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The universal bimodal distribution of transmission eigenvalues in lossless diffusive systems underpins such
celebrated phenomena as universal conductance fluctuations, quantum shot noise in condensed matter physics,
and enhanced transmission in optics and acoustics. Here, we show that in the presence of absorption, the density
of the transmission eigenvalues depends on the confinement geometry of the scattering media. Furthermore, in
an asymmetric waveguide, the densities of the reflection and absorption eigenvalues also depend on the side from
which the waves are incident. With increasing absorption, the density of absorption eigenvalues transforms from
a single-peak to a double-peak function. Our findings open an additional avenue for coherent control of wave
transmission, reflection, and absorption in random media.
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Mesoscopic electronic transport through a disordered con-
ductor can be described by a N × N transmission matrix t̂

which relates the amplitudes of N incoming and outgoing
transverse modes [1]. The dimensionless conductance is g =
〈Tr(t̂† t̂)〉 = ∑

n〈τn〉, where τn are the eigenvalues of the matrix
t̂† t̂ [2] and 〈· · · 〉 denotes the ensemble average. Therefore,
electron transport in a metallic wire can be viewed as a parallel
transmission over N orthogonal eigenchannels with individual
transmissions of τn. Due to the mesoscopic correlations [3,4],
the density of the transmission eigenvaluesD(τ ) has a bimodal
functional form [5–11] with peaks at τ → 0 and τ → 1
[12,13]. This leads to, e.g., universal conductance fluctuations
[14,15] and quantum shot noise [16,17]. In Ref. [18], bimodal
distribution was proven to be applicable to an arbitrary
geometry of the conductor as long as the transport remains
diffusive and free of dissipation.

The bimodal distribution obtained in the context of
mesoscopic physics is also applicable to the transport of
classical waves in scattering media [19]. In optics, the rapid
development of wave-front shaping techniques has enabled
experimental access to transmission eigenchannels [20] that
allows control of the total transmission [21–23] as well as
focusing through turbid media [24–31]. Absorption, common
in optics, breaks energy conservation and makes the density
of transmission eigenvalues [32] as well as reflection [33–35]
eigenvalues to depend on its strength. However, the questions
of whether the geometry of the system could affect the
eigenvalue density in dissipative systems and, if so, how it
would affect it, still need to be addressed.

In this Rapid Communication we demonstrate that, unlike
passive systems, the density of the transmission eigenvalues in
absorbing disordered waveguides is geometry dependent, that
is beyond predictions of the existing theory [32]. This opens
the possibility of tuning the functional form of the eigenvalue
density by choosing the shape of the boundary. Furthermore,
we show that dissipation makes a profound impact on the
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densities of reflection eigenvalues ρ and absorption eigenval-
ues α that can even depend on which side of the waveguide
is being illuminated in the case of an asymmetric waveguide
shape. This is attributed to the fact that reflection matrices
for illumination from different sides are no longer related
in the presence of dissipation. Above a certain absorption
threshold, the density of absorption eigenvalues exhibits a
qualitative transformation from a single-peak to a double-peak
function. The additional peak at α � 1 enables a nearly
complete absorption at any frequency with an appropriate input
wave front.

Transmission eigenvalues. We consider a variable width
waveguide, schematically depicted in the inset of Fig. 1(a),
formed by reflecting boundaries at y(z) = ±W (z)/2, where
W (z) is a smooth function of z. The leads on the left/right
support NL/NR propagating modes. The transport through the
disordered region 0 � z � L is described by a complex NR ×
NL matrix t̂ . For passive random media, the density of the
eigenvalues of matrix t̂† t̂ is D(τ ) = (gp/2)τ−1(1 − τ )−1/2. In
Ref. [36], we reproduce this result using the circuit theory
of Ref. [18] with the dimensionless conductance given by

gp[W (z)] = (k�/2)[
∫ L

0 W−1(z)dz]
−1

, where k = 2π/λ is the
wave number, � is the transport mean free path, and subscript
p stands for “passive.” For a waveguide with constant W =
N (λ/2) width we recover the well-known expression gp =
(π/2)N�/L [37].

