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Effect of Van Hove singularities on high-Tc superconductivity in H3S
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One of the interesting open questions for the high-transition-temperature (Tc) superconductivity in sulfur
hydrides is why high-pressure phases of H3S have extremely high Tc’s. Recently, it has been pointed out that the
presence of the Van Hove singularities (VHS) around the Fermi level is crucial. However, while there have been
quantitative estimates of Tc based on the Migdal-Eliashberg theory, the energy dependence of the density of states
(DOS) has been neglected to simplify the Eliashberg equation. In this study, we go beyond the constant DOS
approximation and explicitly consider the electronic structure over 40 eV around the Fermi level. In contrast with
the previous conventional calculations, this approach with a sufficiently large number of Matsubara frequencies
enables us to calculate Tc without introducing the empirical pseudo Coulomb potential. We show that while H3S
has much higher Tc than H2S for which the VHS is absent, the constant DOS approximation employed so far
seriously overestimates (underestimates) Tc by ∼60 K (∼10 K) for H3S (H2S). We then discuss the impact of
the strong electron-phonon coupling on the electronic structure with and without the VHS and how it affects
the superconductivity. In particular, we focus on (1) the feedback effect in the self-consistent calculation of the
self-energy, (2) the effect of the energy shift due to the zero-point motion, and (3) the effect of the changes in the
phonon frequencies due to strong anharmonicity. We show that the effect of (1)–(3) on Tc is about 10–30 K for
both H3S and H2S. Eventually, Tc is estimated to be 181 K for H3S at 250 GPa and 34 K for H2S at 140 GPa, which
explains the pressure dependence of Tc observed in the experiment. In addition, we evaluate the lowest-order
vertex correction beyond the Migdal-Eliashberg theory and discuss the validity of the Migdal approximation for
sulfur hydrides.
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I. INTRODUCTION

Realization of superconductivity at very high temperatures
has been the Holy Grail in condensed-matter physics. While
unconventional superconductors such as the cuprates [1] and
iron-based superconductors [2] have been extensively studied,
the mechanism for the high transition temperatures (Tc’s)
is yet to be fully understood. On the other hand, there
has been a simple but promising strategy to achieve high
Tc for conventional phonon-mediated superconductors [3–5].
According to the BCS theory [6], Tc is scaled by the
inverse square root of the atomic mass. Thus, compounds
comprised of light elements are promising candidates for
high-Tc superconductors. Indeed, high-Tc superconductivity
has been found so far in a variety of light-element compounds
such as the graphite intercalation compounds [7], elemental
lithium under high pressures [8–10], magnesium diboride [11],
and boron-doped diamond [12,13].

Since hydrogen has the lightest atomic mass, the metallic
hydrogen [3,4] or hydrogen-rich compounds [5] have been
long expected to be high-Tc superconductors. Recently, it
has been reported that H2S under pressures of 100–200 GPa
exhibits superconductivity at extremely high temperatures up
to ∼200 K [14,15], breaking the record of the cuprates [16,17].
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Prior to and since this experimental discovery, there have
been a lot of ab initio studies for compressed sulfur hy-
drides [18–37]. A variety of possible crystal structures has been
found by structure searching calculations [18,19,23,36,37],
and Tc has been estimated to be lower than 100 K (as high
as 200 K) for H2S (H3S) [19,22,25–27,29,34,36]. It has also
been suggested that chemical substitution of sulfur atoms could
enhance Tc [31,32]. Most of these works have concluded that
the compressed sulfur hydrides are phonon-mediated strong-
coupling superconductors. Not only the existence of high-
frequency phonons due to the hydrogen motion, but also strong
electron-phonon coupling has been shown to be important for
high-Tc superconductivity, especially in H3S. These results
are indeed consistent with the experiment [14,15,38] where
the isotope effect is observed to be significant.

Interestingly, in the calculations based on the Migdal-
Eliashberg (ME) theory [39,40], there is a clear difference
in calculated Tc’s between H2S and H3S. While the origin
of this difference is yet to be fully understood, recently it
has been suggested that Van Hove singularities (VHS) in the
electronic structure of H3S play a key role in understanding this
problem [24,28,30,33]. It is noteworthy that this situation is
similar to that of the A15 compounds, for which the density of
states (DOS) has a sharp peak around the Fermi level [41–45].
Indeed, there have been some model calculations which
studied how the energy dependence of the DOS affects
Tc [42]. On the other hand, for H3S, the effect of the VHS
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on the superconductivity has not been fully understood. In
the previous studies based on the ME theory [18–20,34],
the DOS is assumed to have no energy dependence. This is
mainly because one can reduce the numerical cost to solve the
Eliashberg equation.

In this study, we examine how the presence/absence of the
VHS affects the Tc of sulfur hydrides. To this end, we go
beyond the constant DOS approximation. With a sufficiently
large number of Matsubara frequencies, the retardation effect
is automatically considered. Such a calculation is possible
because the ratio between Tc and the bandwidth is only
O(10−3). Note that the ratio for the usual conventional
superconductors is as small as O(10−5) so that the retardation
effect is represented by introducing the empirical pseudo
Coulomb potential μ∗.

Another advantage of the present approach is that we can
calculate the self-energy due to the electron-phonon coupling
self-consistently. As will be discussed in Sec. II, in the
constant DOS approximation, the feedback effect included
in the self-consistent calculation is automatically neglected.
Also, in the standard density functional theory for super-
conductors [25,26,46], the exchange-correlation functional
representing the mass enhancement effect is not calculated
self-consistently. In this study, we discuss how the self-
consistency in the calculation of the self-energy affects the
superconductivity in the sulfur-hydride superconductors.

In the calculation of the self-energy, we first consider the
standard contribution (the lowest phonon-exchange diagram)
in the ME theory. We then study the effect of the so-called zero-
point renormalization (ZPR), i.e., the band energy shift due to
the zero-point motion. It should be noted that the amplitude of
the zero-point motion of hydrogen atoms in sulfur hydrides is
larger than 0.1 Å. Indeed, it has been proposed that its effect
on the electronic structure and superconductivity is expected
to be significant [28] and contribute to the stability of the
high-symmetry cubic phase [36].

Another characteristic feature of the superconducting sul-
fur hydrides is their strong anharmonic effect. Recently,
within the constant DOS approximation, it has been shown
that the anharmonicity in H3S significantly suppresses the
superconductivity, especially when the system experiences
the second-order structural phase transition (from R3m to
Im3̄m) [27]. In this work, we also study the anharmonic effect
in the energy-dependent Eliashberg approach for H3S and H2S,
and show that the impact of anharmonicity is significant not
only in H3S but also H2S.

Finally, we study the validity of the ME theory. It has been
suggested that the Migdal theorem [39] might not be applicable
to H3S [28,35], though Tc estimated by the ME theory is
consistent with experimentally observed values. Since the
effective Fermi energy at the VHS is small and comparable
to the phonon energy scale, the premise of the ME theory
might not be satisfied. Indeed, there has been a study proposing
an unconventional pairing mechanism [21]. Here we estimate
the lowest-order vertex correction beyond the ME theory and
examine its effect on Tc [47].

This paper is organized as follows. In Sec. II, we review the
methods to study the normal and superconducting properties
of solids from first principles. In particular, we describe the
approximations employed thus far to solve the linearized

Eliashberg equation and discuss how we go further. Here
we also describe how to treat the ZPR and anharmonicity.
In Sec. III, we discuss the normal electronic structure and
the phonon structure for H3S with the Im3̄m structure and
H2S with the P 1̄ structure. In Sec. IV, we show that the
constant DOS approximation seriously overestimates Tc of
H3S by ∼60 K. On the other hand, in the case of H2S for
which the VHS are absent, the constant DOS approximation
underestimates Tc by ∼10 K. We then discuss how the
self-energy due to the strong electron-phonon coupling affects
the Van Hove singularities and Tc. We study (1) the feedback
effect in the self-consistent calculation of the self-energy, (2)
the effect of the electron energy shift due to the zero-point
motion, and (3) the effect of the changes in the phonon
frequencies due to the strong anharmonicity. We show that
the effect of (1)–(3) on Tc is about 10–30 K for both H3S
and H2S, and Tc is estimated to be 181 K for H3S and 34 K
for H2S. These results suggest that H3S (H2S) is responsible
for the high- (low-)Tc superconductivity under pressures that
are higher (lower) than ∼150 GPa. In Sec. VI, we evaluate
the lowest-order vertex correction and its effect on Tc in order
to obtain the criterion for the justification of the ME theory.
Finally, we give a summary of this study in Sec. VII.

