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Observation of a transverse Meissner effect in CuxTiSe2 single crystals
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We report on local magnetization measurements showing the presence of an unexpectedly strong transverse
Meissner effect in the superconducting CuxTiSe2 single crystals. We show that for tilted magnetic fields (Ha)
vortices remain aligned with the ab planes up to field Hk ∼ Hp/ sin θH (where θH is the angle between the applied
field and the ab plane and Hp the first penetration field) and that for Ha > Hk , the field dependence of the vortex
direction θB (Ha) can be well described assuming that vortices remain partially locked in the planes forming a
staircase structure of average direction θB �= θH . These results indicate the existence of a strong modulation of
the vortex core energy along the c axis but its origin remains unclear.
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Layered type-II superconductors have attracted consider-
able attention over the past decades since their anisotropic
structure gives rise to a large variety of novel vortex phases
(for a review, see [1]). Indeed, the structure of the vortex
matter is determined by the minimum of the total Gibbs energy
which is sensitive to various microscopic parameters such
as the mass anisotropy � = √

mc/mab, the Ginzburg-Landau
parameter κ = λab/ξab (λab and ξab being the in-plane London
penetration depth and coherence length, respectively), and/or
the nature of the defects present in the sample. In the case of
large � (>7) and κ (>10) values, the angular dependence of
the Gibbs energy [2] has, for instance, two degenerated minima
and two distinct crossed vortex lattices can then coexist in the
sample at the same time [3,4]. Furthermore, when ξc becomes
on the order of the interlayer distance d, the modulation of the
superconducting order parameter from plane to plane leads to
the existence of a lock-in phase for which vortices penetrate
into the sample with their normal cores locked between the
layers [5,6] up to a field HL ∼ [Hp/ sin θH ][d/ξc] (where θH

is the angle between the applied field and the plane and Hp the
first penetration field at angle θH ). Experimental evidence for
this intrinsic lock-in effect have been obtained in both high-Tc

cuprates [7] and organic materials [8].
On the other hand, vortices can also be trapped by correlated

pinning sites such as columnar defects [9] or twin planes [10]
giving rise to an extrinsic lock-in effect (so-called transverse
Meissner effect). This effect can then be observed for field
orientations close to the correlated defects and the magnetic
induction perpendicular to the defects remains null up to HL ∼
[Hp/ sin θH ]

√
εP /εl [11] where θH is now the angle between

the magnetic field and the defect orientation, εl the line tension,
and εP the amount of core energy suppressed by the artificial
structure. Note that in both an intrinsic and an extrinsic case,
HL scales as 1/ sin θH and such a scaling is hence a strong
signature for the existence of a lock-in effect. Finally note
that, in the Bean model, the irreversible magnetic moment can

also remain locked along the normal direction of thin plates
up to a “critical” angle θc ≈ arctan(w/l) due to geometrical
effects [12] where w and l are the width and thickness of the
slab, respectively.

We present here a detailed study of the field distribution
in Cu-doped TiSe2 [13] single crystals. The main result of
our study is the clear evidence of an unexpected and large
transverse Meissner effect for fields oriented close to the ab

planes. We show that vortices remain trapped along the layers
up to an applied field Hk(θH ) ∼ Hp/ sin θH (θH being the angle
between the field and the plane) which can be attributed neither
to the intrinsic lock-in effect as ξc ≈ 20 nm [14] is much larger
than d ≈ 0.6 nm, nor to the existence of crossed lattices as the
anisotropy is too small (� ∼ 1.7). Our study hence strongly
indicates the presence of correlated “defects” parallel to the
ab planes leading to a strong modulation of the vortex core
energy along the c direction. The nature of those defects still
has to be clarified.

CuxTiSe2 belongs to the group of transition-metal dichalco-
genides and shares some similarities with other unconventional
materials such as their layered structure and the presence of
an electronic instability competing with the superconducting
state. Indeed, TiSe2 hosts an excitonic charge density wave
[15] which is progressively destroyed by copper intercalation
between the TiSe2 layers [13] giving rise to a superconducting
dome in the phase diagram emerging above a doping content
x ∼ 0.04 with a maximum critical temperature Tc ∼ 4.1 K
reached around x ∼ 0.08 where the quantum critical point is
supposed to be. Three single crystals with different dopings
from the underdoped, optimally doped to (slightly) overdoped
regions of the phase diagram (Tc = 2.8, 4.1, and 3.8 K, i.e.,
x ∼ 0.06, 0.08, and 0.085 for samples 1, 2, and 3, respectively)
have been investigated. The response of the samples to an
applied magnetic field has been measured by an array of
ten miniature GaAs-based quantum well Hall sensors with
dimensions 10 × 10 μm2 and a pitch of 30 μm. The sample
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FIG. 1. Field dependence of the magnetic induction Bc for Ha‖c
in a CuxTiSe2 single crystal at the indicated temperatures (sample 3).
Solid (red) lines are fits to the data in the presence of geometrical
barriers (see [20] and text for details). A small upturn in B(Ha)
visible close to Hp (corresponding to 5–10 vortices) can be attributed
to the presence of low but nonzero bulk pinning. Inset: Scheme of
the experimental setup to measure different components of B by Hall
probes.

