distribution function and barely discernible
on the density profile.

B. The He-G4He potential

In a series of preliminary calculations we modeled the
G4He substrate with “active” (i.e., explicitly simulated) *He

atoms at a density psge = 0.114 A_z, close to the coverage
where promotion to the second layer begins [2,29]. In the
Jastrow factor of the trial function, namely Eq. (2), a Nosanow
term [43] was added to tie the (x,y) coordinates of the
“He atoms to the sites of a triangular lattice, and different
factors f3(z) and f4(z) were used in Eq. (2) to describe
localization in z for *He and “He, as well as different pair
pseudopotentials u33, u34, and u44. The corrugation of the
graphite surface was not expected to have any significant
effect on the >He atoms confined to the second monolayer
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FIG. 7. Pair distribution function g(x,y) for *He adsorbed on G
at p = 0.038 A~ and on G4He at p = 0.038 A _. The grey-scale

range, restricted to 0.94-1.19, emphasizes the long-range oscillations
(the highest peaks for G reach 1.28).

by the intervening incommensurate “He crystal. Therefore the
He-graphite interaction was described by the laterally averaged
CC potential.

In the DMC simulation of a multicomponent system, the
energy of a single component, such as the *He EOS of specific
interest here, is obtained as a biased mixed estimator. Thus
its projected value is influenced by all the terms in the trial
function — unlike the total energy which only depends on
the nodal structure. As a result, statistical fluctuations in the
optimal variational parameters induce enough scattering in
the density dependence of the *He energy to prevent us from
extracting the compressibility by numerical differentiation of
the EOS. Thus even neglecting the issue of the bias in the mixed
(or extrapolated) estimator of the *He energy, the use of this
“full” model turns out to be impractical. This prompts for a
replacement of the *He layer by a rigid effective potential.
To this purpose, we retain useful information on structural
properties from the full model, such as the *He density profile
of Fig. 3 and the pair distribution function of Fig. 7. In
particular the density profile shows that *He floats atop the
“He solid, with minimal excursions of atoms of either species
in the monolayer occupied by the other, suggesting that a rigid
potential is a sensible choice.

Making the further assumption of a smooth G4He sub-
strate, we solve for the potential U(z) the one-dimensional
Schrodinger equation of a single *He atom with a known
density profile,

2 2
Uz) = h—xp*(z)w +C, 5)
2m 0z

where 1/(z) is the square root of p(z) calculated with the full
model and C is a constant. The result for G4He is shown in the
inset of Fig. 3. We assess the accuracy of this procedure on the
G substrate, where the anisotropic CC potential and its smooth,
laterally averaged version are both available [25]. The EOS
calculated with the potential of Eq. (5) (with the density profile
of a *He atom on the corrugated G substrate) is nearly identical
to that calculated with the smooth CC potential, as shown in
Fig. 8 by the dashed and the thin solid lines, respectively.
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FIG. 8. EOS for *He adsorbed on G with various He-substrate
potentials and/or effective band masses. GC (thick solid line) refers to
the corrugated G substrate discussed in Sec. III. GS denotes smooth-
substrate models, with either the potential of Eq. (5) (dashed line), or
the laterally averaged version of the CC potential (thin solid, dash-
dotted, and dash-double-dotted lines). The value m, of the effective
band mass, whenever different from the bare mass m, is as indicated.
The EOS for 2D *He (dotted line) is also reported for reference.

Of course a smooth substrate model constructed in this
way misses the corrugation effects. For the EOS of *He on
G they are significant, as seen in Fig. 8§ by comparing the
results corresponding to smooth (GS) and corrugated (GC)
substrates. They can be included to good accuracy into the
smooth model by replacing the bare mass m of the adsorbate
with an effective band mass m;: Fig. 8 shows that the best
agreement with the GC substrate is obtained using m;,/m =
1.02, somewhat smaller than the value m;/m = 1.03 given in
Ref. [25]. Incidentally, this analysis shows that the difference
between the 2D system and the adsorbate on G is due more to
the corrugation of the substrate than to the delocalization of
the adsorbate along z.

In order to assign an effective band mass value for the G4He
substrate in the lack of a reliable EOS for the full model,
we compare the two-dimensional pair distribution functions
g(x,y) of *He on G and G4He in Fig. 7, whose long-range
behavior is representative of the density modulation of the
adsorbate induced by the corrugation of the substrate. This
modulation is stronger on G than on G4He by about a factor
ten, and assuming a similar ratio between the two substrates for
other corrugation effects as well, we expect that for G4He the
value of m;, be larger than m by only a few parts in a thousand,
inducing a difference between the EOS of the smooth and the
full model ten times smaller than the difference between GS
and GC in Fig. 8. We consider this effect negligible and we
treat G4He as a smooth substrate using the bare mass for the
3He atoms.