II. METHOD

A. Migdal-Eliashberg theory for Tc calculation with
energy-dependent DOS

Based on density functional and density functional per-
turbation theory (DFPT) [48], one can obtain the following
Hamiltonian for electron-phonon coupled systems:

Hep = H0 + Hel−el + Hel−ph, (1)

where

H0 =
∑
j, p,σ

ξj pc
†
j pσ cj pσ +

∑
q,λ

ωqλb
†
qλbqλ, (2)

Hel−el = 1

N

∑
q �=0

∑
j l, p

V c(q)c†j p+q↑c
†
j− p−q↓cl− p↓cl p↑, (3)

Hel−ph = 1√
N

∑
q �=0,λ

∑
j l, p,σ

g
j p+q,l p
λ (q)(bqλ + b

†
−qλ)

×c
†
j p+qσ cl pσ , (4)

with c
†
j pσ (cj pσ ) being a creation (annihilation) operator of an

electron with spin σ and momentum p in the j th band, ξj p

being an electron dispersion with respect to the Fermi level,
b
†
qλ (bqλ) being a creation (annihilation) operator of a phonon

with momentum q and mode λ, ωqλ being a phonon frequency,
g

j p+q,l p
λ (q) being a electron-phonon matrix element defined

by Eq. (A8), and V c being the bare electron-electron Coulomb
interaction. Here we consider the Coulomb repulsion between
electrons only for pairing channels explicitly since electron
dispersion ξj p already includes the contribution of the direct
and exchange channel of the Coulomb interaction at the
mean-field level [49]. Such a treatment is justified for weakly
correlated conventional superconductors.

The problem for conventional superconductivity is how
to treat the Hamiltonian given by Eq. (1). Fortunately, the
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Migdal theorem greatly simplifies the complicated many-body
problem of the electron-phonon coupled system through
neglecting the vertex correction [39]. Within the framework
of the Migdal-Eliashberg theory [39,40], the self-energy is
given by

�j p(iωn) = − 1

Nβ

∑
lqm

Ṽ
ph
j p+q,l p(q,iωm)

×Gl p+q(iωm + iωn), (5)

�j p(iωn) = 1

Nβ

∑
lqm

{
Ṽ

ph
j p+q,l p(q,iωm) + Ṽ c

j p+q,l p(q,iωm)
}

×Fl p+q(iωm + iωn), (6)

where j and l are the band indices, �j p(iωn) and �j p(iωn)
are the normal and the anomalous self-energies, and Gj p(iωn)
and Fj p(iωn) are the electron normal and anomalous Green’s
functions. Here the band off-diagonal elements of the Green’s
function are neglected. If the density functional calculation
is a good starting point for superconductors, the off-diagonal
elements can be safely ignored. Ṽ ph is the screened electron-
electron interaction mediated by phonons. It is given by

Ṽ
ph
j p+q,l p(q,iωm) =

∑
λ

∣∣g̃j p+q,l p
λ (q)

∣∣2
Dqλ(iωm), (7)

where g̃
j p+q,l p
λ (q) and Dqλ(iωm) denote the screened electron-

phonon matrix element and the phonon Green’s function. Here,
g̃ and D are screened quantities and should include the static
screening effect by the electron polarization. On the other
hand, in ab initio calculations based on density functional
theory, calculated g and the phonon frequency already include
such screening effects in the static level. Therefore, one can
consider g̃ in Eq. (7) as g from DFPT and D as the free-phonon
Green’s function defined by

Dqλ(iωm) = − 2ωqλ

ω2
m + ω2

qλ

, (8)

where ωqλ is also calculated by DFPT.
The screened Coulomb interaction for the pairing chan-

nel, Ṽ c
j p,l p′(iωm) = 〈ψj p↑ψj− p↓|ε−1(iωm)V c|ψl p′↑ψl− p′↓〉, is

calculated through the symmetrized dielectric function [50],
ε̃GG′ , as

Ṽ c
j p+q,l p(iωm) = 4π

�

×
∑
GG′

ρ
j p+q
l p (G)ε̃−1

GG′(q; iωm)
{
ρ

j p+q
l p (G′)

}∗

|q + G||q + G′| ,

(9)

ε̃GG′(q; iωm) = δGG′ − 4π

�

1

|q + G|χGG′(q; iωm)
1

|q + G′| .
(10)

Here, χ is the polarization function, G is the reciprocal lattice
vector, � is the volume of the unit cell, and ρ

j p+q
l p (G) is

written as

ρ
j p+q
l p (G) =

∫
�

d3rψ∗
j p+q(r)ei(q+G)·rψl p(r), (11)

where
∫
�

denotes the integration in the unit cell.
In this study, the screening is treated within the random

phase approximation (RPA) [51]. In the RPA, the polarization
function is given by the following equation:

χGG′(q; iωm) = 2

�

∑
p

∑
j :unocc, l:occ

[
ρ

j p+q
l p (G)

]∗
ρ

j p+q
l p (G′)

×
{

1

iωm − ξj p+q + ξl p

− 1

iωm + ξj p+q − ξl p

}
. (12)

Here the polarization function depends on the Matsubara
frequency. However, we ignore this frequency dependence and
treat the screened Coulomb interaction as a static repulsion
between the paired electrons. One should notice that the
structure of the Coulomb interaction along the frequency
direction leads to an enhancement of Tc by the plasmon
mechanism [52]. The inclusion of the frequency dependence
for the screened Coulomb interaction is left as a future work.

For the calculation of Tc, the second-order products of the
anomalous quantities can be ignored. Therefore, the equations
are linearized and the anomalous Green’s function is reduced to
the product of the normal Green’s function and the anomalous
self-energy: Fj p(iωn) = −Gj p(iωn)Gj− p(−iωn)�j p(iωn).

In conventional calculations of Tc based on the ME theory,
several approximations are introduced to simplify Eqs. (5)
and (6) [53–55]. Since the pairing interaction works only
for low-energy states, we rewrite the momentum sum as an
energy integral assuming that DOS is constant around the
Fermi level. For the Matsubara frequency sum, one introduces
a cutoff frequency (of the order of the phonon energy scale)
by replacing the Coulomb interaction Ṽ c with the pseudo
Coulomb potential μ∗ [56]. μ∗ represents the retardation effect
defined by

μ∗ = μ

1 + μ ln(ωel/ωc)
. (13)

Here, ωel and ωc are the cutoff frequencies of the order of the
electron and phonon energy scale, respectively, and μ is the
unrenormalized Coulomb potential written as

N (0)μ = 1

N2

∑
j l, pq

Ṽ c
j p+q,l p(0)δ(ξj p+q)δ(ξl p), (14)

where N (0) denotes the DOS at the Fermi level. With these
approximations, the linearized version of Eqs. (5) and (6) is
reduced to

Z(iωn) = 1 + 1

ωn

π

β

′∑
n′

λ(iωn − iωn′ )sgn(ωn′), (15)

φ(iωn) = 1

Z(iωn)

π

β

′∑
n′

φ(iωn′)

|ωn′ | {λ(iωn − iωn′ ) − μ∗},

(16)
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where Z(iωn) and φ(iωn) denote the renormalization function
and the gap function. � with prime denotes the summation
with the frequency cutoff ωc. λ(iωm) is the electron-phonon
coupling

λ(z) =
∫ ∞

0
dν

2ν

ν2 − z2
α2F (ν), (17)

and α2F (ν) is the Eliashberg function defined by

α2F (ν) = 1

N (0)

∑
j l, pq,λ

∣∣gj p+q,lq
λ (q)

∣∣2

× δ(ξj p+q)δ(ξl p)δ(ν − ωqλ). (18)

The Eliashberg function plays a central role in the conventional
ME theory. If one knows α2F , Tc can be calculated with
Eqs. (15) and (16) easily. In conventional calculations, μ∗
is not evaluated with Eqs. (13) and (14), but rather treated as
an adjustable parameter [53–55].

While the analytical formulation of the scheme considering
the energy dependence of DOS is rather straightforward, the
actual calculation is numerically expensive. To mitigate the
computational costs, we take the momentum average of
Ṽ ph and Ṽ c to be Ṽ

ph
j l (q,iωm) = 〈Ṽ ph

j p+q,l p(q,iωm)〉 p and
Ṽ c

j l(q,iωm) = 〈Ṽ c
j p+q,l p(q,iωm)〉 p. In conventional supercon-

ductivity, this simplification could be a good approxima-
tion since the gap function is almost isotropic and the
complex momentum dependence is not important. For the
phonon-mediated interaction, this average is achieved by
averaging the electron-phonon matrix element |gjl

λ (q)|2 =
〈|gj p+q,l p

λ (q)|2〉 p. The averaged interaction is given by

Ṽ
ph
j l (q,iωm) =

∑
λ

∣∣gjl

λ (q)
∣∣2

Dqλ(iωm). (19)

Then, the linearized equations are written as

�j p(iωn) = − 1

Nβ

∑
lqm

Ṽ
ph
j l (q,iωm)

× Gl p+q(iωm + iωn), (20)

�j p(iωn) = − 1

Nβ

∑
lqm

{
Ṽ

ph
j l (q,iωm) + Ṽ c

j l(q,iωm)
}

× Gl p+q(iωn + iωm)Gl− p−q(−iωn − iωm)

× �l p+q(iωn + iωm). (21)

Based on this formulation, one can include the effect of energy-
dependent DOS on Tc.