(of typical dimensions ∼500 × 500 × 100 μm3) was placed
on top of the probes and cooled down in zero magnetic field
to the lowest temperature of 0.3 K. The Hall voltage has been
converted into local magnetic induction B using the respective
probe sensitivity. The field dependence for both components
of the induction, Bc = B sin θB and Bab = B cos θB , were
obtained by placing the probes either perpendicularly or
parallel to the sample ab planes (see sketch in the inset of
Fig. 1) for a given temperature and θH value. The Bc/Bab ratio
between those two components then led to the field dependence
of the vortex orientation θB(Ha). As discussed below for an
applied field oriented close to the ab planes, θB clearly differs
from θH for low magnetic fields but tends towards θH with
increasing fields.

The main panel of Fig. 1 displays the field dependence of
Bc for increasing Ha oriented parallel to the c axis (θH = 90◦).
For small magnetic field Bc remains zero as the sample screens
out the field from the Hall sensors in the Meissner state. When
Ha reaches the first penetration field Hp, vortices start to
penetrate into the sample and the signal becomes nonzero. This
sharp increase in Bc (common to all three samples) clearly
indicates that pinning by point defects is extremely small
in this system [16,17]. As shown in Fig. 1 (solid red lines),
Bc(Ha) can be well described by a μ0Ha

√
1 − (Hp/Ha)2 law

as proposed by Zeldov et al. [18] in the case of a penetration
process dominated by geometrical barriers [19,20]. The small
upturn in the signal visible close to Hp (corresponding to 5–10
vortices) indicates the presence of very low [17] but nonzero
bulk (point) pinning which does not change the conclusions

drawn below. The main influence of the geometrical barriers
is further confirmed by the domelike shape of the field profiles
reported in [16] for Ha > Hp, clearly showing that the vortices
first accumulate in the center of the sample. Hp was thus
detected by probes located close to the center of the sample but
for the discussion below it is important to note that geometrical
barriers do not play any role for fields exceeding ∼2Hp [18,21]
and the lock-in effect discussed below cannot be related to the
field penetration process.

The Bc(Ha) dependence measured for various field orienta-
tions θH is displayed in Fig. 2(a). As discussed above, for large
field angles θH , Bc sharply increases when vortices penetrate
into the sample at Ha = Hp. On the other hand, for fields
oriented close to the ab plane, a second characteristic field
can be clearly recognized in the Bc(Ha) curves. As shown
for θH < 23◦, Bc remains close to zero well above the first
penetration field and a sharp kink appears in Bc when Ha

reaches a characteristic field, called here Hk . The reduced Bc

value observed for Hp < Ha < Hk is strongly suggesting that
vortices penetrating into the sample remain trapped along the
ab planes and leave the sample through the sides perpendicular
to the ab planes, being hence not detected by the Hall probes.
The nonzero Bc signal in this field range probably originates
from the small but nonzero distance between the probe and the
sample surface. When Ha = Hk , vortices unlock and the rapid
change in their orientation leads to the sharp increase in Bc

(see discussion below). Note that the angular dependence of
Hp depends on the geometrical factors and the mass anisotropy
with Hab

p /Hc
p ∼ (

√
w/l)(Hab

c1 /Hc
c1) ∼

√
w/l�2 [18,21]. For

sample 2, Hab
p /Hc

p ∼ 1 (geometrical factors compensating the
anisotropy) rising up to ∼2 in samples 1 and 3. However, since
Hk largely exceeds this value for small angles, the observed
increase in Bc at Hk cannot be mistaken for vortex penetration.