Figure 1(a) schematically depicts D(τ ) with three con-
tributions from open, closed, and evanescent eigenchannels.
Open channels correspond to eigenvalues close to unity (τO <

τ < 1) and closed channels correspond to low transmission
(τC < τ < τO). Defining

∫ 1
τO

P (τ )dτ = gp [12] gives τO ≡
[2e/(e2 + 1)]2 � 0.42. Together, open and closed channels are
described by the bimodal distribution. The cutoff τC at the level
of ballistic transmission [5,37] is obtained by normalizing∫ 1
τC
D(τ )dτ to the number of propagating channels Nmin =

Wmin/(λ/2) [see Fig. 1(a)]. In a waveguide with a constriction,
there are min(NL,NR) transmission eigenchannels, among
which NE = min(NL,NR) − Nmin are evanescent channels
with intensity decaying on the scale of the wavelength inside
the narrow portion of the waveguide and, therefore, τ � τC

2469-9950/2016/93(10)/100201(5) 100201-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.100201


RAPID COMMUNICATIONS

A. YAMILOV, S. PETRENKO, R. SARMA, AND H. CAO PHYSICAL REVIEW B 93, 100201(R) (2016)

(a)
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FIG. 1. (a) Schematic illustration of density of the transmission
eigenvalues D(τ ) in a passive disordered waveguide of varying
width W (z) drawn in the inset. It is made up of open (τO < τ �
1), closed (τC < τ < τO ), and evanescent (τ < τC) eigenchannels.
(b) Normalized density of the transmission eigenvalues D(τ )/gp

computed numerically for the four passive waveguides shown. All
data points fall onto the dashed line—the bimodal distribution. The
two insets show that the bimodal distribution correctly describes
both τ → 0 (closed channels) and τ → 1 (open channels) limits,
regardless of the waveguide shape.

for these channels [36]. This boundary separating evanescent
and closed channels is exaggerated for illustration in Fig. 1(a),
as in practice τC � 0.

The applicability of the bimodal distribution for open and
closed channels is confirmed in Fig. 1(b). It shows D(τ )/gp

computed numerically using the KWANT simulation package
[38] (see Ref. [36] for details) for four waveguides of different
shapes (drawn in the inset): a rectangular waveguide of
width W = 273 × (λ/2); a horn waveguide of width linearly
decreasing from WL = 400 × (λ/2) to WR = 200 × (λ/2);
a lantern waveguide of width linearly tapered from WM =
400 × (λ/2) in the middle to WL = WR = 200 × (λ/2) at the
two ends; and a bowtie of width tapered from WL = WR =
400 × (λ/2) at the ends to WM = 200 × (λ/2) in the middle.
The conductance in the four systems is gp = 13.9, 14.2,
13.5, and 13.9, respectively. The other system parameters are
L/� � 31, k� � 60, L/λ � 300. We accumulate ensembles of
∼5 × 105 eigenvalues so that their densities are free of noise
over at least five decades of magnitude.

Figure 1(b) clearly shows that the bimodal distribution,
including the asymptotes for τ → 0,1 in the insets of Fig. 1(b),
describes open and closed eigenchannels in waveguides of dif-
ferent shapes without any fitting parameters. The nonuniversal
contribution of evanescent channels to D(τ � 0) cannot be
clearly distinguished from the peak of closed channels in the

FIG. 2. Density of the transmission eigenvalues D(τ )/gp in
absorbing diffusive waveguides depends not only on the absorption
strength but also on the confinement geometry. The four colored
curves correspond to four waveguides with matched color in Fig. 1(b).
The absorption strength is L/ξa = 0.9 (a), 1.8 (b), and 3.6 (c). The
universal bimodal distribution of passive waveguides (solid line) is
shown for reference. Inset of (c): Normalized deviation of maximum
transmission eigenvalue 	τ1 = 〈τ1〉 − 〈τ (c)

1 〉 in four waveguides of
different shapes from that in the rectangular waveguide 〈τ (c)

1 〉, as a
function of absorption L/ξa .

numerical data because τC ∼ exp(−L/�) ∼ exp(−31) cannot
be resolved. Nevertheless, the evanescent channels can make
up a substantial fraction of the total channels, e.g., in the
bowtie waveguide, one half of the transmission eigenchannels
are evanescent and have the vanishingly small values of τ .

Absorption breaks flux conservation and time-reversal
symmetry, leaving optical reciprocity the only constraint on
the scattering matrix Ŝ of the system [39]. In Ref. [36] we show
that it relates (in each realization of disorder) the transmission
matrices for waves incident from the left t̂ and right t̂ ′ as
t̂ T = t̂ ′, where superscript T denotes the matrix transpose. This
relationship signifies that even in the presence of absorption,
t̂† t̂ and t̂ ′† t̂ ′ have the same set of nonzero eigenvalues.