Equation (20) is solved with the Dyson equation,

Gj p(iωn) = 1

iωn − ξj p − �j p(iωn)
, (22)

by either the self-consistent (SC) or one-shot way. It should be
noted that once we employ the constant DOS approximation,
one cannot perform the SC calculation for the normal part. As
mentioned above, this fact is ascribed to the neglect of the level
shift function in the constant DOS approximation. On the other
hand, in Eqs. (20) and (22), we fully include the effect of the
level shift function, which comes from the antisymmetric part

of the energy-dependent DOS [55]. The level shift function and
the self-consistency might be crucial for the superconducting
property when the DOS has a strong energy dependence
around the Fermi level. Through the change of the normal
Green’s function, the pairing interaction in Eq. (21) could be
modified [42,44]. We will discuss this point in Sec. IV.

More practically, the momentum average of Ṽ ph

and the averaged electron-phonon matrix elements are
calculated as

∣∣gjl

λ (q)
∣∣2 =

∑
p

∣∣gj p+q,l p
λ (q)

∣∣2
δ(ξj p+q)δ(ξl p)∑

p δ(ξj p+q)δ(ξl p)
. (23)

When the j th and lth band are far away from the Fermi
level and g

jl

λ (q) evaluated by (23) is smaller than a thresh-
old value, the averaged matrix element is approximately
calculated as∣∣gjl

λ (q)
∣∣2 = 1

N

∑
p

∣∣gj p+q,l p
λ (q)

∣∣2
. (24)

As mentioned earlier, the advantage of solving Eqs. (20)
and (21) is the inclusion of the energy dependence of DOS.
Another advantage is that we can explicitly treat the retardation
effect. In the calculation with the constant DOS approximation,
it is, in principle, impossible to achieve the convergence
with respect to the number of Matsubara frequencies. Since
the gap function is almost constant in the high-frequency
region [53], the second term in the right-hand side (rhs)
of Eq. (16) always diverges logarithmically for fixed μ

and sufficiently large number of Matsubara frequencies. To
avoid this logarithmic divergence, μ must be zero, which is
totally unphysical. Therefore, one cannot reach a converged
solution for nonempirically calculated μ without introducing
an adjustable electron energy cutoff [56]. Such a problem is
mitigated in Eq. (21), since Gj p(iωn)Gj− p(−iωn) behaves
as 1/ω2

n in the high-frequency limit. However, the numerical
cost to achieve the convergence with respect to the Matsubara
frequency is formidable, especially when Tc is low. This is
because we need an extremely large number of Matsubara
frequencies to cover the high-frequency region. Fortunately,
the Tc’s of sulfur hydrides are 30–200 K, which enables the
Matsubara frequency grid to span a wide range of energy with
a small number of grid points. We can therefore carry out
the Tc calculation nonempirically—without introducing the
adjustable parameters–with a feasible numerical cost.

In the calculation with the constant DOS approximation,
one can also obtain the converged Tc with fixed μ by
introducing another cutoff frequency ωel for the effective
energy range of the Coulomb interaction, instead of ωc. With
taking the isotropic limit and linearization, the momentum
summation of the rhs in Eq. (6) can be calculated analytically,

1

N

∑
p′l

Gl p′(iωn′ )Gl− p′(−iωn′ )

= N (0)
∫ ωel

−ωel

dξ
1

Z(iωn′ )2ω2
n′ + ξ 2

= 2N (0)

Z(iωn′ )ωn′
arctan

[
ωel

Z(iωn′ )ωn′

]
. (25)
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Thus, Eq. (16) becomes

φ(iωn) = 1

Z(iωn)

π

β

∑
n′

φ(iωn′ )

|ωn′ | {λ(iωn − iωn′ ) − μηn′ (ωel)},

(26)

where ηn(ωel) is the cutoff function defined by

ηn(ωel) = 2

π
arctan

[
ωel

Z(iωn)|ωn|
]
. (27)

Here, although the effective energy range is considerably
different, both λ(iωn) and ηn(ωel) decay as a function of
ωn. By combining Eqs. (15) and (26), one can calculate Tc

with the fully nonempirically evaluated μ if a large number
of Matsubara frequencies is taken. Hereafter, we call this
treatment constant DOS ME theory.

B. Allen-Heine-Cardona theory

The Allen-Heine-Cardona (AHC) theory is a perturbative
approach to calculate ZPR from first principles [57–60]. If the
Hamiltonian H is perturbed by ion displacement u from its
equilibrium position, it causes a shift of the electron energy.
At the level of the second-order perturbation, such a shift is
given by

δεj p = 1

2N

∑
κκ ′,qλ,μν

∑
ll′

√
�2

MκMκ ′ω2
qλ

∇lκμ∇l′κ ′νεj p

×eμ∗
κ (qλ)eν

κ ′(qλ)eiq·(Rl′−Rl )

{
〈nqλ〉 + 1

2

}

= 1

2N

∑
κκ ′,qλ,μν

√
�2

MκMκ ′ω2
qλ

eμ∗
κ (qλ)eν

κ ′(qλ)

× ∂2εj p

∂u∗
μκ (q)∂uνκ ′(q)

{
〈nqλ〉 + 1

2

}
, (28)

where eμ
κ (qλ) is the phonon polarization vector with momen-

tum q and mode λ defined through Eq. (A1), N is the number
of q points, Mκ is the mass of the κth ion, Rl is the position
of the lth unit cell, 〈nqλ〉 is the Bose-Einstein distribution
function, and ∇lκμ∇l′κ ′νεj p is the second-order derivative of
the Kohn-Sham energy [61] defined by

∇lκμ∇l′κ ′νεj p =〈ψj p|∇lκμ∇l′κ ′νH |ψj p〉
+ {〈∇l′κ ′νψj p|∇lκμH |ψj p〉 + c.c.}, (29)

with the Kohn-Sham orbital ψj p and the Kohn-Sham energy
εj p. ∇lκμ represents the derivative with respect to the the κth
ion position in the lth unit cell for the μth direction. The shift of
the band energy coming from the first-order and second-order
derivatives is called the Fan term [62] and Debye-Waller (DW)
term [63], respectively. Here, the first-order modulation of the
Hamiltonian can be obtained by DFPT [48]. To evaluate the
first-order derivative of the wave function, one can utilize the
Sternheimer approach [60,61,64] by separating the unoccupied
manifold from the occupied space by

|∇lκμψi〉 = −
∑
j ;occ

〈ψj |∇lκμH |ψi〉
εi − εj

|ψj 〉

+Punocc|∇lκμψi〉, (30)

where the first term of the rhs can be calculated by summing
only over the occupied states, and the second term can be
evaluated by standard DFPT [48]. Here, Punocc is the projection
to the unoccupied manifold. For details about the DFPT, see
the Appendix.

Compared with the first-order derivative of the Hamilto-
nian, the second-order derivative requires much more com-
putational costs. The first-order derivative can be treated as
a monochromatic perturbation [48], which means that for the
calculation at momentum q, it does not need information about
the other momenta q ′ �= q. On the other hand, the calculation
for the second-order derivative is not monochromatic and
needs an additional loop for momentum. Instead of calculating
〈ψj p|∇lκμ∇l′κ ′νH |ψj p〉 directly, one usually employs the
acoustic sum rule and the rigid-ion approximation [57].
The acoustic sum rule represents the fact that the uniform
displacements of the ions have no effect on the periodic
system. It gives the constraint which connects the second-order
derivative with the first-order one through the following
equation [61]:

∑
κ ′

∂2εj p

∂u∗
μκ (0)∂uνκ ′(0)

= 0. (31)

In addition, one can use the rigid-ion approximation.
Namely, one can replace the second-order derivative of the
Hamiltonian with the first-order derivative if the Hamiltonian
is assumed to have the following form:

Hrigid−ion = K +
∑
lκ

Vlκ (r − Rl − rκ ), (32)

with the electron kinetic energy K and the potential energy
Vlκ caused by the κth ion in the lth unit cell. Here, rκ and
Rl represent the position of the κth ion and the lth unit cell,
respectively. It is apparent that ∇lκμ∇l′κ ′νH is equal to zero if
κ �= κ ′ as well as l �= l′. This property leads to the following
formula: 〈

ψj p

∣∣∣∣ ∂2H

∂u∗
μκ (q)∂uνκ ′(q)

∣∣∣∣ψj p

〉

=
〈
ψj p

∣∣∣∣ ∂2H

∂u∗
μκ (0)∂uνκ ′(0)

∣∣∣∣ψj p

〉
δκκ ′ . (33)

By combining Eqs. (29), (31), and (33), one can evaluate the
shift of the electron band energy by

δεj p = 1

N

∑
qλ

∂εj p

∂nqλ

{
〈nqλ〉 + 1

2

}
, (34)

where ∂εj p/∂nqλ is divided into two contributions,

∂εj p

∂nqλ

= ∂ε
(Fan)
j p

∂nqλ

+ ∂ε
(DW)
j p

∂nqλ

, (35)

and each term is written as

∂ε
(Fan)
j p

∂nqλ

= �

2ωqλ

∑
κκ ′,μν

√
1

MκMκ ′
eμ∗
κ (qλ)eν

κ ′(qλ)

×
{〈

∂ψj p

∂uκμ(q)

∣∣∣∣ ∂H

∂uκ ′ν(q)

∣∣∣∣ψj p

〉
+ c.c.