Figure 2(b) displays the curves from Fig. 2(a) plotted as a
function of Ha sin θH . As clearly shown, all the upturns in Bc at
Hk sin θH collapse onto the same value as expected for the lock-
in effect. Note that the critical lock-in angle scales as sin θH ∝
1/Ha and can hence not be attributed to geometrical effects
[12]. Moreover Hk sin θH ∼ Hc

p emphasizing that the lock-in
field is close to its maximum value and the lock-in effect is par-
ticularly strong in our system. This scaling has been observed
in all measured samples (i.e., whatever the doping content) and
at temperatures up to T/Tc ∼ 0.7–0.8 (see Fig. 3). For higher
temperatures Hk could not be distinguished from Hp anymore.

To analyze the field dependence of the vortex orientation
into more details both Bc and Bab components of the
magnetic induction were needed. The inset of Fig. 2(a) displays
the field dependence of Bab/ cos θH = B[cos θB/ cos θH ] and
Bc/ sin θH = B[sin θB/ sin θH ] for θH = 25◦. If vortices were
aligned with the magnetic field (θH = θB) the two signals
would be equal (to B), which is obviously not the case. Indeed,
in contrast to the rapid increase in Bab/ cos θH for Ha > Hp,
the field detected perpendicular to the planes Bc/ sin θH

remains small up to Hk . This clearly shows that for Ha > Hp

vortices present in the sample do not intersect the ab plane and
remain locked in this plane up to Hk . The field dependence of
the vortex orientation (tan θB/ tan θH ) for Ha > Hk is obtained
by dividing the two components of the magnetic induction and
is displayed in Fig. 4(b).
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FIG. 2. Upper panel (a): Magnetic field dependence of
Bc/ sin θH = B[sin θB/ sin θH ] in CuxTiSe2 (sample 3) for the indi-
cated field orientations θH (θB being the orientation of the induction
inside of the sample; see text for details). As shown for large
θH values, Bc rapidly increases for Ha > Hp (see also Fig. 1 for
θH = 90◦), whereas for smaller θH values, Bc remains small (θB ≈ 0)
up to Hk , which clearly indicates the presence of a transverse
Meissner effect. The nonzero Bc value (for Hp < Ha < Hk) probably
originates in the small but nonzero distance between the probe and
the sample surface. As shown, Bc (and hence θB ) rapidly increases for
Ha > Hk indicating a rapid change in the orientation of the flux lines.
Inset: Magnetic field dependence of the Bc/ sin θH and Bab/ cos θH

components of the induction for θH = 25◦ at T = 0.6 K (sample
2). Lower panel (b): Curves from (a) scaled by sin θH showing that
Hk sin θH ∼ 40 G (at 1 K), being close to the Hc

p value of the sample
(see also Fig. 3).

To theoretically describe this field dependence, we started
with the standard London model. In the absence of disorder,
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FIG. 3. Temperature dependence of the first penetration field Hc
p

(solid symbols) for Ha‖c in sample 1 (black squares), 2 [(green)
diamonds], and 3 (red circles) for Ha||c (see Fig. 1) and Hk sin θH

(open symbols) where Hk is the lock-in field observed for tilted
magnetic fields (see Fig. 2 and text for details). As shown, in all
samples, Hk sin θH ∼ Hp , tracking its temperature dependence on a
large part of the diagram.

the vortex structure results from the minimization of the total
Gibbs energy density [2]:

G = B2

2μ0
+ εlB

�0
f (θB,�,κ) − BH cos(θB − θH ) (1)

for H ∼ Hc1 (Ha ∼ Hp), where � is the anisotropy,
κ the Ginzburg-Landau parameter, εl the line tension:
�2

0lnκ/4πμ0λ
2
ab, and f (θ,�,κ) the angular dependence of

the core energy [2]. Given the reduced κ and � values of
our system, the observed lock-in effect cannot be related
to the possible coexistence of crossed lattices [2] and it is
hence necessary to add some extra (pinning) contribution
to the Gibbs energy in order to account for the observed
behavior. As suggested by Blatter et al. [11] the formation of a
staircase structure in the presence of correlated defects can be
described by assuming that this pinning energy can be written
as E(θB,r(θ ′

B)) = r(εl/� − εP ) + sεlf (θ ′
B) − tεlf (θB) [see

sketch in the inset of Fig. 4(b) for the definition of r , s, and t].
The “optimal” energy gain [Eopt (θB,ropt )] is then obtained by
minimizing E with respect to r and the corresponding energy
density E = BEopt/�0t is obtained by accounting for a small
but finite density of vortices equal to 1/a2

0 t (with a2
0 = �0/B).