Figures 2(a)–2(c) show the density of the transmission
eigenvalues for waveguides of different shapes with three
values of absorption: L/ξa = 0.9, 1.8, and 3.6. ξa = [��a/2]1/2

is the diffusive absorption length and �a is the ballistic absorp-
tion length. Common to all geometries, τ � 1 eigenvalues
are attenuated so that the density no longer reaches unity.
Instead, the maximum eigenvalue 〈τ1〉 < 1. Open channels
are redistributed throughout the τC < τ < max(τ1) interval
so that the eigenvalue density is consistently higher than
that in passive systems. However, unlike the bimodal distri-
bution for the passive systems [see Fig. 1(b)], D(τ ) is no
longer universal and exhibits a clear shape dependence. The
maximum transmission eigenvalue is lowest for the lantern
geometry. Such behavior can be understood as the narrower
openings and slanted walls of the lantern waveguide reduce
the escape probability and increase the effective absorption,
leading to smaller 〈τ1〉. In contrast, the situation is reversed
in the bowtie waveguide (see Fig. 2). This structure has
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wider openings and, therefore, waves are more likely to
escape without being strongly attenuated. The normalized
deviation of the largest eigenvalue 〈τ1〉 in waveguides of
different shapes from that in the rectangular waveguide 〈τ (c)

1 〉
is plotted in the inset of Fig. 2(c). The deviation increases
with absorption strength and can be either negative (horn,
lantern) or positive (bowtie). However, at the largest value
of absorption of L/ξa � 7.3, the deviation is reduced in the
bowtie waveguide, which can be understood as follows. For
strong absorption L 
 ξa , short propagation paths dominate
transport [29], so we expect the deviation to decrease in this
limit because all geometries have the same length L. Such
ballisticlike propagation is more favored due to the constriction
in the bowtie waveguide, where this transition occurs first.

Reflection eigenvalues. In a passive system, the energy
conservation and symmetry requirements make all nonzero
eigenvalues of t̂† t̂ , Î − r̂†r̂ , t̂ ′† t̂ ′, Î − r̂ ′†r̂ ′ identical, where r̂

(r̂ ′) represents the reflection matrix for waves incident from
the left (right) end of the waveguide [36]. This leads to the
bimodal distribution of the density of 1 − ρ for both left and
right reflection eigenvalues ρ and regardless of the shape of the
waveguide. In an asymmetric waveguide with NL �= NR (we
will assume NL > NR without loss of generality), the NL ×
NL matrix r̂†r̂ also has NL − NR eigenvalues with ρ = 1,
giving the perfectly reflecting eigenchannels for light incident
from the left (wider opening). Meanwhile, for waves incident
from the right (narrower opening), there are no perfectly
reflecting eigenchannels because the NR × NR matrix r̂ ′†r̂ ′
has only NR eigenvalues, all of which have corresponding
transmission eigenvalues that are nonzero. The results of
the numerical simulations in passive waveguides of different
shapes (cf. Fig. 3) confirm that the density of both left/right
reflection eigenvalues D(1 − ρ) follows the universal bimodal
distribution, which still holds in asymmetric waveguides as
the perfectly reflecting eigenchannels only have a singular
contribution at ρ = 1.

Due to the absence of flux conservation in systems with
absorption, the links between reflection and transmission
matrices and between left/right reflection matrices are severed
[36]. Consequently, in each disorder realization, the eigenval-
ues of r̂†r̂ and r̂ ′†r̂ ′ are not necessarily identical and they are no
longer related to the transmission eigenvalues. Our numerical
simulations confirm that the perfect reflecting channels are
removed by absorption as all reflection eigenvalues become
less than unity. Furthermore, in asymmetric waveguides (NL �=
NR), the densities of reflection eigenvalues differ for waves
incident from the left/right side of the waveguide, as shown in
Figs. 3(a) and 3(b) for the horn geometry. Even for symmetric
waveguides (NL = NR), D(ρ) is still clearly shape dependent,
as seen in Figs. 3(a) and 3(b) for the rectangular, lantern,
and bowtie geometries: D(1 − ρ) are distinctly different in
the (1 − ρ) → 0 limit while in the limit (1 − ρ) → 1 the
difference is greatly reduced. The attenuation of reflection
by absorption depends on how strong the light is coupled
into the absorbing waveguide, which can be controlled by the
waveguide geometry. For example, the narrower opening and
slanted sidewall of a lantern waveguide reduces the coupling
of incident light, as compared to the bowtie waveguide.