}
, (36)
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∂ε
(DW)
j p

∂nqλ

= − �

4ωqλ

∑
κκ ′,μν

{
eμ∗
κ (qλ)eν

κ (qλ)

Mκ

+ e
μ∗
κ ′ (qλ)eν

κ ′(qλ)

Mκ ′

}

×
{〈

∂ψj p

∂uκμ(0)

∣∣∣∣ ∂H

∂uκ ′ν(0)

∣∣∣∣ψj p

〉
+ c.c.

}
. (37)

Here let us consider the validity of the rigid-ion approx-
imation. In the Kohn-Sham system, the Hamiltonian does
not have the form of Eq. (32) due to the Hartree and
exchange-correlation potential. These potential terms depend
on the electron density, and the electron density response
to the displacement of one ion is affected by that of other
ions. Therefore, the potential term cannot be expressed as
the sum of the potentials of the individual ions. In spite of
this fact, one can still expect that the rigid-ion approximation
works well in three-dimensional materials as a consequence of
the electronic screening [65]. The screening makes the range
where the displacement of the different ions affects small, and
such short-range effects are relevant only near the edge of the
Brillouin zone (BZ). Since the volume of the edge regions
becomes small in higher-dimensional systems, one could
safely apply the rigid-ion approximation to three-dimensional
materials. For the DW contribution, this statement is confirmed
in the case of diamond by comparing the result of the AHC
theory with that of the frozen phonon approach [66].

In this study, we employ the AHC theory implemented
in the ABINIT [67] package for the evaluation of the ZPR.
In the ABINIT calculation, we use the same pseudopotential
used in the electronic and phononic structure calculations (see
Sec. III).

C. Self-consistent phonon theory

In this paper, we study how the anharmonicity changes the
phonon dispersion and affects the self-energy of electrons,
and consequently the superconducting Tc. Several ab initio
approaches have been recently proposed for including an-
harmonic effects of phonons beyond the quasiharmonic level
[68–72]. Here, we employ a deterministic method based on
the self-consistent phonon (SCPH) theory [72,73]. In our ap-
proach, the first-order effect of the frequency renormalization
due to the quartic anharmonicity is treated nonperturbatively
by solving the following SCPH equations:

det {ω2 − U q} = 0, (38)

Uqλλ′ = ω2
qλδλλ′ + (2ωqλ)

1
2 (2ωqλ′)

1
2 �qλλ′ . (39)

Here the matrix �q is the lowest-order phonon self-energy
associated with the quartic terms defined as

�qλλ′ =
∑
q1,λ1

��(qλ; −qλ′; q1λ1; −q1λ1)

8
√

ωqλωqλ′ωq1λ1

[2〈nq1λ1〉 + 1].

(40)
The tensor � in the numerator represents the strength of
the phonon-phonon coupling and can be calculated from the
fourth-order interatomic force constants (IFCs) in real space

as follows:

�(qλ; −qλ′; q1λ1; −q1λ1)

= 1

N

∑
{κ,μ,l}

eμ1
κ1

(qλ)eμ2∗
κ2

(qλ′)eμ3
κ3

(q1λ1)eμ4∗
κ4

(q1λ1)√
Mκ1Mκ2Mκ3Mκ4

×�μ1μ2μ3μ4 (0κ1; l2κ2; l3κ3; l4κ4)

×e−i[q·Rl2 −q1·(Rl3 −Rl4 )]. (41)

By diagonalizing the Hermitian matrix U q , one obtains phonon
frequencies and corresponding eigenvectors modulated by
fourth-order anharmonicity. Through this change of phonon
frequencies and eigenvectors, the phonon self-energy �q is
also updated. Therefore, Eqs. (38)–(41) need to be solved
iteratively until a convergence is achieved with respect to
anharmonic phonon frequencies. In this study, we neglect the
mode off-diagonal elements of the phonon self-energy, i.e.,
�qλλ′ ≈ �qλλδλ,λ′ , so that the phonon polarization vectors are
not altered by anharmonic effects. The SCPH solution also
includes the effect of zero-point motion [Eq. (40)], which is
crucial for understanding anharmonic effects in sulfur hydrides
under pressure [27].

To conduct the SCPH calculation, we need to calculate
the fourth-order IFCs. For that purpose, we employ the real-
space supercell approach, and anharmonic force constants are
extracted from displacement-force training data sets prepared
by DFT calculations. To reduce the number of independent
IFCs and make the computation feasible, we make full use
of space-group symmetries and constraints due to the transla-
tional invariance [74]. Moreover, we employ the compressed
sensing lattice dynamics method [75] for reliable and efficient
estimation of force constants. An efficient implementation and
more technical details of the present SCPH calculation can be
found in Ref. [72].

III. ELECTRONIC AND PHONONIC STRUCTURE

In previous works, several stable structures under high pres-
sures have been determined [18,19,22,23,25–27,29,36,37].
Here we focus on the difference between H2S and H3S. In
order to avoid the difficulty coming from structure instability
near the transition point, we choose the pressures far from
the critical pressure, which is around 180 GPa in H3S and
around 160 GPa in H2S. For pressures close to the critical
point, the electron-phonon coupling is strongly enhanced
due to the structure instability, especially in the case of the
second-order phase transition in H3S [19,26,27,36], which
considerably raises Tc. However, such enhancement of Tc

might be an artifact of the harmonic approximation which
cannot be justified in the vicinity of the phase transition since
there are huge ion oscillations toward the other stable structure
and one cannot assume the amplitude of these oscillations
to be small. In Ref. [27], it is reported that anharmonicity
strongly suppresses the electron-phonon coupling especially
near the transition point for H3S. Therefore, we hereafter
choose 250 GPa for H3S and 140 GPa for H2S.

In order to study the superconducting property, first
one should obtain the electronic and phononic structure of
the target material precisely. For phonon frequencies and
electron-phonon matrix elements, we utilize the framework
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FIG. 1. Band structures of (a) Im3̄m H3S at 250 GPa and (b)
P 1̄ H2S at 140 GP along several high-symmetry lines. Energy is
measured from the Fermi level.

of DFPT [48] as implemented in QUANTUM ESPRESSO [76].
Density functional calculations are performed within the
generalized gradient approximation using the Perdew-Burke-
Ernzerhof parametrization [77]. Atomic configurations and
lattice constants are optimized by minimizing enthalpy under
fixed pressures.

A. Electronic structure

In Fig. 1, we show the band dispersion of H3S at 250 GPa
and H2S at 140 GPa. Under these pressures, Im3̄m and
P 1̄ are the energetically most stable structures for H3S and
H2S, respectively. The electron charge densities are obtained
with 16 × 16 × 16 BZ mesh for Im3̄m and 12 × 12 × 8 BZ
mesh for P 1̄. The cutoff for the plane-wave energy is set to
100 Ry (80 Ry) for Im3̄m (P 1̄). We use the pseudopotential
implemented based on the Troullier-Martins scheme [78].
In both Figs. 1(a) and 1(b), the electronic bands far below
the Fermi level have free-electron-like parabolic dispersion.
However, near the Fermi level, there is a notable difference
between the Im3̄m and P 1̄ structures.