V. DISCUSSION

The key result of this work, namely the change of sign
of du/dp shown in Fig. 4, requires a sufficiently accurate
calculation in order to be established with reasonable confi-
dence. Although we believe that all sources of bias from the
methodology adopted here are well under control (see Sec. IV),
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FIG. 9. Derivative of the chemical potential with respect to
the density for *He adsorbed on G, for three different model
Hamiltonians. The first (solid line) is the model of Sec. II (same
as for the solid line in Fig. 4). The second (dashed line) has the
He-He SAPT2 plus Axilrod-Teller potential replaced by the HFDHE2
Aziz potential. The third (dotted line) has the CC anisotropic He-G
potential replaced by the smooth potential of Ref. [47] and the bare
mass of the He atoms replaced by an effective band mass m;, = 1.02m.

we need to stress that d i /dp which results from differentiating
twice a fit to FNDMC energies calculated with statistical errors
of the order of a millidegree of Kelvin, goes below zero by a
few standard deviations. We hardly feel comfortable with the
assumption that the employed model (see Sec. II), albeit of
state-of-the-art level, guarantees an accuracy on the energy of
the order of 1 mK throughout the relevant density range.

In order to substantiate this caution, we show in Fig. 9 that
different estimates of the model Hamiltonian lead to significant
differences in the result. This is the case even for the He-
He interaction, arguably the most favorable case for a force-
field potential. Indeed, using the HFDHE2 Aziz potential [44]
instead of the SAPT?2 potential supplemented with the Axilrod-
Teller-Muto three-body term, the density range of negative
du/dp,if any, is within the statistical noise [45]. The HFDHE2
is a phenomenological pair potential which yields a fairly good
equation of state [46] for bulk “He in 3D. On the other hand,
the SAPT2 potential comes from a very accurate quantum
chemistry calculation of the He dimer; in conjunction with
the dominant three-body term, it is expected to afford greater
accuracy than the HFDHE2, especially at low density [24].

It is important to note that the level of accuracy of either the
HFDHE?2 or the SAPT2 (or other modern He-He potentials)
is far greater than that of any known He-graphite potential. In
order to obtain a semiquantitative assessment of the amount
of variation that the use of a different microscopic model
for the He-graphite interaction could entail, we performed
here a few calculations replacing the CC potential with the
smooth He-graphite interaction of Ref. [47], with an effective
3He band mass myp = 1.02m (see Sec. 1V); to our relief,
the minimum value of du/dp changes “only” by ~100
percent—this time in the direction of greater width of the
region of negative d/dp (see Fig. 9). It should be mentioned
in fairness that such a relatively limited effect arising from the
replacement of the He-graphite interaction may be to some
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extent accidental; in general, it is clear that a large uncertainty
on our results stems from the He-graphite interaction. Indeed,
there are objective limitations to the accuracy that one can
achieve in describing this system by means of static potentials.
In particular, the interaction between two He atoms is itself
subjected to screening effects from the graphite substrate
[48]. The estimated effect, larger than the differences between
different versions of the He-He pair potentials [21,44], can
have an influence on the delicate balance between competing
phases [49,50]; in our case, it would tend to shrink or suppress
the gas-liquid coexistence region (at least for the G substrate,
where the *He adatoms are closer to the Carbon atoms). A
further source of uncertainty is the motion of the Carbon atoms
[51], not considered in our model Hamiltonian. Nonetheless,
it seems a safe conclusion that the phase diagram of *He on G
or G4H4 is to say the least on the edge of featuring a gas-liquid

coexistence region around p = 0.01 A

VI. CONCLUSIONS

We have performed state-of-the-art computer simulations,
based on the most realistic model of the system of interest, in
order to address the question of the existence of a gas-liquid
phase transition of a *He monolayer adsorbed on a graphite
substrate, either bare or preplated with *He. Our results, while
not providing direct theoretical validation to the contended
experimental observation of such a phase, reported in Ref. [20],
nonetheless generally support its existence, in a region of
coverage close to the experimentally relevant one.

We have attempted to offer as extensive as possible
a discussion of the limitations of this calculation; as
mentioned above, the most serious source of uncertainty is
the microscopic model utilized.

PHYSICAL REVIEW B 93, 104102 (2016)

We note that the generally unexpected phase transition
characterized in Table I describes the liquefaction of a
finite-pressure gas on an infinite, defect-free substrate. The
specific heat should depend linearly on the density in the
coesistence region, varying from the gas value at liquefaction
to the liquid value at vaporization. While this is not exactly
the picture of puddles on otherwise empty surfaces proposed
in Ref. [20], undeniable similarities exist, most notably the
density range where the effect takes place. Consideration
of inhomogeneities and/or defects of the substrate in the
theoretical model may bring numerical and experimental
evidences in closer agreement.

It is worth mentioning that the variational Monte Carlo
(VMC) calculation of Ref. [18], making use of the He-graphite
potential of Ref. [47], reported evidence for a self-bound
liquid. Without questioning the quality of the work of Ref. [18],
or of the richness of the phase diagram of *He adsorbed on
graphite posited therein, certainly worthy of further investiga-
tion, the existence of a self-bound liquid can be dismissed on
tecnhical grounds. For, the energy at zero density is an exact re-
sult, while at finite density the FNDMC energy is by construc-
tion lower than the VMC energy (using the same model Hamil-
tonian and trial function); since we find that the FNDMC EOS
E(p) — E(0) is a non-negative function, so must be the VMC
EOS.
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