We have extended the model discussed in [11] in or-
der to include the anisotropy factor � and large θB val-
ues. Numerical solutions for selected � and εR = �εP /εl

values are displayed in the insets of Fig. 4(a) together
with the analytical solution obtained for isotropic systems
(dotted line) for which E(θB) = εl(B/φ0)[(1 − εR) cos θB +
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FIG. 4. Upper panel (a): Angular dependence of the pinning
energy for the staircase vortex structure sketched in the inset of
(b) and for the indicated εR = �εP /εl and � values (see text for
details). The dotted line (right panel) corresponds to the analytical
dependence obtained in the isotropic case (� = 1) and the solid lines
are parabolic fits to the data (see text for details). Lower panel (b):
Field dependence of the orientation of the induction (θB ) for θH = 25◦

(open circles) and θH = 70◦ (closed squares) at the indicated T

values. Data for θH = 25◦ and T = 0.6 K has been deduced from
the measurements displayed in the inset of Fig. 2(a). The solid (red)
lines are fits to the data using Eq. (2). As shown, for θH = 25◦, a very
reasonable agreement is obtained up to 3.0 K (0.7Tc), whereas for
large θH values (θH > θt ), θB ≈ θH even at low temperature.

√
2εR − ε2

R sin θB − 1]. As shown, E can be very well
described by a simple parabolic approximation for all in-
vestigated εR and � values (solid lines): E(θB,�,εR) ≈
− 1

2 ε̃l(�,εR)(θB − θt (�,εR))2 hence generalizing the result
previously obtained for small angles in [11]. As shown, ε̃l is
almost independent of εR (increasing slightly with �), whereas
the critical trapping angle θt increases for increasing εR values
[with tan θt =

√
2εR − ε2

R/(1 − εR) in the isotropic case]. In
this parabolic approximation, the minimization of the total
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FIG. 5. Phase diagram of the vortex structure in CuxTiSe2 as
a function of the field orientation (sample 2). Hk and Hp values
have been obtained directly from the Bc(Ha) curves for various field
orientation [see Fig. 4(a) for θH = 25◦] while HL and θt are the
parameters deduced from the fits to the data using Eq. (2) [solid red
lines in Fig. 4(b)]. Similar phase diagrams were obtained for all three
studied samples with different copper concentration.

Gibbs energy density with respect to θB then leads to >

tan θB

tan θH

≈

⎧⎪⎪⎨
⎪⎪⎩

0, H < HL

1 − HL

H

1 − HL

H
tan θH

tan θt

, HL < H,θH < θt

1, θt < θH ,

(2)

where the lock-in field HL ≈ [Hc
c1/ sin θH ]F(�,εR) [withF =

(2εR − ε2
R)1/2 for � = 1]. This equation describes three phases

of vortex structure: at first the lock-in effect (θB = 0) for H <

HL, then the staircase structure for H > HL, and finally θB =
θH when vortices align with the applied field.

As shown in Fig. 4(b) (solid red lines), very reasonable
fits to the data can be obtained using Eq. (2) supporting the
existence of a staircase structure for Ha > Hk , on a large
temperature range (see also Fig. 3). As expected, the HL

values deduced from Eq. (2) are indeed equal to the Hk values
directly deduced from the sharp increase in Bc observed in
Fig. 2(a). Note that since � = 1.7, the small but nonzero
angular dependence of the second term in Eq. (1) has been
neglected. However, we have numerically checked that this
angular dependence only induces small shifts in the θB values
(typically by 1◦–2◦). Similarly, we did not take into account
the field dependence of the demagnetization effect simply
assuming that the real magnetic field H = α(θH )Ha but again,
this only induces minor quantitative changes in the fitting
parameters as α is close to 1 for θH = 25◦.

In summary, Fig. 5 displays the vortex phase diagram of
CuxTiSe2 crystals deduced from our vectorial magnetization
measurements. Very similar phase diagrams were obtained for
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all three samples. We have shown that vortices remain locked
along the ab planes, up to a lock-in field HL. For Ha > HL

the field dependence of the orientation of the vortices can
be well described assuming that the vortex matter forms a
staircase structure. HL = [Hc

p/ sin θH ]F(�,εR) ≈ Hc
p/ sin θH

indicating that the suppression of the core energy is very
strong (εR ∼ 1), largely exceeding the value expected for
twin planes (εR ∼ 10−3) [11]. It has been suggested [22] that
spatial modulations of the superconducting order parameter
could exist in systems with competing—and coupled—order
parameters in the presence of defects which could locally alter
the competing phase but, as the effect has been observed in
all three samples (from underdoped to slightly overdoped),

it cannot be directly related to the charge properties of
the system. The nature of the defects leading to such a
strong modulation of the core energy hence still has to be
clarified.
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