To clarify the difference of the electronic structures between
Im3̄m H3S and P 1̄ H2S, the DOS calculated by the tetrahedron
method [79] for these two structures are shown in Fig. 2. Near
the Fermi level, there is a dip in the DOS for the P 1̄ structure. In
Figs. 2(b) and 2(d), the enlarged views of the DOS are shown.
In this energy scale, the DOS of the P 1̄ structure is almost
flat. On the other hand, there is a strong energy dependence
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FIG. 2. Densities of states of (a) Im3̄m H3S and (c) P 1̄ H2S.
(b) and (d) show the enlarged views of (a) and (c) around the Fermi
level, respectively. The unit of the vertical axis is states per an atom.
In (b), there is a sharp peak around the Fermi level and the peak width
is comparable with the phonon energy scale, while (d) does not show
any characteristic structures within the energy range of 1 eV.

of the DOS as a consequence of the VHS around the Fermi
level for the Im3̄m structure [Fig. 2(b)]. This narrow peak is a
characteristic common feature of the DOS of the H3S phases
since one can also observe it in the R3m structure [19], which
is another stable structure stabilized under pressures around
180 GPa [19,23,26,29].

The existence of the VHS is good news for high-Tc super-
conductivity since the large DOS at the Fermi level enhances
the electron-phonon coupling [30]. However, the VHS makes
it difficult to treat the superconductivity theoretically since the
constant DOS approximation is not justified. This is the same
situation as in the A15 compounds [41–45]. The constant DOS
approximation overestimates the number of relevant states for
superconductivity around the Fermi level and, consequently,
Tc [25,30,42].

B. Phononic structure

Figure 3 shows the phonon-dispersion relations for the
two structures. For the linear response calculation, we use
10 × 10 × 10 q mesh for Im3̄m H3S and 12 × 12 × 8 q mesh
for P 1̄ H2S, respectively. It is important to notice that the
typical phonon energy scale is extraordinarily high. In both
Figs. 3(a) and 3(b), the frequencies of the hardest modes are
above 1500 cm−1. This value is larger than phonon energies
in simple metals by a factor of ten. The existence of these
hard phonons is consistent with the prediction of high-Tc

superconductivity in hydrogen-rich compounds [5].
To give a more quantitative discussion about the energy

scale of the phonons, we calculate ωln defined by

ωln = exp

{
2

λ

∫ ∞

0
dω

α2F (ω)

ω
ln ω

}
, (42)
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FIG. 3. Phonon dispersions and Eliashberg functions α2F (ω) in
(a) Im3̄m H3S and (b) P 1̄ H2S.

where λ is the electron-phonon coupling constant defined by
λ(0) in Eq. (17). The value of ωln is 987 K (686 cm−1) for the
P 1̄ structure and 1521 K (1057 cm−1) for the Im3̄m structure.
These values are consistent with previous works [18,19,25–
27]. Here it should be noticed that the scale of ωln in H3S
is comparable with the peak width of the DOS [Fig. 2(b)]. It
clearly indicates that one should seriously consider the energy
dependence of DOS to study the superconducting properties.

In addition to the high-frequency phonons, the electron-
phonon coupling also tells us that H3S should have higher
Tc than H2S. λ takes the values of 0.86 in P 1̄ H2S,
whereas it reaches 1.83 in Im3̄m H3S at 250 GPa with
the first-order Hermite-Gaussian approximation [80] for the
δ functions with the smearing width of 0.010 Ry. These
values, which are calculated using Eq. (17) with averaged
electron-phonon matrix elements given by Eq. (23), are also
consistent with previous studies [26,27] (λ = 1.96 in Ref. [27]
with the Wannier interpolation for the electron-phonon matrix
elements [81], and λ = 1.97 in Ref. [26] with the optimized
tetrahedron method [82] for the electron δ function in Eq. (18)
in Im3̄m H3S). Therefore, the Im3̄m structure is expected to
have higher Tc. For other stable structures, such predictions of
Tc also work qualitatively (R3m for H3S [19] and Cmca for
H2S [18]).

Here we discuss why there is a huge difference in the
electron-phonon coupling between H3S and H2S. One reason
comes from the DOS. Since λ is roughly proportional to
the DOS at the Fermi level, the electron-phonon coupling is
enhanced by the large DOS [see Eq. (18)]. From Figs. 2(b)

and 2(d), the DOS takes a larger value in Im3̄m H3S than
in P 1̄ H2S. Through the larger number of the available states
around the Fermi level, λ in the Im3̄m structure should become
larger. Another point is the coupling strength between the
electrons and the hydrogen vibration. It is shown that a half of
λ comes from the low-lying sulfur vibrations (six modes below
500 cm−1) and the rest comes from the hydrogen oscillation
in H2S [18]. On the other hand, λ in H3S originate mainly
from the high-frequency hydrogen oscillations. (70% of λ is
contributed from the hydrogen-bond-stretching phonons [22]).
Therefore, between H3S and H2S, there is a clear difference
in the coupling of the electrons and the hydrogen oscillating
phonons. It is pointed out that the larger λ in H3S is ascribed
to the strong covalency of the hydrogen-sulfur bonding in
Ref. [22].

IV. EFFECT OF STRONG EL-PH COUPLING ON THE VAN
HOVE SINGULARITY AND SUPERCONDUCTIVITY

Using the electronic and phononic structure calculation
in Sec. III, we perform the calculation of Tc for Im3̄m

H3S and P 1̄ H2S based on the ME theory. As mentioned
in Sec. I, for sulfur hydrides, we have to go beyond the
constant DOS approximation employed in the previous cal-
culations [18–20,27,29,34,36]. In this section, we will show
that the energy dependence of the DOS is indeed crucial to
describe the retardation effect properly. We also discuss how
the self-consistency in the Green’s function and self-energy is
important for the quantitative estimation of Tc, which is not
considered in the previous ME approaches with the constant
DOS approximation. As was recently suggested by Ref. [28],
in sulfur hydrides, the effect of ZPR on the spectral function
can be significant. In this section, we also examine how ZPR
affects superconductivity. Let us discuss these points one by
one in the following sections.

A. Energy dependence of DOS

In this section, we examine the importance of the energy
dependence of the DOS for the accurate description of the
retardation effect. With the strong energy dependence of the
DOS at the Fermi level, it is expected that the constant
DOS approximation is more problematic in H3S than in
H2S. In order to see the effect of the energy dependence of
the DOS on both compounds, we compare Tc calculated by
Eqs. (15) and (26) with that by Eqs. (20) and (21). While
the self-consistent dressed Green’s function should be used
in Eq. (21), here we employ the one-shot Green’s function to
focus on the effect of the energy dependence of the DOS on the
retardation effect. It should be noticed that the self-consistency
of the Green’s function is not taken into account in the constant
DOS approximation with Eqs. (15) and (26).

In the calculation based on the ME theory, the numerical
cost to treat the Coulomb interaction is generally very
expensive. This is because the Coulomb interaction is effective
in the whole range of the bandwidth, and thus it requires a
large number of Matsubara frequencies. Therefore, one needs
special care for the convergence with respect to the cutoff for
the Matsubara frequency sum.
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FIG. 4. Tc against the number of Matsubara frequencies for (a)
Im3̄m H3S at 250 GPa and (b) P 1̄ H2S at 140 GPa within the constant
DOS approximation. Tc is calculated for fixed μ values of (a) μ =
0.32 and (b) μ = 0.16 evaluated with the RPA. The value of ωel is
fixed at 20 eV for both structures.

Let us examine this problem in the calculation within and
beyond the constant DOS approximation. As is discussed
in Sec. II, we employ the RPA for the screened Coulomb
interaction in Eq. (9). Following the argument by Migdal and
Eliashberg [83], we neglect the frequency dependence of the
RPA screened Coulomb interaction: Ṽ c(iωn) = Ṽ c(0). In the
constant DOS calculation with Eqs. (15) and (26), we introduce
the averaged Coulomb potential μ [Eq. (14)] and the adjustable
cutoff ωel. One can calculate Tc with nonempirically evaluated
μ by utilizing ωel and the cutoff function. Figure 4 shows the
summation cutoff dependence of Tc with fixed μ. The value of
ωel is set as 20 eV for both structures. If the cutoff frequency
ωel is fixed, we can obtain converged results with tractable
numbers of Matsubara frequencies. It is also confirmed that
the same results can be obtained by using Eq. (16) as the gap
equation, where μ∗ is calculated by employing Eq. (13) with
empirically selected ωel and ωc. Here, it should be noticed
that this calculation is not fully ab initio because of the
introduction of the cutoff for the effective Coulomb energy
range. Although Tc is converged with fixed ωel, there still
remains ωel dependence of Tc [84].