Figure 3(b) shows that power exponent in D(1 − ρ) ∝ ρ−1

for (1 − ρ) → 1 is independent of the waveguide shape/input

FIG. 3. Density D(1 − ρ)/gp of the reflection eigenvalues ρ in
diffusive waveguides of different shapes with absorption (L/ξa =
3.6) and without absorption. (a) and (b) show the power scaling
behaviors at (1 − ρ) → 0 and 1, respectively. Without absorption,
all eigenvalue densities, regardless of the waveguide shape or
input direction, fall onto the bimodal distribution—solid curve. In
absorbing systems, D(1 − ρ)/gp obtained for waves incident from
the left/right are shown with open/solid symbols. For all symmetric
waveguides (rectangular, lantern, bowtie) with absorption, NL = NR ,
solid and open symbols coincide. For the asymmetric horn waveguide
(NL �= NR), a large disparity between left/right illumination is
highlighted by the shaded area.

direction and it is the same as in a passive system. For
(1 − ρ) → (1 − ρmax), we find that the power exponent in
D(1 − ρ) ∝ (1 − ρ)−1.35 has a weak shape dependence. The
value 1.35 is smaller than 3/2 found in Refs. [33,34] for
a = N�/�a 
 1 in rectangular waveguides. We attribute the
discrepancy to an insufficiently large value of a = 1.9 for the
case shown in Fig. 3(a).

Absorption eigenvalues. In a dissipative system, the nonuni-
tary part of the scattering matrix Î − Ŝ†Ŝ ≡ ÂS accounts
for absorption [40] and its largest eigenvalue αS,1 tells the
maximum absorption that can be achieved by shaping the input
wave front [30]. This requires controlling all modes incident
onto both sides of the waveguide. However, more common
in experiments is only one side of the system is illuminated.
In such a case the matrix Â = Î − r̂†r̂ − t̂† t̂ describes the
absorption of input light. Its largest eigenvalue α1 determines
the maximum absorption in a given system when only one
side is accessible. Similar to the density of the reflection
eigenvalues, D(α) depends on the shape of the waveguide
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FIG. 4. Density D(α) of absorption eigenvalues α in disordered
waveguides of different shapes, under one-sided illumination, evolves
from a one-peak function at weak absorption (the ensemble-averaged
maximum absorption eigenvalue 〈α1〉 � 1) to a double-peak function
at intermediate absorption (〈α1〉 � 1) in (a), and the second peak
moves to α � 1 at strong absorption (〈α1〉 � 1) in (b). Symbol
notations are the same as in Fig. 3. In all cases the normalized density
of the absorption eigenvalues exhibits a strong dependence on the
shape of the waveguide, and for the asymmetric (horn) waveguide also
on the input direction. The inset in (b) plots the ensemble-averaged
maximum absorption eigenvalue 〈α1〉 vs the absorption strength L/ξa .
For comparison, the maximum absorption eigenvalues 〈αS,1〉 for
two-sided illumination are also shown.

and the input direction [cf. Figs. 4(a) and 4(b)]. Common
to all geometries, the functional form of D(α) undergoes a
qualitative change with an increase of absorption strength.
At weak absorption, the eigenvalue density monotonously
decreases toward zero with an increase of α [cf. Fig. 4(a)].
At the increased absorption, the density develops the second
maximum at α � 1. Even in this regime, there exists an

upper bound which approaches unity exponentially [cf. the
inset of Fig. 4(b)]. A coherent perfect absorber proposed
in Ref. [41] achieves 100% absorption but requires full
control of the incident wave front and a specific amount of
absorption. In contrast, we show that at any frequency and
with any absorption (above a certain threshold) the maximum
achievable absorption with one-sided excitation α1 can be
close to unity. Moreover, with the left end of the waveguide
being illuminated, for example, we can achieve nearly perfect
absorption by controlling a fraction NL/(NL + NR) of all input
channels, that can be small in, e.g., a horn waveguide with
NL < NR .

We note that the absorption dependence of the maximum
eigenvalue 〈α1〉 for one-sided illumination is qualitatively
different from 〈αS,1〉 for two-sided illumination [cf. the inset
of Fig. 4(b)]. The former approaches unity exponentially,
1 − 〈α1〉 ∝ exp[−L/ξa]. In contrast, excitation from both
sides results in a sharp transition at L/ξa ∼ 3, above which
the strong enhancement of absorption [30] with 〈αS,1〉 � 1
becomes possible. The critical value of the absorption can be
estimated by comparing the diffusion time without absorption
L2/Dπ2 to the absorption time ta = ξ 2

a /D, where D is the
diffusion coefficient. Equating these two characteristic time
scales results in L/ξa = π , which agrees with Fig. 4(b). This
offers an absorption analogy with a diffusive random laser
[42–44] where exactly the same amount of gain corresponds
to the lasing threshold, giving output to all sides.

Conclusions. We believe our results will have profound
implications for coherent control of wave transmission,
reflection, and absorption in random media [20,45]. The
ability to modify the eigenvalue densities will greatly en-
hance the capability of coherent control, with applications
to imaging through opaque media and targeted deposition
of energy inside turbid media. Furthermore, nanophotonic
waveguides with various geometries can be readily made
with current nanofabrication techniques [46], and the control
of light transmission or reflection by shaping the incident
wave front will enable different functionalities for photonic
applications.
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