Now let us move on to the calculation beyond the constant
DOS approximation to see how it solves the problem of the
Matsubara frequency sum. In order to cover a wide energy
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FIG. 5. Number of Matsubara frequencies dependence of Tc for
(a) Im3̄m H3S at 250 GPa and (b) P 1̄ H2S at 140 GPa based on
the ME theory with energy-dependent DOS. The screened Coulomb
interaction is evaluated with the RPA.

range around the Fermi level, we include 7 (12) bands from
the band bottom in Im3̄m H3S (P 1̄ H2S). As mentioned in
Sec. II, Eq. (21) has the natural convergent factor 1/ω2

n in
the frequency sum. Figure 5 shows the Matsubara frequency
dependence of Tc in the calculation with energy-dependent
DOS. Here the normal Green’s function is calculated by the
one-shot treatment. A converged Tc is obtained with 512
Matsubara frequencies, which is a slightly smaller number
than that in the constant DOS calculation. This treatment has a
great advantage compared with the constant DOS ME theory
since we can evaluate Tc by the fully nonempirical calculation
based on the ME theory.

Finally, let us compare the results of the calculations
with constant DOS and energy-dependent DOS. We set the
summation cutoff as 8192 frequencies in the constant DOS
calculation for both structures, and 1024 and 2048 frequencies
with energy-dependent DOS for H3S and H2S, respectively.
Figure 4(a) shows that Tc is 225 K with the constant DOS
approximation, and it decreases to 168 K without the constant
DOS approximation for Im3̄m H3S [Fig. 5(a)]. Tc falls by
57 K (34%) by considering the energy dependence of the
DOS. It clearly indicates that the constant DOS approximation
breaks down for Im3̄m H3S [25]. On the other hand, as seen
in Figs. 4(b) and 5(b), Tc increases only by 10 K (15%) in P 1̄
H2S (from 56 K with constant DOS to 66 K). By comparing
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represent the Brillouin zone sampling employed for the phonon
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the results in H3S and H2S, we can conclude that the existence
of the narrow peak at the Fermi level must be treated carefully
for the accurate estimate of Tc.

B. Self-consistency for the normal Green’s function

In this section, we discuss the importance of the self-
consistency for the normal Green’s function. We perform the
calculation of Tc with both the one-shot and SC treatment
for the normal Green’s function. Figure 6 shows the mesh
dependence of Tc in Im3̄m H3S. In both cases, convergence
is already achieved with 10 × 10 × 10 mesh for the phonon
calculation.

The results are listed in the second and third row in Table I.
There is a clear difference of Tc in the case of Im3̄m H3S. Tc is
enhanced by 25 K through the self-consistency of the normal
Green’s function. One can see that such enhancement of Tc is
accompanied by the reduction of the renormalization function.
In Fig. 7, the momentum-averaged renormalization function

TABLE I. Calculated Tc for Im3̄m H3S at 250 GPa and P 1̄
H2S at 140 GPa with different methods. The first row shows Tc

with the constant DOS approximation. One-shot and SC denote the
one-shot calculation and self-consistent calculation, respectively, for
the normal Green’s function. ZPR and AH denote the zero-point
renormalization for the electron dispersion, and the anharmonicity
for the phonon frequency, respectively.

Im3̄m H3S (K) P 1̄ H2S (K)

const. DOS 225 56
One-shot 168 66
SC 193 63
SC + ZPR 202 44
SC + ZPR + AH 181 34
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FIG. 7. Renormalization function Z(iωn) as a function of the
Matsubara frequency for Im3̄m H3S at 250 GPa. Here the Matsubara
frequency is defined by ωn = (2n − 1)π/β. We choose the band
crossing the Fermi level (the fifth band from the band bottom). SC (red
line) and one-shot (blue line) denote the self-consistent and one-shot
calculation, respectively, for the normal Green’s function. Plotted Z

is calculated at 185 K in the SC calculation and 166 K in the one-shot
calculation. The temperature dependence of Z is weak and irrelevant.

defined as

Z(iωn) = 1 − Im�(iωn)

ωn

(43)

is plotted as a function of the Matsubara frequency. In both
cases, Z is suppressed and approaches one in the limit of large
ωn. By contrast, near the minimum Matsubara frequency, Z

in the one-shot treatment takes a larger value than that in
the SC calculation. There is a feedback effect in the self-
consistent loop which mitigates the development of Z. The
ratio of Z(iπ/β) from the SC calculation to the equivalent
from the one-shot calculation is 0.915 just below the transition
temperature. The suppression of the renormalization function
leads to the enhancement of Tc through the pairing interaction
since Z denotes the mass enhancement of electrons.

On the other hand, Tc does not show such a huge variation in
the case of P 1̄ H2S. Here we also calculate the ratio of Z(iπ/β)
for P 1̄ H2S and find that it is 0.987, which is much closer to
unity than that of H3S in the Im3̄m structure. This result
indicates that the large suppression of the renormalization
function by the self-consistency in H3S is related to the
existence of the VHS. It reveals that the self-consistency is
another important factor for the accurate calculation of Tc

when the DOS has strong energy dependence.

C. Effect of zero-point motion on superconductivity

Figure 8 shows how the ZPR changes the band dispersions
for H3S and H2S. Since the Fan term in the AHC theory
[Eq. (36)] is already considered in the ME theory [Eq. (5)],
hereafter we only take account of the contribution of the DW
term [Eq. (37)] as ZPR [85]. For the calculation of the ZPR,
18 × 18 × 18 and 14 × 14 × 8 BZ sampling are employed
for Im3̄m H3S and P 1̄ H2S, respectively. The temperature
dependence of the band energy shift is small and only leads
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FIG. 8. Band dispersions with (red solid line) and without (blue
broken line) ZPR for (a) Im3̄m H3S at 250 GPa and (b) P 1̄ H2S
at 140 GPa. Band structures with ZPR are plotted by the Wannier
interpolation.

to slight changes in the calculation of Tc. In Fig. 8, there is
apparently only small energy shifts by zero-point motion so
that the ZPR in sulfur hydrides is not important. However, it
is not necessarily the case since the energy shifts amount to a
few-hundred meV, which can generally have significant effects
on superconductivity.

Let us now take a closer look at the DOS in the energy
range relevant to superconductivity shown in Fig. 9. It clearly
indicates that the DOS drastically changes due to the ZPR
within the energy scale of phonons. It is interesting to note
that there is an enhancement (suppression) of the DOS around
the Fermi level for H3S (H2S).

With the ZPR, we calculate Tc. We treat the electron energy
dispersion with the ZPR as an input for the ME calculation. The
results are shown in the fourth row in Table I. In both Im3̄m

H3S and P 1̄ H2S, there is a shift of Tc of the order of ten kelvin,
although the direction is opposite. In the Im3̄m structure, Tc

gets raised by the ZPR, while it decreases in the P 1̄ structure.
Such shifts are naively consistent with the changes of the DOS
shown in Fig. 9. In fact, we obtain λ = 2.06 with ZPR and
1.83 without ZPR for Im3̄m H3S, and λ = 0.73 with ZPR and
0.86 without ZPR for P 1̄ H2S.

Here it should be noted that there is a difference in the ratio
of Tc shifts to the original values between H3S and H2S. Tc is
raised by 9 K (5%) in Im3̄m H3S, while there is a decrease of
Tc by 19 K (30%) in the P 1̄ H2S. These results indicate that
in H3S, the enhanced pairing interaction is smeared out within
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FIG. 9. Densities of states with (red solid line) and without (blue
broken line) ZPR for (a) Im3̄m H3S at 250 GPa and (b) P 1̄ H2S at
140 GPa near the Fermi level.

the energy scales of phonons and the effects of the attractive
interaction are weaker than that expected by the value of λ.
On the other hand, in H2S, since the DOS is reduced within
the energy scales relevant to superconductivity, the effects of
the reduction of the pairing interaction remain large even if the
smearing effects are taken into account.

V. ANHARMONICITY

We also examine the anharmonic effect on the calculation of
Tc. In the previous study based on the constant DOS approx-
imation for H3S [27], it was shown that the anharmonicity
makes the electron-phonon coupling weaker. Consequently,
Tc dramatically decreases especially for the pressure near
which the system undergoes the structural transition. Here we
study the anharmonic effect in H2S and H3S considering the
energy dependence of the DOS. Figure 10 shows the phonon
dispersion of Im3̄m H3S under 250 GPa and that of P 1̄
H2S under 140 GPa. Here we compare the results obtained
by the SCPH theory (red solid lines) and by the harmonic
approximation (blue dotted lines).

The SCPH calculations were conducted as follows: First,
we performed first-principles molecular dynamics (FPMD)
simulations at 300 K using 3 × 3 × 3 and 3 × 3 × 2 supercells
for Im3̄m H3S and P 1̄ H2S, respectively, and extracted
physically relevant atomic configurations in every 50 MD steps
(∼24.2 fs). For the sampled snapshots, we then added random
displacements to each atom to reduce the cross correlation
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FIG. 10. Phonon-dispersion relation for (a) Im3̄m H3S at
250 GPa and (b) P 1̄ H2S at 140 GPa. The red solid line shows
the dispersion considering the anharmonic effect within the SCPH
theory, and the blue broken line shows the result within the harmonic
approximation.

inherent in the FPMD trajectories [75]. For H3S (H2S), we
prepared 40 (250) displacement patterns and calculated forces
for each configuration using QUANTUM ESPRESSO. Next, using
the displacement-force training data, we estimated anharmonic
IFCs by the least absolute shrinkage and selection operator
(LASSO) method. Here, anharmonic IFCs up to the sixth order
were included in the anharmonic lattice model [74] to improve
the prediction accuracy. The total number of independent
parameters was as large as 9000 (28 000) for H3S (H2S), from
which a sparse solution having ∼3700 (∼16 000) nonzero
parameters was obtained by LASSO with a regularization
parameter determined by cross validation. The accuracy of the
estimated IFCs was checked by applying them to independent
test configurations, where the interatomic forces predicted
by the model showed good agreements with DFT values for
both H3S and H2S. Finally, we solved the SCPH equation
[Eqs. (38)–(41)] at 0 K using the quartic IFCs estimated by
LASSO and the harmonic dynamical matrices calculated by
DFPT. The SCPH equation was solved using 5 × 5 × 5 q mesh
for H3S and 3 × 3 × 2 q mesh for H2S, and the same mesh
densities were employed for the q1 point in Eq. (40). Doubling
the q1-mesh points along each direction did not change the
results for both systems, indicating that the finite-size effect
is not significant at the selected pressures. The anharmonic
correction to the dynamical matrix �D(q) = DSCPH(q) −

DDFPT(q) was transformed into the real-space force constants
��μν(0κ; l′κ ′), from which anharmonic phonon frequencies
at denser q points were obtained by interpolation.

We see that the anharmonicity changes the phonon disper-
sion, especially for phonons whose frequencies are higher than
∼500 cm−1 [27]. As a result, the electron-phonon coupling is
weakened from 2.06 to 1.86 (1.83 to 1.64) for the H3S, and
from 0.73 to 0.64 (0.86 to 0.75) for the H2S when the ZPR
is considered (neglected) [86]. By contrast, ωln stays nearly
unchanged by the anharmonicity [from 1521 K (987 K) with
the harmonic approximation, to 1515 K (1034 K) with the
anharmonicity for Im3̄m H3S (P 1̄ H2S)].

The modification of the phonon frequencies lowers Tc. It is
confirmed by the calculation of Tc based on the self-consistent
ME theory with the zero-point renormalization. As listed in
Table I, the values of Tc become 181 K in Im3̄m H3S, and
34 K in P 1̄ H2S. The anharmonicity reduces Tc by 21 K
(12%) in the Im3̄m structure [87], and 10 K (29%) in the P 1̄
structure. Here, the change in Tc by the anharmonicity is the
same order as the shift by both the ZPR and the feedback effect
in the self-consistent calculation. This result confirms that the
anharmonicity is also an important factor in the calculation of
Tc, as well as the ZPR and the self-consistency of the normal
self-energy.

VI. VERTEX CORRECTION

In the ME theory, the vertex function is assumed to be
dominated by the lowest-order vertex, which is equal to one,
and higher-order contributions are neglected. In order to obtain
the quantitative criterion for the justification of the ME theory,
we evaluate the lowest-order vertex correction [83]. Here
the lowest-order vertex correction �

(1)λ
j p+q,l p(iωn + iωm,iωn)

is given by

g
j p+q,l p
λ (q)�(1)λ

j p+q,l p(iωn + iωm,iωn)

= −1

Nβ

∑
k,n′

∑
λ′,j ′,l′

g
l′k+q,j ′k
λ (q)Gl′k(iωn′ )Gj ′k+q(iωn′ + iωm)

×g
j p+q,j ′k+q
λ′ ( p − k)D p−kλ′(iωn − iωn′ )gl′k,l p

λ′ (k − p).

(44)

If the ME theory is justified, at least the lowest-order correction
should be small compared with one.

The lowest-order vertex correction has a complicated de-
pendence on momenta, band indices, frequencies, and phonon
modes. To simplify the evaluation, here we employ several
approximations for Eq. (44) as follows: First, phonons are
treated as a single Einstein phonon, which does not have any
momentum dependence. Then the phonon Green’s function is
replaced by

D(iωm) = − 2〈ω〉
ω2

m + 〈ω〉2
, (45)

where 〈ω〉 is the averaged phonon frequency. In addition,
we ignore the momentum and band index dependence of
the electron-phonon matrix element, and replace it with the
averaged electron-phonon matrix element 〈g〉. In this case, we
could express the averaged electron-phonon matrix element
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〈g〉 and averaged phonon frequency 〈ω〉 in terms of the
electron-phonon coupling λ through the following relation:

λ = 2N (0)〈g〉2

〈ω〉 . (46)

With these substitutions, the vertex correction only has the q
momentum and the Matsubara frequencies dependence, and
can be written by

�(1)
q (iωn + iωm,iωn) = λ

N (0)

1

Nβ

∑
k,n′

∑
j ′,l′

〈ω〉2

ω2
n−n′ + 〈ω〉2

×Gl′k(iωn′ )Gj ′k+q(iωn′ + iωm).

(47)

In Eq. (47), the averaged electron-phonon matrix element 〈g〉
does not appear explicitly but has a contribution only through
λ. Therefore, we do not need to evaluate 〈g〉 explicitly. Finally,
the electron Green’s function is replaced by the noninteracting
one.

In the practical calculation, we focus on diagonal elements
of the vertex correction in terms of the Matsubara frequency
dependence by setting ωm as 0 and evaluate Eq. (47) at ωn =
π/β. In the case of Im3̄m H3S (P 1̄ H2S), we consider 15 (25)
bands and use 100 × 100 × 100 (48 × 48 × 32) k mesh for the
sum in the rhs of Eq. (47). Since the phonon Green’s function
works as a convergence factor for the Matsubara frequency
sum, 25 (100) Matsubara frequencies are enough to obtain
converged results. Here, the temperature is set as 200 K (50 K)
for Im3̄m H3S (P 1̄ H2S). For the phonon Green’s function,
the ωln defined by Eq. (42) is used as the averaged phonon
frequency 〈ω〉. The ZPR and anharmonicity are neglected in
this calculation.

By using Eq. (47) with 20 × 20 × 20 (12 × 12 × 8) q
mesh for Im3̄m H3S (P 1̄ H2S), we estimate the lowest-order
vertex correction. Here, we use ��(1) calculated by averaging
�

(1)
q (iωn,iωn) over q as a measure of the vertex correction, and

��(1) is estimated to be −0.22 (−0.12). We then calculate
Tc by replacing the square of the electron-phonon matrix
element and the screened Coulomb interaction with (1 +
��(1))|gjl

λ (q)|2 and (1 + ��(1))Ṽ c(q,iωm), respectively [88].
We found that the vertex correction changes Tc by −34 K
(−18%) for Im3̄m H3S and −13 K (−20%) for P 1̄ H2S. We
see that the impact of the vertex correction on Tc is similar to
that of ZPR and anharmonicity. If we take into account the fact
that the plasmon effect enhances Tc in Im3̄m H3S by 20 K [26],
we see that the present nonempirical calculation shows an
excellent agreement with the experiment (see Table II, where
the experimental Tc is compared with those in the present and
previous studies).

It was shown for a simple model system that the lowest-
order vertex correction is negative in the static limit of ωm → 0
with finite q [89]. Our results are consistent with these previous
studies. On the other hand, it was also reported that the
vertex correction becomes positive and contributes to the
enhancement of Tc in the dynamical limit (q = 0 with finite
ωm). Since these static and dynamical regions in the q-ωm

plane are approximately separated by a line of vF|q| ≈ ωm,
where vF is the Fermi velocity, the net contribution of the
vertex correction depends on the energy scale of phonons and

TABLE II. Comparison of Tc in Im3̄m H3S with previous studies.
Except for the row of Flores-Livas et al. [25], pressure is set to be
250 GPa. The first and second rows show Tc calculated with an
adjustable parameter μ∗. Both the third and fourth rows refer to
calculations of Tc based on SCDFT. Akashi et al. [26] has revealed
that the plasmon effect enhances Tc by ∼20 K in Im3̄m H3S. If such
a contribution is added to our calculation (Table I) with the static
vertex correction, the resulting Tc shows an excellent agreement with
the experimental value as show in the seventh row.

Tc (K) Remark

Duan et al. [19] 184 McMillan (μ∗ = 0.13)
Errea et al. [27] 190 const. DOS ME (μ∗ = 0.16)

+ anharmonicity
Flores-Livas et al. [25] 180 SCDFT (P = 200 GPa)
Akashi et al. [26] 211 SCDFT + plasmon

different approximation with Ref. [25]
This work 181

∼147 static vertex correction ∼−34 K
∼167 plasmon effect ∼+20 K

Experiment [15] ∼160 extrapolation of Fig. 2 of Ref. [15]

vF|q|. Our results give the lower bound of Tc corrected by
the inclusion of the vertex function in that we take the limit
of ωm → 0. Thus especially for H3S having small vF around
VHS, the effect of the vertex correction may be overestimated
in the present calculation, since the dynamical contribution can
be relevant [90]. Further study for the vertex function based
on a more sophisticated treatment [91] is also an interesting
future problem.

VII. SUMMARY

One of the most characteristic features in the electronic
structure of H3S under high pressures is the existence of the
VHS around the Fermi level, which is absent for the low-Tc

phases of H2S. While it has been known that it is crucial to take
account of the energy dependence of the VHS for an accurate
estimate of Tc, in the previous ab initio calculation based on the
ME theory, the constant DOS approximation was employed.

In this study, we performed a self-consistent ME analysis
in which we explicitly considered the electronic structure
over 40 eV around the Fermi level. Since Tc’s of sulfur
hydrides are extremely high, with a reasonably large number
of Matsubara frequencies (up to ∼1000) in the Eliashberg
equation, the retardation effect of the Coulomb interaction
could be directly treated. By calculating Tc of H3S (H2S),
in which VHS are present (absent) near the Fermi level, we
showed that the constant DOS approximation employed so
far seriously overestimates (underestimates) Tc by ∼60 K
(∼10 K). In addition, we discussed how the self-energy due
to the strong electron-phonon coupling affects the VHS and
Tc, especially focusing on (1) the feedback effect in the
self-consistent calculation of the self-energy, (2) the effect
of the ZPR, and (3) the effect of the changes in the phonon
frequencies due to the strong anharmonicity. We showed that
the effect of (1)–(3) on Tc is about 10–30 K for both H3S
and H2S, and eventually Tc is estimated to be 181 K for
H3S, and 34 K for H2S. These results explain the pressure

094525-13



SANO, KORETSUNE, TADANO, AKASHI, AND ARITA PHYSICAL REVIEW B 93, 094525 (2016)

dependence of Tc observed in the experiment if it is considered
that high- (low-)Tc superconductivity under pressures higher
(lower) than ∼150 GPa is attributed to that of H3S (H2S).
Finally, we evaluated the lowest-order vertex correction and
we found that its impact on Tc is as large as that of ZPR and
anharmonicity.
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APPENDIX: DENSITY FUNCTIONAL PERTURBATION
THEORY

In solids, the phonon frequencies are calculated by the
following equation:∑

νκ ′
Dμκ,νκ ′ (q)eν

κ ′(qλ) = ω2
qλe

μ
κ (qλ), (A1)

with a momentum q, ion index κ , and displacement direction
μ,ν = {x,y,z}. This equation is an eigenvalue problem for
3n × 3n matrix D(q) with n being the number of atoms.
Therefore, the square root of the eigenvalue ωqλ and the
polarization vector eμ

κ (qλ) have mode index λ, which runs
1 . . . 3n. The matrix D(q) is called the dynamical matrix and
is given by

Dμκ,νκ ′(q) = 1√
MκMκ ′

�μκ,νκ ′ (q), (A2)

where Mκ is the mass of the κth ion, �μκ,νκ ′ (q) is the
interatomic force constant,

�μκ,νκ ′ (q) = 1

N

∂2E
({

R0
κ

})
∂u∗

μκ (q)∂uνκ ′(q)
, (A3)

with the Born-Oppenheimer energy surface E({R0
κ}), the

number of q points N , the equilibrium positions of the ions
{R0

κ}, and the displacement of the ions u.
Derivatives of the Born-Oppenheimer energy surface can

be written as
∂2E

({
R0

κ

})
∂u∗

μκ (q)∂uνκ ′(q)
=

∫
∂2Vie(r)

∂u∗
μκ (q)∂uνκ ′(q)

n(r)d3r

+
∫

∂Vie(r)

∂u∗
μκ (q)

∂n(r)

∂uνκ ′(q)
d3r

+ ∂2Uii

∂u∗
μκ (q)∂uνκ ′(q)

, (A4)

with the electron density n(r), the ionic potential Vie(r), and
the ion-ion interaction energy Uii . This formulation can be
used for the calculation of the dynamical matrix.

To evaluate Eq. (A4), one needs the response of the electron
density to the ionic displacement. With the Kohn-Sham orbital

ψi , the electron density response ∂n(r)/∂uμκ (q) is given by

∂n(r)

∂uμκ (q)
= 4Re

∑
i;occ

ψ∗
i (r)

∂ψi(r)

∂uμκ (q)
, (A5)

where the derivative of the wave function can be written as

(HKS − εi)

∣∣∣∣ ∂ψi

∂uμκ (q)

〉
= −

[
∂VKS

∂uμκ (q)
− ∂εi

∂uμκ (q)

]
|ψi〉.

(A6)

Here, HKS, VKS, and εi denote the Hamiltonian, self-consistent
potential, and eigenenergy of the Kohn-Sham system, respec-
tively. The derivative of the Kohn-Sham potential also depends
on the electron density response,

∂VKS(r)

∂uμκ (q)
= ∂Vie(r)

∂uμκ (q)

+
∫

1

|r − r ′|
∂n(r ′)

∂uμκ (q)
d3r ′ + dVxc

dn

∂n(r)

∂uμκ (q)
,

(A7)

with the exchange-correlational potential Vxc. One can obtain
the electronic density response, the Kohn-Sham wave-function
response, and the modulation of the potential simultaneously
with solving Eqs. (A5)–(A7) as a set of equations. This scheme
is known as the Sternheimer method [48]. Also, the electron-
phonon matrix element can be evaluated through this scheme
since it is also determined as follows:

g
i p+q,j p
λ (q) =

∑
κμ

√
�

2Mκωqλ

×〈ψi p+q |∇lκμVKS|ψj p〉eμ
κ (qλ), (A8)

where ∇lκμ denotes the partial derivative with respect to
the κth ion position in the lth unit cell for the μ direction.
This is the formulation of density functional perturbation
theory [48]. Here, one should notice that the calculated
dynamical matrix and electron-phonon matrix element are
statically renormalized quantities.

In a practical calculation, in order to avoid the singular
behavior in the left-hand side of Eq. (A6), one introduces
a projection operator. If Eq. (A6) is formally solved, the
derivative of the wave function is written as∣∣∣∣ ∂ψi

∂uμκ (q)

〉
=

∑
j �=i

〈ψj |∂VKS/∂uμκ (q)|ψi〉
εi − εj

|ψj 〉. (A9)

With this formulation, the electron density response is
given by

∂n(r)

∂uμκ (q)
= 4Re

∑
i;occ

∑
j �=i

ψ∗
i (r)ψj (r)

× 〈ψj |∂VKS/∂uμκ (q)|ψi〉
εi − εj

. (A10)

Equation (A10) does not have a convenient form to solve
directly because of the summation over the unoccupied states.
However, due to the cancellation of the contribution involving
occupied states, the summation over the index k in the rhs
of Eq. (A10) can be restricted to the unoccupied orbitals
and the density response only depends on the change of the
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wave function in the unoccupied manifold. Therefore, one
can evaluate the electron density response with restriction of
Eq. (A6) on the unoccupied manifold. It is achieved by the
following equation:

(HKS + αPocc − εi)

∣∣∣∣ ∂ψi

∂uμκ (q)

〉
= −Punocc

∂VKS

∂uμκ (q)
|ψi〉,

(A11)

where Pocc and Punocc are the projection to the occupied
and unoccupied spaces, and α is a constant introduced in
order to avoid the singularity of the operator HKS − εi . (For
the selection of α and a more practical implementation,
see, e.g., Ref. [48].) One can show that the solution of
Eq. (A11) is equivalent to that of Eq. (A6) on the unoccupied
manifold.
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[34] A. P. Durajski, R. Szczȩśniak, and L. Pietronero, Ann. Phys.

(Berlin) (2016).
[35] L. P. Gor’kov and V. Z. Kresin, arXiv:1511.06926.
[36] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y.

Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, arXiv:1512.02933.
[37] R. Akashi, W. Sano, R. Arita, and S. Tsuneyuki,

arXiv:1512.06680.
[38] M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets,

A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi,
arXiv:1509.03156.

[39] A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys.
JETP 7, 996 (1958)].

[40] G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov.
Phys. JETP 11, 696 (1960)].

[41] S. G. Lie and J. P. Carbotte, Solid State Commun. 26, 511 (1978).
[42] W. E. Pickett, Phys. Rev. B 26, 1186 (1982).
[43] W. E. Pickett, Phys. Rev. Lett. 48, 1548 (1982).
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